| Qn | No.    | Solutions                                                | Marks       | Remarks                                                 |
|----|--------|----------------------------------------------------------|-------------|---------------------------------------------------------|
| 1  |        | -5.25                                                    | B1          | 0.e. $-5^{-1}$                                          |
|    |        |                                                          |             | 4                                                       |
|    |        |                                                          |             | Total : 1 mark                                          |
| 2  |        | 2 = f = 6                                                | B1          | $2 \approx 14 \leq f \leq 42$                           |
|    |        | $2 \leq \frac{1}{7} \leq 0$                              |             | 0.6. $14 \le \frac{1}{7} < 42$                          |
|    |        |                                                          |             |                                                         |
| 2  |        | 5.2 - 22.5.0                                             | M1          | Find the max amt of red point needed                    |
| 3  |        | 5.2 - 22.5.9                                             | 1111        | Find the max. and of red paint needed                   |
|    |        | 31.5                                                     | A1          |                                                         |
|    |        |                                                          |             | Total : 2 marks                                         |
| 4  |        | 21v-7 $4v+10$ 14                                         | M1          | Combine fraction                                        |
|    |        | $\frac{1}{14} - \frac{1}{14} + \frac{1}{14}$             |             | (All terms with common denominator)                     |
|    |        | 14 14 14                                                 |             |                                                         |
|    |        | 17., 2                                                   |             |                                                         |
|    |        | $=\frac{17y-3}{1}$                                       | A1          |                                                         |
|    |        | 14                                                       |             | Total ( ) mandre                                        |
| 5  | 0      | $1.40 \times 10^8$                                       | D1          | Total : 2 marks                                         |
| 5  | a<br>b | 1149 ~ 10                                                | B1          |                                                         |
|    | 0      | 110                                                      |             | Total : 2 marks                                         |
| 6  |        | 21, 23, 26, 27, 28                                       | B1          | 26 in the middle position seen                          |
| Ŭ  |        | 21, 23, 20, 27, 20                                       | B1          |                                                         |
|    |        |                                                          |             | Total : 2 marks                                         |
| 7  |        | $(4)^{3}$                                                | M1          | Find Vol ratio                                          |
|    |        | $\left(\frac{1}{6}\right)$                               |             |                                                         |
|    |        |                                                          |             |                                                         |
|    |        | 1.60                                                     | A1          | Reject 1.6                                              |
|    |        |                                                          |             | Total : 2 marks                                         |
| 8  |        | Basic angle $= 46.30$                                    | M1          | Find basic angle                                        |
|    |        | 122.7                                                    | . 1         |                                                         |
|    |        | 133.7                                                    | Al          | Accept 2.33 sol                                         |
| 0  | 0      |                                                          | D1          | 1 otal : 2 marks                                        |
| 9  | а      | 160-                                                     | Ы           |                                                         |
|    |        | 140-                                                     |             |                                                         |
|    |        | 100-                                                     |             |                                                         |
|    |        | 80-                                                      |             |                                                         |
|    |        | 60-                                                      |             |                                                         |
|    |        | 40-                                                      |             |                                                         |
|    |        |                                                          |             |                                                         |
|    | 1      | Dollars (5)                                              | D1          |                                                         |
|    | b      | 132                                                      | BI          | DM from graph (up to \$220)                             |
| 10 | 0      | (20, 6, 4)                                               | D1          | i otai: 2 marks                                         |
| 10 | a      | $\begin{pmatrix} 25 & 0 & 1 \\ 25 & 0 & 5 \end{pmatrix}$ | DI          |                                                         |
|    | b      | (58)                                                     | B1          |                                                         |
|    |        | \65J                                                     | 1           |                                                         |
|    | c      | 7                                                        | √B1         | Reject negative                                         |
| 11 |        | 22 23 5                                                  | D1          | Total : 3 marks                                         |
|    | a<br>h | $2^{-} \times 3^{\circ} \times 3$                        | BI<br>D1 D1 | Accept $2 \times 2 \times 3 \times 3 \times 3 \times 5$ |
|    | b      | 54, 60                                                   | ы, ы        | Tatal: 2 montra                                         |
|    |        |                                                          |             | TOTAL 3 HIALKS                                          |

| Qn  | No. | Solutions                                      | Marks    | Remarks                        |
|-----|-----|------------------------------------------------|----------|--------------------------------|
| 12  | а   | $\frac{x}{2}$                                  | B1       |                                |
|     | h   | $\frac{20}{x+10}$ (x)                          | M1       | Form equation                  |
|     | U   | $\frac{x+10}{30} = 2\left(\frac{x}{20}\right)$ | 1011     | Polini equation                |
|     |     | 50 20/                                         |          |                                |
|     |     | x = 5                                          | A1       |                                |
|     |     |                                                |          | Total : 3 marks                |
| 13  | a   | $x^4$                                          | B1       |                                |
|     |     | 16y <sup>12</sup>                              |          |                                |
|     | 1   | $a^n$ $a^{-1}$ $a^n$ 1                         | 2.41     |                                |
|     | в   | $2^{p} \times 2^{-1} \times 3^{p} = 1$         |          | $2^{p-1}=2p \div 2$            |
|     |     | 0 - 4                                          | AI       | Total · 3 marks                |
| 14  | а   | 32                                             | B1       |                                |
|     | b   | 49                                             | B1       | 45 and 49                      |
|     |     | Multiples of 3                                 |          |                                |
|     |     | 39 51                                          | B1       | 39, 42 and 51                  |
|     |     | 45 51                                          |          |                                |
|     |     | 42                                             |          |                                |
|     |     |                                                |          |                                |
|     |     |                                                |          |                                |
|     |     | Multiples of 6                                 |          |                                |
|     |     |                                                |          |                                |
|     |     |                                                |          | T. (1, 2,                      |
| 15  |     | 3 + 1.4                                        | M1       | Find the parallel side         |
| 15  |     | $\frac{2}{2} = 2.2$                            | M1<br>M1 | Area of trapezium $\times 2.5$ |
|     |     | 0.5(1.4+2.2) 1.2 × 2.5<br>5.4                  | A1       | 1                              |
|     |     |                                                |          | Total : 3 marks                |
| 16  | a   | $(x-7)^3 - 4(x-7)$                             |          |                                |
|     |     | $=(x-7)[(x-7)^2-4]$                            | M1       | Factorise $(x - 7)$            |
|     |     | =(x-5)(x-7)(x-9)                               | M1       | Apply diff of 2 sq             |
|     | h   | 6                                              |          |                                |
|     | D   | 0                                              | VDI      | Total · 4 marks                |
| 17  | a   | 25%                                            | B1       | 10ml . T IImino                |
| - 1 | b   | 78.5                                           | B1       |                                |
|     | с   | Students performed better in                   | B1       |                                |
|     |     | Maths because higher                           |          |                                |
|     |     | median/mean marks.                             |          |                                |
|     |     | Students performed more                        | B1       |                                |
|     |     | consistently for Maths because of              |          |                                |
|     |     | smaller range.                                 |          |                                |
|     |     | <u> </u>                                       |          | Total : 4 marks                |
|     | 1   |                                                |          |                                |
|     |     |                                                |          |                                |
|     |     |                                                |          |                                |
|     |     |                                                |          |                                |

| Qn | No.  | Solutions                                              | Marks | Remarks                                               |
|----|------|--------------------------------------------------------|-------|-------------------------------------------------------|
| 18 | a    | I disagree because $\frac{360}{2} = 6.545 \neq$        | B1    | Each ext. angle not a whole number.                   |
|    |      | whole number/integer                                   |       |                                                       |
|    |      | whole humber meger                                     |       |                                                       |
|    | b    | 144                                                    | M1    | each int. angle of decagon                            |
|    |      | Angle $CAD = 180 - 144 - 60$                           | M1    | each in.t angle of <i>n</i> -sided polygon            |
|    |      | = 156                                                  |       |                                                       |
|    |      | n = 360/24                                             |       |                                                       |
|    |      | = 15                                                   | A1    |                                                       |
|    |      | 1811 Descr PD                                          |       | Total : 4 marks                                       |
| 19 |      | g on bearing 116"                                      | B1    | Draw <i>PR</i> on bearing $116^{\circ} \pm 1^{\circ}$ |
|    |      | [B] Draw arc (scrip)<br>away from a                    |       | Construction $\Delta PQR$                             |
|    |      | [B1] X bischer OPR a orn<br>[B1] mark wat and          | D1    |                                                       |
|    |      | N GSet L                                               | BI    | Draw arc 6 cm away from $Q(\pm 1mm)$                  |
|    |      | L [-1] If ar off                                       |       |                                                       |
|    |      |                                                        | R1    | Angle hispotor OPP with are                           |
|    |      |                                                        | DI    | Aligie disector Qr K with are                         |
|    |      | R                                                      | B1    | Mark out L                                            |
|    |      |                                                        | 21    |                                                       |
|    |      |                                                        |       |                                                       |
|    |      |                                                        |       | Total : 4 marks                                       |
| 20 | a    | \$1490.60                                              | B1    | cao                                                   |
|    | b    | % change = $\frac{their(a) - 1250}{1250} \times 100\%$ | M1    |                                                       |
|    |      | = 19.3                                                 |       |                                                       |
|    |      |                                                        | A1    | Accept 19.2, 19.3                                     |
|    | c    | 4.5%                                                   | B1    |                                                       |
|    | d    | <b>↑</b> /                                             | B1    | Shape                                                 |
|    |      |                                                        | DI    |                                                       |
|    |      | 1250                                                   | BI    | Vertical intercept                                    |
|    |      |                                                        |       |                                                       |
|    |      |                                                        |       |                                                       |
|    |      |                                                        |       | Total : 6 marks                                       |
| 21 | a    | -0.5                                                   | B1    | 0.e                                                   |
|    | b    | (4, 4)                                                 | B1    |                                                       |
|    | c    | 2                                                      | √B1   |                                                       |
|    | d    | (6, 3)                                                 | M1    | Find the point the line cuts                          |
|    |      | Sub in (6,3) to find <i>y</i> -intercept               | M1    | y - 3 = 2(x - 6)                                      |
|    |      |                                                        |       |                                                       |
|    |      | y = 2x - 9                                             | Al    | 0.e.                                                  |
|    |      |                                                        | D1    | Total: 6 marks                                        |
| 22 | а    |                                                        | BI    |                                                       |
|    | b    | $(2k)^2 + (-k)^2 = 180$                                | M1    | Use magnitude                                         |
|    | -    | k = +6                                                 | A1    | <del>0</del>                                          |
|    | c(i) | (-7)                                                   | B1    |                                                       |
|    |      | = 1 /                                                  | 1     |                                                       |

B1 B1

Total : 6 marks

c(ii)

(-2, -5)

# Sec 4 Mathematics Paper 1 - Prelims 2018

| 23a $A = \pi a^2 + 2\pi ab$<br>$2\pi ab = A - \pi a^2$<br>$b = \frac{A - \pi a^2}{2\pi a}$ M1Isolate $2\pi ab$ b(i) $\pi(5)^2 h = \frac{2}{3}\pi r^3$ B1Equate the 2 volumes $r^3 = \frac{75h}{2}$ M1Isolate $r^3$ b(ii) $90$ B1 $r = \sqrt[3]{\frac{75h}{2}}$ B1b(iii) $90$ B1b(ii) $90$ b(ii) $90$ b(iii) $90$ B1Find rate of tank filled in one min.<br>for at least one pipeb(i) $(30 - d)^2 + 27.5^2 = 30^2$<br>$(30 - d)^2 = 143.75$ M1b(ii) $(30 - d)^2 = 143.75$ M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Qn | No.   | Solutions                         | Marks        | Remarks                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------|-----------------------------------|--------------|--------------------------------------|
| $\begin{array}{ c c c c c c c } \hline & 2\pi ab = A - \pi a^2 & M1 & \text{Isolate } 2\pi ab \\ \hline & b = \frac{A - \pi a^2}{2\pi a} & A1 & \text{Isolate } 2\pi ab \\ \hline & b(i) & \pi(5)^2 h = \frac{2}{3}\pi r^3 & B1 & \text{Equate the 2 volumes} \\ \hline & r^3 = \frac{75h}{2} & M1 & \text{Isolate } r^3 \\ \hline & r = \sqrt[3]{\frac{75h}{2}} & A1 & \\ \hline & b(ii) & 90 & B1 & \\ \hline & & & & & \\ \hline & b(ii) & 90 & B1 & \\ \hline & & & & & \\ \hline & & & & & \\ \hline & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 23 | a     | $A = \pi a^2 + 2\pi a b$          |              |                                      |
| $b = \frac{A - \pi a^2}{2\pi a}$ A1 $b(i)$ $\pi(5)^2 h = \frac{2}{3}\pi r^3$ B1Equate the 2 volumes $r^3 = \frac{75h}{2}$ M1Isolate $r^3$ $r = \sqrt[3]{\frac{75h}{2}}$ A1 $b(ii)$ 90B1 $b(ii)$ 90B1 $r = \sqrt[3]{\frac{75h}{2}}$ B1 $b(ii)$ 90B1 $b(ii)$ 90B1 $b(ii)$ 90B1 $b(ii)$ $90$ B1 $b(ii)$ $90$ B1 $b(ii)$ $90$ B1 $b(ii)$ $90$ B1 $b(ii)$ $120$ B1 $find rate of tank filled in one min. for at least one pipe30 minsB1b(i)(30 - d)^2 + 27.5^2 = 30^2M1(30 - d)^2 = 143.75M1Form equationSolve equation$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |       | $2\pi ab = A - \pi a^2$           | M1           | Isolate $2\pi ab$                    |
| b(i) $\pi(5)^2h = \frac{2}{3}\pi r^3$ B1Equate the 2 volumes $r^3 = \frac{75h}{2}$ M1Isolate $r^3$ $r = \sqrt[3]{\frac{75h}{2}}$ A1b(ii)90B1 $r = \sqrt[3]{\frac{75h}{2}}$ B1Image: b(ii)90B1Total : 6 marks24aSmall pipe: $\frac{1}{120}$ Big pipe: $\frac{1}{80}$ B130 minsB1b(i) $(30 - d)^2 + 27.5^2 = 30^2$ (30 - d)^2 = 143.75M1Form equationSolve equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |       | $b = \frac{A - \pi a^2}{2\pi a}$  | A1           |                                      |
| $r^3 = \frac{75h}{2}$ M1Isolate $r^3$ $r = \sqrt[3]{\frac{75h}{2}}$ A1b(ii) 90B1 $r = \sqrt[3]{\frac{75h}{2}}$ B1Image: 1 transformation of transformation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    | b(i)  | $\pi(5)^2 h = \frac{2}{2}\pi r^3$ | B1           | Equate the 2 volumes                 |
| $r = \sqrt[3]{\frac{75h}{2}}$ A1b(ii)90B124aSmall pipe: $\frac{1}{120}$ Big pipe: $\frac{1}{80}$ B130 minsB1b(i) $(30 - d)^2 + 27.5^2 = 30^2$ M1Form equation(30 - d)^2 = 143.75M1Form equationSolve equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |       | $r^3 = \frac{75h}{2}$             | M1           | Isolate $r^3$                        |
| b(ii)90B124aSmall pipe: $\frac{1}{120}$ B1Total : 6 marks24aSmall pipe: $\frac{1}{120}$ B1Find rate of tank filled in one min.<br>for at least one pipeBig pipe: $\frac{1}{80}$ B1B130 minsB1b(i) $(30 - d)^2 + 27.5^2 = 30^2$ M1 $(30 - d)^2 = 143.75$ M1Form equationb(i) $(10 - d)^2 = 143.75$ M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |       | $r = \sqrt[3]{\frac{75h}{2}}$     | A1           |                                      |
| 24aSmall pipe: $\frac{1}{120}$ B1Total : 6 marks24aSmall pipe: $\frac{1}{120}$ B1Find rate of tank filled in one min.<br>for at least one pipeBig pipe: $\frac{1}{80}$ B1B130 minsB1b(i) $(30 - d)^2 + 27.5^2 = 30^2$ M1 $(30 - d)^2 = 143.75$ M1Solve equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    | b(ii) | 90                                | B1           |                                      |
| 24aSmall pipe: $\frac{1}{120}$ B1Find rate of tank filled in one min.<br>for at least one pipeBig pipe: $\frac{1}{80}$ B1B130 minsB1b(i) $(30 - d)^2 + 27.5^2 = 30^2$ M1 $(30 - d)^2 = 143.75$ M1Solve equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |       |                                   |              | Total : 6 marks                      |
| Image: Image in the second systemImage in the second systemImage in the second systemImage in the second systemBig pipe: $\frac{1}{80}$ B1for at least one pipe30 minsB1b(i) $(30 - d)^2 + 27.5^2 = 30^2$ M1Form equation $(30 - d)^2 = 143.75$ M1Solve equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24 | a     | Small pipe: $\frac{1}{}$          | B1           | Find rate of tank filled in one min. |
| Big pipe: $\frac{1}{80}$ B1           30 mins         B1           b(i) $(30 - d)^2 + 27.5^2 = 30^2$ M1 $(30 - d)^2 = 143.75$ M1         Solve equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |       | 1 1 120                           |              | for at least one pipe                |
| 30 mins         B1           b(i) $(30 - d)^2 + 27.5^2 = 30^2$ M1         Form equation $(30 - d)^2 = 143.75$ M1         Solve equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |       | Big pipe: $\frac{1}{80}$          |              |                                      |
| b(i) $(30-d)^2 + 27.5^2 = 30^2$<br>$(30-d)^2 = 143.75$ M1 Form equation<br>Solve equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |       | 30 mins                           | B1           |                                      |
| $(30-d)^2 = 143.75$ M1 Solve equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    | b(i)  | $(30-d)^2 + 27.5^2 = 30^2$        | M1           | Form equation                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |       | $(30-d)^2 = 143.75$               | M1           | Solve equation                       |
| d = 18.0 A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |       | <i>d</i> =18.0                    | A1           |                                      |
| b(ii) $d2.0$ $y/B1$ $60$ their $b(i)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    | b(ii) | 42.0                              | √ <b>B</b> 1 | 60 their b(i)                        |
| $\frac{1}{100} \frac{1}{100} \frac{1}$ |    |       | 72.0                              | VD1          | Total: 6 marks                       |

## Sec 4 Mathematics Paper 1 - Prelims 2018



# TANJONG KATONG SECONDARY SCHOOL Preliminary Examination 2018

Secondary 4

| CANDIDATE<br>NAME |              | <br> |
|-------------------|--------------|------|
| CLASS             | INDEX NUMBER |      |

## **MATHEMATICS**

Paper 1

4048/01

Thu 16 August 2018 2 hours

Candidates answer on the Question Paper.

#### READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on all the work you hand in. Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

You are expected to use a scientific calculator to evaluate explicit numerical expressions.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For  $\pi$ , use either your calculator value or 3.142, unless the question requires the answer in terms of  $\pi$ .

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [ ] at the end of each question or part question. The total of the marks for this paper is 80.

| For Examiner's Use |
|--------------------|
|                    |
|                    |
|                    |
|                    |

#### Mathematical Formulae

Compound Interest

Total Amount = 
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone =  $\pi rl$ 

Curved surface area of a sphere =  $4\pi r^2$ 

Volume of a cone = 
$$\frac{1}{3} \pi r^2 h$$

Volume of a sphere = 
$$\frac{4}{3} \pi r^3$$

Area of triangle 
$$ABC = \frac{1}{2} ab \sin C$$

Arc length =  $r\theta$ , where  $\theta$  is in radians

Sector area =  $\frac{1}{2} r^2 \theta$ , where  $\theta$  is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$

**Statistics** 

Mean = 
$$\frac{\sum fx}{\sum f}$$
  
Standard Deviation =  $\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$ 

| or<br>iner's<br>se | 3                                                                            | E:         |
|--------------------|------------------------------------------------------------------------------|------------|
|                    | Answer <b>all</b> the questions.                                             |            |
| 1                  | Solve the equation $6 - \frac{4}{3}x = 13$ .                                 |            |
| -                  | Solve the equation $0^{-3}$ at 15.                                           |            |
|                    |                                                                              |            |
|                    |                                                                              |            |
|                    |                                                                              |            |
|                    |                                                                              |            |
|                    | Answer $x =$                                                                 | [1]        |
| 2                  | Nurul works part-time in a supermarket                                       |            |
|                    | In one week, Nurul works $f$ hours at the supermarket.                       |            |
|                    | Write down an inequality for the statement below.                            |            |
|                    | Nurul must work at least 2 hours and less than 6 hours in a day.             |            |
|                    |                                                                              |            |
|                    |                                                                              |            |
|                    | Answer                                                                       | [1]        |
|                    |                                                                              | L J        |
| 3                  | Purple paint is made by mixing red paint and blue paint in the ratio $5:2$ . |            |
|                    | What is the maximum emperator for and a nucleon for the paint.               |            |
|                    | what is the maximum amount of purple paint she can make?                     |            |
|                    |                                                                              |            |
|                    |                                                                              |            |
|                    |                                                                              |            |
|                    |                                                                              |            |
|                    | Answer                                                                       | litres [2] |
|                    | Simplify $3y-1 = 2y+5 + 1$                                                   |            |
| 4                  | Simplify $\frac{1}{2} = \frac{1}{7} + 1$ .                                   |            |
|                    |                                                                              |            |
|                    |                                                                              |            |
|                    |                                                                              |            |
|                    |                                                                              |            |
|                    |                                                                              |            |
|                    |                                                                              |            |
|                    |                                                                              |            |
|                    | Answer                                                                       | [2]        |
|                    | 1049/4/Soc4Drolime19                                                         |            |
| I                  | 4040/1/38047181111510                                                        | Turn over  |

[Turn over

[1]

[2]

- 5 (a) The distance between the Sun and Earth is approximately 149 million km. Convert this number to standard form.
  - Answer (a) km [1]
  - (b) The radius of the Sun and Earth is approximately 695 000 km and 6 000 000 m respectively.

Complete the sentence, leaving your answer to the nearest integer. Answer (b)

The diameter of the sun is \_\_\_\_\_\_ times the diameter of Earth.

5 different integers between 19 and 30 were written. 6 The mean is 25 and the median is 26. They have a range of 7.

Write down the five integers.

A cafe sells two sizes of cupcakes that are geometrically similar. The large cupcake 7 is 6 cm wide at the base and the small cupcake is 4 cm wide at the base.

Answer \_\_\_\_\_, \_\_\_\_, \_\_\_\_, \_\_\_\_,



The price of a cupcake is proportional to its mass. If the large cupcake is sold at \$5.40, what is the price of the small cupcake?



10 The point system of a soccer league is given: 3 points awarded for each game won • 1 point awarded for each game drawn • 2 points deducted for each game lost • The points system can be represented  $\mathbf{P} = \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix}$ . (a) In 2017, Tagore soccer club played in the league of 30 games. It won 20, drew 6 and lost the remaining games. In 2018, the club played in the league of 30 games. It won 25 and lost 5 games. Represent this information in a  $2 \times 3$  matrix, **E**. Answer (a)  $\mathbf{E} =$ [1] (b) Evaluate the matrix  $\mathbf{T} = \mathbf{E}\mathbf{P}$ . Answer (b)  $\mathbf{T} =$ [1] (c) Find the difference between total points scored in 2017 and 2018. Answer (c) [1]

|    | Ι                                                                                                                                                                                                                                                                                                                     |            |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 11 | (a) Express 540 as the product of its prime factors.                                                                                                                                                                                                                                                                  |            |
|    | <ul><li><i>Answer (a)</i></li><li>(b) Find two numbers, both smaller than 100, that have a lowest common multiple of and a highest common factor of 6.</li></ul>                                                                                                                                                      | [1]<br>540 |
|    | Answer (b)                                                                                                                                                                                                                                                                                                            | [2]        |
| 12 | <ul> <li>A jar contains 20 coloured marbles of which x are red marbles.</li> <li>A marble is removed at random from the jar.</li> <li>(a) Write down, in terms of x, the probability that the marble will be red.</li> </ul> <i>Answer (a)</i> A bowl contains 30 coloured marbles of which (x + 10) are red marbles. | [1]        |
|    | The probability that a red marble will be taken at random from this bowl is twice the probability that a red marble will be taken at random from the jar. (b) Find the value of <i>x</i> .                                                                                                                            |            |
|    | Answer (b) $x =$                                                                                                                                                                                                                                                                                                      | [2]        |



For

Use





| For        |
|------------|
| Examiner's |
| Use        |

| 18 (a) | It is possible to draw a regular polygon with an exterior angle of 50°.<br>Do you agree? Explain.                                                                                                                 |      |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|        | Answer (a)                                                                                                                                                                                                        |      |
|        |                                                                                                                                                                                                                   | [1]  |
| (b)    | The sides of an equilateral triangle $ABC$ and two regular polygons meet at $A$ .<br>AB and $AD$ are adjacent sides of a regular decagon.<br>AC and $AD$ are adjacent sides of a regular <i>n</i> -sided polygon. |      |
|        | Find the value of <i>n</i> .                                                                                                                                                                                      |      |
|        |                                                                                                                                                                                                                   |      |
|        | A                                                                                                                                                                                                                 |      |
|        |                                                                                                                                                                                                                   |      |
|        | D                                                                                                                                                                                                                 |      |
|        |                                                                                                                                                                                                                   |      |
|        |                                                                                                                                                                                                                   |      |
|        |                                                                                                                                                                                                                   |      |
|        |                                                                                                                                                                                                                   |      |
|        | Answer (b) $n =$                                                                                                                                                                                                  | [3]  |
|        |                                                                                                                                                                                                                   |      |
|        |                                                                                                                                                                                                                   |      |
|        |                                                                                                                                                                                                                   |      |
|        |                                                                                                                                                                                                                   |      |
|        | 4048/1/Sec4Prelims18 [Turn                                                                                                                                                                                        | over |





13







For

Use

![](_page_19_Figure_3.jpeg)

![](_page_20_Figure_0.jpeg)

For

Use

![](_page_21_Figure_0.jpeg)

![](_page_21_Figure_3.jpeg)

![](_page_22_Figure_3.jpeg)

![](_page_23_Picture_0.jpeg)

# TANJONG KATONG SECONDARY SCHOOL

Preliminary Examination 2018 Secondary 4

| CANDIDATE<br>NAME |  |              |  |   |
|-------------------|--|--------------|--|---|
| CLASS             |  | INDEX NUMBER |  | ] |

# MATHEMATICS

Paper 2

Additional Materials: Writing Paper Graph Paper 4048/02

Monday 27 August 2018 2 hours 30 minutes

#### READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer **all** questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

You are expected to use a scientific calculator to evaluate explicit numerical expressions.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For  $\pi$ , use either your calculator value or 3.142, unless the question requires the answer in terms of  $\pi$ .

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [ ] at the end of each question or part question. The total of the marks for this paper is 100.

## Mathematical Formulae

Compound Interest

Total Amount = 
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone = 
$$\pi r \ell$$

Curved surface area of a sphere =  $4\pi r^2$ 

Volume of a cone = 
$$\frac{1}{3} \pi r^2 h$$

Volume of a sphere 
$$=$$
  $\frac{4}{3} \pi r^3$ 

Area of triangle 
$$ABC = \frac{1}{2} ab \sin C$$

Arc length =  $r\theta$ , where  $\theta$  is in radians

Sector area = 
$$\frac{1}{2} r^2 \theta$$
, where  $\theta$  is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$

**Statistics** 

$$Mean = \frac{\sum fx}{\sum f}$$

Standard Deviation = 
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

1 (a) Solve the equation 
$$\frac{2}{x^3} = -\frac{1}{32}$$
. [2]

**(b)** Simplify 
$$\frac{8q-12p+2pq-3p^2}{p^2+8p+16}$$
. [3]

(c) Express 
$$x^2 - 16x + 20$$
 in the form  $(x + a)^2 + b$ .  
Hence, solve the equation  $x^2 - 16x + 20 = 0$ . [3]

(d) Given that 
$$6x^2 - xy = 7y^2$$
,  $x > 0$  and  $y > 0$ . Find the value of  $\frac{12x}{y}$ . [3]

#### 2 Answer the whole of this question on a sheet of graph paper.

The variables *x* and *y* are connected by the equation

$$y = 5x - 3 + \frac{1}{2x} \,.$$

The table below shows some values of x and the corresponding values of y correct to 2 decimal places.

| x | 0.05 | 0.1  | 0.2  | 0.3  | 0.4  | 0.5 | 0.6  | 0.7  |
|---|------|------|------|------|------|-----|------|------|
| У | 7.25 | 2.50 | 0.50 | 0.17 | 0.25 | а   | 0.83 | 1.21 |

- (a) Calculate the value of *a*.
- (b) Using a scale of 2 cm to represent 0.1 unit, draw a horizontal x-axis for  $0 < x \le 0.7$ . Using a scale of 2 cm to represent 1 unit, draw a vertical y-axis for  $0 \le y \le 8$ .

On your axes, plot the points given in the table and join them with a smooth curve.

- (c) By drawing a tangent, find the gradient of the curve at (0.2, 0.5). [2]
- (d) Use your graph to find the solutions of  $10x^2 8x + 1 = 0$  in the range  $0 < x \le 0.7$ . [2]
- (e) Write down the coordinates of the points when the line y = 4x + 2intersects the curve. [2]

(f) The equation  $5x - 3 + \frac{1}{2x} = kx$  has only one solution in the range  $0 < x \le 0.7$ . Explain how the value of k can be obtained from your graph. [2]

[1]

[3]

![](_page_26_Figure_0.jpeg)

4

*ABCD* is a parallelogram and *E* lies on *CD* produced such that CD = DE. *M* is the midpoint of *AD*. *N* is a point on *BC* such that BN : NC = 1 : 3.  $\overrightarrow{BN} = \mathbf{a}$  and  $\overrightarrow{CD} = \mathbf{b}$ ,

(a) express, as simply as possible, in terms of **a** and/or **b**,

(i) 
$$\overrightarrow{AM}$$
, [1]

(ii) 
$$\overrightarrow{BM}$$
, [1]

(iii) 
$$\stackrel{\rightarrow}{BE}$$
. [1]

[2]

### (b) State 2 facts about B, M, and E.

# (c) Find the numerical value of area of $\triangle AMB$

(i) 
$$\frac{d}{d} = \frac{d}{d} \frac{d}{d$$

(ii) 
$$\frac{\text{area of } \Delta EDM}{\text{area of } DMBN}$$
. [1]

## (d) Prove that triangles *EDM* and *ECB* are similar. [2]

4 (a) In the diagram, PAQ is a tangent to the circle ABCD at A. O is the centre of the circle CDEF and BCF is a straight line. It is given that  $\angle PAB = 58^\circ$ ,  $\angle ABD = 32^\circ$  and  $\angle CFE = 120^\circ$ .

5

![](_page_27_Figure_1.jpeg)

- (i) Find, giving reason(s) for each answer,
  - (a) angle *ACD*, [1]
  - (**b**) angle *ACB*. [1]
- (ii) Given that FC = FE, show that triangle *CDE* is equilateral. [3]
- (b) The figure shows a semicircle, *PRQ*, with centre *O* and diameter *PQ* is 12 cm. The chord *QR* makes an angle  $\frac{\pi}{6}$  radian with the diameter *PQ*. A second semicircle, *RSQ* is drawn, with *QR* as the diameter.

![](_page_27_Figure_7.jpeg)

[2] [3]

,

5 Alex plans to cycle from point *A* to point *C* which is 56 km apart.

He travels for 50 km, at a constant speed of x km/h until he reaches the point B, where he rested momentarily. The journey from A to B took y hours.

(i) Write down an equation in x and y, to represent the time taken to cycle from A to B.

Alex then continues the remaining 6 km from B to C at a constant speed which is 16 km/h slower than his speed from A to B.

(ii) Given that the total time taken for the journey from A to C is 5 hours, form another equation in x and y and show that it simplifies to 5x = 26

$$y = \frac{5x - 86}{x - 16} \,. \tag{2}$$

[1]

- (iii) Find the value(s) of x, correct to 2 decimal places. [4]
- (iv) Calculate the time taken for Alex to cycle from point A to C, if he had completed the whole journey at the slower speed.Give your answer in hours and minutes, correct to the nearest minute. [2]
- 6 The first four terms in the sequence of numbers are given below.

$$P_1 = 0^2 + 4 = 4$$
  
 $P_2 = 1^2 + 7 = 8$   
 $P_3 = 2^2 + 10 = 14$   
 $P_4 = 3^2 + 13 = 22$ 

- (a) State the value of P<sub>5</sub> and P<sub>6</sub>. [2]
  (b) The nth term of the sequence is P<sub>n</sub>. Find the expression of P<sub>n</sub> in terms of n. [2]
  (c) Explain why the value of P<sub>n</sub> will never be an odd number for all values of n. [1]
  (d) P<sub>n</sub> and P<sub>n+1</sub> are two consecutive terms in the sequence.
  - Show that  $P_{n+1} P_n$  can be expressed into 2n + 2. [2]

7 The diagram shows a hemispherical clay bowl with centre O. The inner radius of the bowl is 6 cm and the outer radius is r cm

![](_page_29_Figure_2.jpeg)

- (a) Find the internal volume of the hemisphere with radius 6 cm. [2]
- (b) Find the value of r if 408 cm<sup>3</sup> of clay is used to make the bowl. [2]

![](_page_29_Figure_5.jpeg)

A solid pyramid with square base ABCD and height OV, 6 cm, is placed in the bowl. The points V, A, B, C and D touch the inner surface of the hemispherical bowl.

(c) Show that 
$$AB = 6\sqrt{2}$$
 cm. [2]

Water is poured into the bowl to fill up the space between the pyramid and the clay bowl. The pyramid is then removed from the bowl.

(d) Joe said that the height of the water in the bowl can be easily calculated by comparing volumes of similar solids.
 Explain whether you agree or disagree with Joe. [2]

8 The diagram shows a field *ABCD* on horizontal ground, crossed by a path *AC*. AB = 570 m, AC = 540 m and AD = 490 m. $B\widehat{A}C = 65^\circ, C\widehat{D}A = 90^\circ \text{ and the bearing of } C \text{ from } B \text{ is } 079^\circ.$ 

![](_page_30_Figure_1.jpeg)

| (a) | Find<br>(i)<br>(ii)<br>(iii) | BC,<br>B $\widehat{C}A$ ,<br>the bearing of A from C.                                                                                             | [3]<br>[2]<br>[2] |
|-----|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| (b) | A dro<br>The a<br>Find t     | ne is hovering vertically above point $D$ .<br>ngle of depression of $A$ from the drone is 2.6°.<br>he angle of depression of $C$ from the drone. | [4]               |
| (c) | The la<br>Given<br>the fie   | and is valued at \$45 000 per hectare.<br>a that 1 hectare = $10\ 000$ square metres, calculate the value of eld.                                 | [3]               |

9 The cumulative frequency curve below illustrates the weights of 100 students in Senoko High School.

![](_page_31_Figure_2.jpeg)

Use the graph to find **(a)** 

| (i)  | the median weight of the students, | [1] |
|------|------------------------------------|-----|
| (ii) | the interquartile range.           | [2] |

- (ii) the interquartile range.
- The weights of 100 students in Changi High School have a higher median **(b)** but a smaller interquartile range. Describe how the cumulative frequency curve for Changi High School will differ from the curve for Senoko High School. [2]
- (c) The table shows the distribution of ages for 200 students from both Senoko and Changi High School.

| Age (x years)      | $13 \le x < 14$ | $14 \le x < 15$ | $15 \le x < 16$ | $16 \le x < 17$ |
|--------------------|-----------------|-----------------|-----------------|-----------------|
| Senoko High School | 32              | 14              | 24              | 30              |
| Changi High School | 27              | 20              | 31              | 22              |

- (i) One of the students is selected at random. Find, as a fraction in its lowest terms, the probability that the student is (a) a student from Changi High School who is aged 15 or more, [1] (b) aged under 14. [1]
- Two of the students are selected at random. (ii) Find the probability that both are from Senoko High School aged under 16.

[2]

10 Peter plans to buy a new car. He must successfully obtain the Certificate of Entitlement (COE) through bidding before he can own a car. Information on the current COE prices, quota and bids received for the different category of cars are in **Table 1**.

Table 1:

| CAT A Cars up to 10 | 500cc and 130bhp |       | [View Past CAT A Results] |
|---------------------|------------------|-------|---------------------------|
| Quota Premium       | Change           | Quota | Bids Received             |
| \$25,000            | \$9,110          | 1,435 | 1,626                     |
|                     |                  |       |                           |
| CAT B Cars above 1  | .600cc or 130bhp |       | [View Past CAT B Results] |
| Quota Premium       | Change           | Quota | Bids Received             |
| \$31,000            | \$2,900          | 1,288 | 1,637                     |

Peter has shortlisted two cars. The specification and price details are in the Table 2.

| Table 2:                        |                  |            |  |  |  |  |
|---------------------------------|------------------|------------|--|--|--|--|
| Brand of car                    | Phantom Series X | Sky Hawk V |  |  |  |  |
| Engine capacity (cc)            | 1496             | 1598       |  |  |  |  |
| Fuel type                       | Diesel (Euro V)  | Petrol     |  |  |  |  |
| Power (bph)                     | 114              | 165        |  |  |  |  |
| Fuel consumption (km/l)         | 23.8             | 17.8       |  |  |  |  |
| CO <sub>2</sub> emission (g/km) | 110              | 130        |  |  |  |  |
| Car Price (S\$)                 | 152, 888         | 147, 999   |  |  |  |  |
| *excludes VES rebate /          |                  |            |  |  |  |  |
| surcharge                       |                  |            |  |  |  |  |
| OMV (S\$)                       | 31, 410          | 26, 239    |  |  |  |  |
| Road Tax per 6 months           | 372              | 372        |  |  |  |  |
| (S\$) *excludes Special Tax if  |                  |            |  |  |  |  |
| any                             |                  |            |  |  |  |  |

(i) Peter said that he has a higher chance of obtaining COE for brand Phantom as compared to Sky Hawk. Do you agree? Explain why. [1]

A special tax is levied on diesel cars and is payable in addition to the Road Tax of the vehicle. The charge is S\$0.20 per cc for 6 months.

(ii) Find the total amount of tax payable for 6 months for brand Phantom. [2]

Car buyers can either be granted rebates or imposed surcharge based on how clean the vehicle's emissions are. Vehicle Emission Scheme (VES) is based on a vehicle's carbon dioxide (CO<sub>2</sub>) emissions, plus emissions of other pollutants.

| Bands | CO₂<br>(g/km)      | HC<br>(g/km)           | CO<br>(g/km)           | NO <sub>x</sub><br>(g/km) | Rebate/<br>surcharge(-/+)<br>for cars (\$) |
|-------|--------------------|------------------------|------------------------|---------------------------|--------------------------------------------|
| A1    | A1<br>≤90          | A1<br>≤0.020           | A1<br>≤0.150           | A1<br>≤0.007              | -20,000                                    |
| A2    | 90<<br>A2<br>≤125  | 0.020<<br>A2<br>≤0.036 | 0.150<<br>A2<br>≤0.190 | 0.007<<br>A2<br>≤0.013    | -10,000                                    |
| в     | 125<<br>B<br>≤160  | 0.036<<br>B<br>≤0.052  | 0.190<<br>B<br>≤0.270  | 0.013<<br>B<br>≤0.024     | 0                                          |
| C1    | 160<<br>C1<br>≤185 | 0.052<<br>C1<br>≤0.075 | 0.270<<br>C1<br>≤0.350 | 0.024<<br>C1<br>≤0.030    | +10,000                                    |
| C2    | C2<br>>185         | C2<br>>0.075           | C2<br>>0.350           | C2<br>>0.030              | +20,000                                    |

Table 3:

(iii) Use **Tables 2** and **3** to determine the price of brand Phantom car, **including** the VES rebate / surcharge, if any. [1]

Peter decided to take a 5-year bank loan for purchase of the car. The interest rate is at 2.78% per annum.

The Maximum Loan Amount will be dependent on the Open Market Value (OMV) of the car.

Cars with OMV exceeding \$20,000 will be entitled to a maximum loan value of 60% of car price with minimum 40% down payment.

| (iv) | Calculate the minimum down payment Peter has to pay if he decides to buy brand Phantom.                                                 | [2] |
|------|-----------------------------------------------------------------------------------------------------------------------------------------|-----|
| (v)  | Peter decides to take a 60% loan. Suggest which car Peter should buy. Justify the decision you make and show your calculations clearly. | [5] |

## **END OF PAPER**

| Qn |       | Solutions                                                                          |
|----|-------|------------------------------------------------------------------------------------|
| 1  | a     | $\mathbf{x} = -4$                                                                  |
|    | h     | (2q-3n)                                                                            |
|    | U     | $\frac{(2q-3p)}{(m+4)}$                                                            |
|    |       | (p+4)                                                                              |
|    | с     | x = 14.6  or  1.37                                                                 |
|    | d     | $\frac{12x}{1} = 14$                                                               |
|    |       | $\frac{y}{y} = 14$                                                                 |
|    |       |                                                                                    |
| 2  | a     | a = 0.5                                                                            |
|    | b     | All points correctly plotted                                                       |
|    |       | Graph is smooth                                                                    |
|    | c     | Gradient = 115 (1.7 to 14)                                                         |
|    | d     | When $y = 1$                                                                       |
|    | u     | x = 0.17  or  0.65                                                                 |
|    |       | Accept 0.165~1.7 and 0.6~0.65                                                      |
|    | e     | Draw line $y = 4x + 2$                                                             |
|    |       | (0.1, 2.45)                                                                        |
|    | f     | The value of k is obtained by finding the gradient of the line that passes through |
|    |       | the origin and that cuts the curve once.                                           |
|    |       |                                                                                    |
| 2  | a(i)  |                                                                                    |
| 3  | a(1)  | AM = 2a                                                                            |
|    |       | BM = 2a + b                                                                        |
|    |       | BE = 4a + 2b                                                                       |
|    | b     | B, M and E are collinear $2BM - BE$                                                |
|    | c(i)  | 2                                                                                  |
|    |       | $\left \frac{-}{3}\right $                                                         |
|    | c(ii) | 2                                                                                  |
|    |       | 3                                                                                  |
|    | d     | Since ABCD is a parallelogram,                                                     |
|    |       | Angle EDM = angle ECB ( corr angles)                                               |
|    |       | As CD = DE, $\frac{ED}{EC} = \frac{1}{2}$                                          |
|    |       | As M is midpoint AD, $\frac{DM}{DM} = \frac{1}{2}$                                 |
|    |       | $\therefore AEDM$ is similar to AECB                                               |
|    |       |                                                                                    |
| 4  | a(i)a | $\angle ACD = 32^{\circ} (\angle \text{ in same seg})$                             |
|    | a(i)b | $\angle ACB = 58^{\circ} (\angle \text{ in alt seg})$                              |
|    | a(ii) | $\angle CDE = (180 - 120)^{\circ} (\angle \text{ in opp seg})$                     |
|    |       | $=60^{\circ}$                                                                      |
|    |       | $\angle BCD = (58+32)^{\circ}$                                                     |
|    |       | $=90^{\circ}$                                                                      |
|    |       | $\angle FCE = (180 - 120)^{\circ} \div 2 (1805 \Delta)$                            |
|    |       | $= 30^{\circ}$                                                                     |

| Qn |       | Solutions                                                                       |
|----|-------|---------------------------------------------------------------------------------|
|    |       | $\angle DCE = (90 - 30)^{\circ}$                                                |
|    |       | $= 60^{\circ}$                                                                  |
|    |       | $\therefore \angle CED = 60^{\circ}$                                            |
|    |       | $\therefore \Delta CDE$ is equilateral                                          |
|    | b(i)  | $\angle PRQ = 90^{\circ} (\angle in semicircle)$                                |
|    |       | $\cos \frac{\pi}{R} = \frac{RQ}{R}$                                             |
|    |       | 6 	 12 	 12 	 12                                                                |
|    |       | $\frac{\sqrt{3}}{2} = \frac{\sqrt{2}}{12}$                                      |
|    |       | $RO = 6\sqrt{3}$ (shown)                                                        |
|    | b(ii) | 28.89 cm                                                                        |
|    |       |                                                                                 |
| 5  | (i)   | $v = \frac{50}{2}$                                                              |
|    |       | 5 <u>x</u> 6                                                                    |
|    | (11)  | $5 - y = \frac{3}{x - 16}$                                                      |
|    |       | $5 - \frac{6}{3} = v$                                                           |
|    |       | x-16<br>5x-80-6                                                                 |
|    |       | $\overline{x-16} = y$                                                           |
|    |       | $\frac{5x-86}{x-46} = y$ (shown)                                                |
|    | (iii) | x = 18.59  or  8.60  (2dp)                                                      |
|    | (iv)  | 21 h 34 mins                                                                    |
|    | ()    |                                                                                 |
| 6  | (a)   | $P_5 = 4^2 + 16 = 32$                                                           |
|    |       | $P_6 = 5^2 + 19 = 44$                                                           |
|    | (b)   | $P_n = n(n+1) + 2$                                                              |
|    | с     | For all values of n, $n(n+1)$ is an even value.                                 |
|    | d     | $\mathbf{P}_{\mathbf{n}} = \mathbf{n}(\mathbf{n}+1) + 2$                        |
|    |       | $P_{n+1} = (n+1)(n+2) + 2$                                                      |
|    |       |                                                                                 |
|    |       | $\mathbf{P}_{n+1} - \mathbf{P}_n$                                               |
|    |       | = (n+1)(n+2) + 2 - n(n+1) - 2                                                   |
|    |       | =(n+1)(n+2-n)                                                                   |
|    |       | =(n+1)(2)                                                                       |
|    |       | =2n+2 (shown)                                                                   |
|    |       |                                                                                 |
|    |       |                                                                                 |
| 7  | (a)   | $452.280 \text{ cm}^3$                                                          |
| /  | (a)   | +32.307 CIII<br>r = 7.4228                                                      |
|    | (0)   | $\frac{1 - 7.4336}{0V - 0A - 6am}$                                              |
|    | (0)   | OV = OR = OR                                                                    |
|    |       | 6A - 6B<br>$6^2 + 6^2 - AB^2$                                                   |
|    |       | 0 + 0 = AD                                                                      |
|    |       | $AB = \sqrt{2}$                                                                 |
|    | (1)   | $= 6\sqrt{2}$                                                                   |
|    | (d)   | Disagree.                                                                       |
|    |       | The volume of water in the bowl is not is a shape of a hemisphere (h $\neq r$ ) |
|    |       |                                                                                 |
|    |       | I ne volume of water and the volume of the bowl are not similar figures since h |

| Qn |       | Solutions                                                                          |
|----|-------|------------------------------------------------------------------------------------|
|    |       | $\neq r$ .                                                                         |
|    |       |                                                                                    |
| 8  | a(i)  | BC =596.939 cm                                                                     |
|    | (ii)  | BCA = 59.929°                                                                      |
|    | (iii) | 199.07°                                                                            |
|    | b     | $\theta = 5.6^{\circ}$                                                             |
|    | с     | \$878 000 (3sf)                                                                    |
|    |       |                                                                                    |
| 9  | a(i)  | Median = 62.5kg                                                                    |
|    | a(ii) | IQR = 65.5 - 57                                                                    |
|    |       | = 8.5  kg                                                                          |
|    | b     | The curve will shift to the right of the curve for Senoko as the median is higher. |
|    |       | The middle 50% of the curve will be steeper than for Senoko as the IQR is          |
|    |       | smaller.                                                                           |
|    | c(i)a | 53                                                                                 |
|    |       | 200                                                                                |
|    | c(i)b | 59                                                                                 |
|    |       | 200                                                                                |
|    | c(ii) | $\frac{70}{10} \times \frac{69}{10}$                                               |
|    |       | 200 199                                                                            |
|    |       | $=\frac{483}{3980}$                                                                |
|    |       | 5700                                                                               |
| 10 | (i)   | $P(brand Phantom) = \frac{1435}{100\%} \times 100\% = 88.3\%$                      |
|    |       | 1626 $1626$ $10070$ $00070$                                                        |
|    |       | $P(\text{brand Sky Hawk}) = \frac{1}{1637} \times 100\% = 78.7\%$                  |
|    |       | I agree with Peter.                                                                |
|    | (ii)  | \$671.20                                                                           |
|    | (iii) | \$142 888                                                                          |
|    | (iv)  | \$571 55. 20                                                                       |
|    | (v)   | For Phantom:                                                                       |
|    |       | Interest = $0.6 \text{ x their (iii) x } 2.78 \text{ x } 5$                        |
|    |       | = \$11 916.86                                                                      |
|    |       | Total repayment (balance + interest)                                               |
|    |       | = 0.6  x their (11) + \$11 916.86                                                  |
|    |       | = \$9/649.66                                                                       |
|    |       | Monthly instalment = $162/.50$                                                     |
|    |       | For Sky Hawk:                                                                      |
|    |       | Interest = $0.6 \times 147999 \times 2.78 \times 5$                                |
|    |       | = \$12 343.12                                                                      |
|    |       | Total repayment (balance + interest)                                               |
|    |       | $= 0.6 \times 147999 + \$12343.12$                                                 |
|    |       | = \$101 142.52                                                                     |
|    |       | Monthly instalment = \$1685.71                                                     |
|    |       |                                                                                    |
|    |       | Since the monthly instalment is lower / total repayment amount with interest is    |
|    |       | lower, brand Phantom is a better buy.                                              |

| Qn       |   | Solutions                                                 | Marks | Remarks                     |
|----------|---|-----------------------------------------------------------|-------|-----------------------------|
| 1        | a | 2 1                                                       |       |                             |
|          |   | $\frac{1}{x^3} = -\frac{1}{32}$                           |       |                             |
|          |   | $64 = -x^3$                                               | B1    |                             |
|          |   | x = -4                                                    | B1    |                             |
|          |   |                                                           |       |                             |
|          | b | $8q - 12p + 2pq - 3p^2$                                   |       |                             |
|          |   | $p^2 + 8p + 16$                                           |       |                             |
|          |   | 2q(4+p) - 3p(4+p)                                         |       |                             |
|          |   | $=$ $\frac{(p+4)^2}{(p+4)^2}$                             | M1    | Factorise                   |
|          |   | (2q - 3p)(4 + p)                                          |       | denominator                 |
|          |   | $=\frac{(n+4)^2}{(n+4)^2}$                                | MI    | Factorise                   |
|          |   | (2q-3p)                                                   | A 1   | numerator                   |
|          |   | $=\frac{(1+1)}{(n+4)}$                                    | AI    |                             |
|          |   | (p+4)                                                     |       |                             |
|          | C | $x^2 - 16x + 20 = (x - 8)^2 - 44$                         | B1    |                             |
|          | C | $\mathbf{x} = 10\mathbf{x} + 20  (\mathbf{x} = 0) = 11$   | DI    |                             |
|          |   | $(x-8)^2-44=0$                                            |       |                             |
|          |   | $\mathbf{x} - 8 = \pm \sqrt{44}$                          | M1    |                             |
|          |   | x = 14.6  or  1.37                                        | A1    | Both correct answer         |
|          | d | $6x^2 - xy = 7y^2$                                        |       |                             |
|          | u | $6x^2 - xy - 7y^2 = 0$                                    |       |                             |
|          |   | (6x - y)(x + y) = 0                                       | M1    | Factorise quadratic         |
|          |   | Since $x + y > 0$ .                                       |       | T actorize quantum          |
|          |   | 6x = 7y                                                   |       |                             |
|          |   | x 7 <sup>°</sup>                                          | M1    | Show ratio of $\frac{x}{-}$ |
|          |   | $\frac{1}{v} = \frac{1}{6}$                               |       | y y                         |
|          |   | 12x                                                       |       |                             |
|          |   | $\frac{1}{v} = 14$                                        | A1    |                             |
|          |   |                                                           | 11m   |                             |
|          |   |                                                           |       |                             |
| 2        | a | a = 0.5                                                   | B1    |                             |
|          | b | All points correctly plotted                              | P2    | P1 if 1 or more point       |
|          |   | Graph is smooth                                           | G1    | is missing / wrongly        |
|          |   | *                                                         |       | nlotted                     |
|          | c | Tangent line drawn                                        | T1    | Accept range from -7        |
|          | Ĩ | Gradient = $-115$                                         | B1    | to $-14.6$                  |
| <u> </u> | d | $10x^2 - 8x + 1 = 0$                                      |       |                             |
|          | - | $5x - 4 + \frac{1}{2} = 0$                                |       |                             |
|          |   | $3x - 4 + \frac{2x}{2x} = 0$                              |       |                             |
|          |   | $5x - 3 + \frac{1}{2x} = 1$                               | B1    |                             |
|          |   |                                                           |       |                             |
|          |   | When $y = 1$ ,                                            |       |                             |
|          |   | x = 0.17  or  0.65                                        | B1    |                             |
|          |   |                                                           |       |                             |
|          | e | Draw line $y = 4x + 2$                                    | L1    |                             |
|          |   | (0.1, 2.45)                                               | B1    |                             |
|          | f | The value of k is obtained by finding the gradient of the | B1    | "use gradient"              |
|          |   | line that cuts the curve once.                            | B1    | "intersect the curve"       |
|          |   |                                                           |       |                             |
|          |   |                                                           |       |                             |
|          |   |                                                           | 12m   |                             |

### Sec 4 Prelim Exam 2018 Mathematics Paper 2

| Qn |        | Solutions                                                             | Marks | Remarks                   |
|----|--------|-----------------------------------------------------------------------|-------|---------------------------|
|    |        |                                                                       |       |                           |
| 3  | a(i)   | $\overrightarrow{AM} = 2a$                                            | B1    |                           |
|    | a(ii)  | $\overrightarrow{BM} = 2a + b$                                        | B1    |                           |
|    | a(iii) | $\overrightarrow{BE} = 4a + 2b$                                       | B1    |                           |
|    | b      | $\overrightarrow{BF} = 2(2a + h)$                                     |       |                           |
|    |        | $\overrightarrow{BF} = 2\overrightarrow{BM}$                          |       |                           |
|    |        |                                                                       |       |                           |
|    |        | B, M and E are collinear                                              | B1    |                           |
|    |        | 2BM = BE                                                              | B1    |                           |
|    | c(i)   | 2                                                                     | B1    |                           |
|    |        | 3                                                                     |       |                           |
|    | c(ii)  | 2                                                                     | B1    |                           |
|    | 1      | 3                                                                     |       |                           |
|    | d      | Since ABCD is a parallelogram,                                        | D1    |                           |
|    |        | Angle EDM = angle ECB (corr angles)                                   | BI    |                           |
|    |        | As $CD = DE$ , ${EC} = {2}$                                           | B1    |                           |
|    |        | As M is midpoint AD, $\frac{DM}{CR} = \frac{1}{2}$                    | DI    |                           |
|    |        | $\therefore \Delta EDM$ is similar to $\Delta ECB$                    |       |                           |
|    |        |                                                                       | 9m    |                           |
|    |        |                                                                       |       |                           |
| 4  | a(i)a  | $\angle ACD = 32^{\circ} (\angle \text{ in same seg})$                | B1    |                           |
|    | a(i)b  | $\angle ACB = 58^{\circ} (\angle \text{ in alt seg})$                 | B1    |                           |
|    | a(ii)  | $\angle \text{CDE} = (180 - 120)^{\circ} (\angle \text{ in opp seg})$ | B1    |                           |
|    |        | $=60^{\circ}$                                                         |       |                           |
|    |        | $\angle BCD = (58+32)^{\circ}$                                        |       |                           |
|    |        | $= 90^{\circ}$                                                        | D1    |                           |
|    |        | $2FCE = (180 - 120)^{\circ} \div 2 (1808 \Delta)$<br>- 20°            | DI    |                           |
|    |        | -50<br>$2 \text{ DCF} = (90 - 30)^{\circ}$                            |       |                           |
|    |        | $= 60^{\circ}$                                                        | B1    |                           |
|    |        | $\therefore \angle CED = 60^{\circ}$                                  |       |                           |
|    |        | $\therefore \Delta CDE$ is equilateral                                |       |                           |
| -  | b(i)   | $\angle PRQ = 90^{\circ} (\angle \text{ in semicircle})$              | B1    | soi                       |
|    |        | $\cos\frac{\pi}{2} = \frac{RQ}{RQ}$                                   |       |                           |
|    |        | $\begin{array}{c} 6 & 12 \\ \sqrt{3} & RO \end{array}$                |       |                           |
|    |        | $\frac{1}{2} = \frac{1}{12}$                                          | B1    | $\frac{\sqrt{3}}{2}$ seen |
|    |        | $RQ = 6\sqrt{3}$ (shown)                                              | CAG   | 2                         |
|    | b(ii)  | $\angle \text{ROQ} = \pi - 2(\frac{\pi}{6})$                          |       |                           |
|    |        | $=\frac{2\pi}{2\pi}$                                                  |       |                           |
|    |        | $3$ $(2\pi)$ $1$ $(\sqrt{2})$                                         | M1 D1 | Find Arc length RQ        |
|    |        | Perimeter = $6(\frac{1}{3}) + \frac{1}{2}\pi(6\sqrt{3})$              |       | and RSQ                   |
|    |        | = 28.891  cm                                                          | AI    |                           |
|    |        |                                                                       | 10m   |                           |
|    |        |                                                                       |       |                           |
|    |        |                                                                       |       |                           |
|    |        |                                                                       |       |                           |
|    |        |                                                                       |       |                           |
|    |        |                                                                       |       |                           |
|    |        |                                                                       |       |                           |

### Sec 4 Prelim Exam 2018 Mathematics Paper 2

| Qn |           | Solutions                                                 | Marks     | Remarks                 |
|----|-----------|-----------------------------------------------------------|-----------|-------------------------|
| 5  | (i)       | $y = \frac{50}{2}$                                        | B1        | o.e.                    |
|    | (ii)      | $5 - y = \frac{6}{2}$                                     | B1        | o.e.                    |
|    |           | 5 - y - x - 16                                            |           |                         |
|    |           | $5 - \frac{3}{x - 16} = y$                                |           |                         |
|    |           | $\frac{5x-80-6}{9} = y$                                   | B1        | combine fraction        |
|    |           | x-16<br>5x-86                                             |           |                         |
|    |           | $\frac{1}{x-16} = y$ (shown)                              | CAG       |                         |
|    | (iii)     | $\frac{5x-86}{x-16} = \frac{50}{x}$                       | B1 √      | Equate (i) and (ii)     |
|    |           | $50x - 800 = 5x^2 - 86 x$                                 | M1        | Remove fraction         |
|    |           | $5x^2 - 136x + 800 = 0$                                   | 2.01      | A my mathed to solve    |
|    |           | $x^{-(-136)\pm\sqrt{(-136)^2-4(5)(800)}}$                 | MI        | Any method to solve     |
|    |           | 2(5)                                                      | A 1       | seen                    |
| -  | <i></i> . | x = 18.59  or  8.60  (2dp)                                | AI        |                         |
|    | (1V)      | Slower speed = $18.59 - 16$                               |           |                         |
|    |           | = 2.59599                                                 | M1        |                         |
|    |           | $1 \text{ ime taken} = 56 \div 2.39399$                   | MI        |                         |
|    |           | -21.3/ nrs<br>-21 h 34 mins                               | A 1       |                         |
|    |           | - 21 II 34 IIIIIIS                                        | AI<br>Om  |                         |
| 6  | (2)       | $P_{r} = 4^{2} + 16 - 32$                                 | 911<br>R1 |                         |
| 0  | (a)       | $P_c = 5^2 + 19 = 44$                                     | B1        |                         |
|    | (b)       | $P_n = (n-1)^2 + 3n + 1$                                  | B1 B1     | $(n-1)^2$ seen & $3n+1$ |
|    | (0)       | $= n^2 - 2n + 1 + 3n + 1$                                 | D1, D1    | seen                    |
|    |           | $= n^2 + n + 2$                                           |           |                         |
|    |           | = n(n+1) + 2                                              |           |                         |
|    | с         | For all values of n, $n(n+1)$ is an even value.           | B1        |                         |
|    | d         | $P_n = n(n+1) + 2$                                        |           |                         |
|    |           | $P_{n+1} = (n+1)(n+2) + 2$                                | B1        | o.e.                    |
|    |           |                                                           |           |                         |
|    |           | $\mathbf{P}_{n+1} - \mathbf{P}_n$                         |           |                         |
|    |           | = (n+1)(n+2) + 2 - n(n+1) - 2                             | D1        |                         |
|    |           | = (n+1)(n+2-n)<br>= $(n+1)(2)$                            | BI        | Leading to CAG          |
|    |           | = (n+1)(2)<br>= 2n + 2 (shown)                            |           |                         |
|    |           | $= 2\Pi + 2$ (Shown)                                      | 7m        |                         |
| 7  | (a)       | $V_{11} = \frac{1}{4} (4 - 63)$                           | B1        |                         |
| ,  |           | vol hemisphere = $\frac{-(-\pi)^2}{2}$                    |           |                         |
|    |           | $= 144 \pi$                                               | B1        |                         |
|    |           | $= 452.389 \text{ cm}^3$                                  |           |                         |
|    | (b)       | $\left(\frac{1}{c}\right)^{5} = \frac{144\pi + 400}{444}$ | MI        |                         |
|    |           | $\binom{6}{r-7}$ 144 $\pi$                                | A 1       |                         |
|    | (c)       | $\frac{1 - 7.4556}{0V - 0A - 6cm}$                        | R1        |                         |
|    |           | OA = OB                                                   |           |                         |
|    |           | $6^2 + 6^2 = AB^2$                                        | B1        |                         |
|    |           | $AB = \sqrt{72} = 6\sqrt{2}$                              | CAG       |                         |
|    | (d)       | Disagree                                                  | B1        |                         |
|    |           | The volume of water in the bowl is not is a shape of a    |           |                         |
|    |           | hemisphere (h $\neq r$ ) or                               | B1        |                         |
|    |           | The volume of water and the volume of the bowl are not    |           |                         |
|    |           | similar figures since $h \neq r$ .                        |           |                         |
|    |           |                                                           | 8m        |                         |

#### Sec 4 Prelim Exam 2018 Mathematics Paper 2

| Qn |       | Solutions                                                    | Marks      | Remarks      |
|----|-------|--------------------------------------------------------------|------------|--------------|
|    |       |                                                              |            |              |
| 8  | a(i)  | $BC^2 = 570^2 + 540^2 - 2(570)(540)\cos 65^\circ$            | M2         |              |
|    |       | BC =596.939 cm                                               | A1         |              |
|    | (ii)  | $\sin BCA$ $\sin 65^{\circ}$                                 | M1         |              |
|    |       | $\overline{570} = \overline{596.939}$                        |            |              |
|    |       | BCA = 59.929°                                                | A1         |              |
|    | (iii) | 360° - 59.929° - (180 - 79) °                                | M1         |              |
|    |       | = 199.07°                                                    | A1         |              |
|    | b     | $\tan 2.6^\circ = \frac{HD}{100}$                            | M1         |              |
|    |       | 490<br>HD = 22 2508 cm                                       | A1         |              |
|    |       |                                                              |            |              |
|    |       | $CD^2 = 540^2 - 490^2$                                       |            |              |
|    |       | CD = 226.936  cm                                             | B1         |              |
|    |       |                                                              |            |              |
|    |       | $T_{an} \theta = \frac{22.2508}{2}$                          |            |              |
|    |       | 226.936                                                      |            |              |
|    |       | $\theta = 5.6^{\circ}$                                       | Al         |              |
|    | c     | Area of land $0.5(400)(220, 020) + 0.5(570)(540) + 0.5$      | N/1        |              |
|    |       | $= 0.5(490)(226.936) + 0.5(570)(540)\sin 65$                 | MI         |              |
|    |       | = 195080  sq meter                                           |            |              |
|    |       | = 19.5 nectare                                               |            |              |
|    |       | $V_{alus} = 10.5 \times 45.000$                              | M1         |              |
|    |       | - \$277 \$60                                                 |            |              |
|    |       | - \$877 800                                                  | A1<br>13m  |              |
|    |       |                                                              | 13111      |              |
| 0  | a(i)  | Median $-625ka$                                              | <b>R</b> 1 |              |
| 9  | a(1)  | IOP = 65.5 - 57                                              | M1         | soi          |
|    | a(11) | 1QR = 05.5 = 57<br>= 8.5 kg                                  |            | 501          |
|    | h     | The curve will shift to the right of the curve for Senoko as | R1         |              |
|    | U     | the median is higher                                         | DI         |              |
|    |       | The middle 50% of the curve will be steeper than for         | B1         |              |
|    |       | Senoko as the IOR is smaller                                 | DI         |              |
|    | c(i)a | 53                                                           | B1         |              |
|    | U(I)u | 200                                                          | 21         |              |
|    | c(i)b | 59                                                           | B1         |              |
|    | ()-   | $\overline{200}$                                             |            |              |
|    | c(ii) | 70 69                                                        | M1         |              |
|    |       | $ \overline{200} \times \overline{199}$                      |            |              |
|    |       | $=\frac{483}{2}$                                             | A1         | Accept 0.121 |
|    |       | 3980                                                         | 0m         | -            |
|    |       |                                                              | 7111       |              |
|    |       |                                                              |            |              |
|    |       |                                                              |            |              |
|    |       |                                                              |            |              |
|    |       |                                                              |            |              |
|    |       |                                                              |            |              |
|    |       |                                                              |            |              |
|    |       |                                                              |            |              |
|    |       |                                                              |            |              |
|    |       |                                                              |            |              |
|    |       |                                                              |            |              |

| Qn |       | Solutions                                                     | Marks | Remarks               |
|----|-------|---------------------------------------------------------------|-------|-----------------------|
| 10 | (i)   | P(brand Phantom) = $\frac{1435}{1626} \times 100\% = 88.3\%$  |       |                       |
|    |       | P(brand Sky Hawk) = $\frac{1626}{1637} \times 100\% = 78.7\%$ | B1    |                       |
|    |       | I agree with Peter.                                           |       |                       |
|    | (ii)  | 372 + (0.20  x  1496)                                         | B1    | 0.2 x 1496 seen       |
|    |       | = \$671.20                                                    | B1    |                       |
|    | (iii) | \$152 888 - \$10 000                                          |       |                       |
|    |       | = \$142 888                                                   | B1    |                       |
|    | (iv)  | 0.4 x 142 888                                                 | B1    | 0.4 x their (iii)     |
|    |       | = \$571 55. 20                                                | B1    |                       |
|    | (v)   | For Phantom:                                                  |       |                       |
|    |       | Interest = $0.6 \text{ x}$ their (iii) x 2.78 x 5             | B1    | Find interest         |
|    |       | = \$11 916.86                                                 |       |                       |
|    |       | Total repayment (balance + interest)                          |       |                       |
|    |       | $= 0.6 \text{ x their (iii)} + \$11 \ 916.86$                 | B1    | Find total (balance + |
|    |       | = \$97 649.66                                                 |       | interest)             |
|    |       | Monthly instalment = $$1627.50$                               |       | ,                     |
|    |       | For Sky Hawk:                                                 |       |                       |
|    |       | Interest = 0.6 x 147 999 x 2.78 x 5                           | B1    | Find interest         |
|    |       | = \$12 343.12                                                 |       |                       |
|    |       | Total repayment (balance + interest)                          |       |                       |
|    |       | $= 0.6 \times 147999 + \$12343.12$                            |       | Find total (balance + |
|    |       | = \$101 142.52                                                | B1    | interest)             |
|    |       | Monthly instalment = $$1685.71$                               |       | ,                     |
|    |       |                                                               |       |                       |
|    |       | Since the monthly instalment is lower / total repayment       | B1    | Conclusion with       |
|    |       | amount with interest is lower, brand Phantom is a better      |       | justification.        |
|    |       | buy.                                                          |       | J                     |
|    |       |                                                               | 11m   |                       |