Name:	Index Number:	Class:

HUA YI SECONDARY SCHOOL

Mid Year Examination 2018

4E

4E

CHEMISTRY

6092/1

Paper 1

9 May 2018

1 hour

Candidates answer on the Multiple Choice Answer Sheet provided. Additional Materials: Multiple Choice Answer Sheet

READ THESE INSTRUCTIONS FIRST

Write your name, index number and class on all the work you have done.

Write in soft pencil.

Do not use staples, paper clips, highlighters, glue or correction fluid.

There are **forty** questions on this paper. Answer **all** questions. For each question there are four possible answers **A**, **B**, **C** and **D**.

Choose the **one** you consider correct and record your choice in **soft pencil** on the separate Answer Sheet.

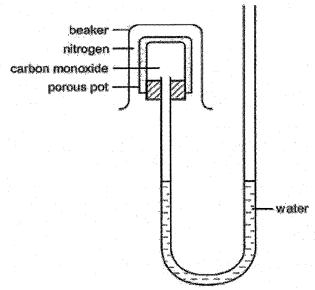
Read the instructions on the Answer Sheet very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this booklet.

A copy of the Periodic Table is printed on page 15.

For Examiner's Use	
Paper 1	

This document consists of 15 printed pages including the cover page.


© HYSS 2018

No part of this document may be reproduced in any form or transmitted in any form or by any means without the prior permission of Hua Yi Secondary School.

[Turn Over

Setter: Ms Tok Peilin

- 1 When iodine crystals were heated in a test tube, the iodine sublimed. How did the movement of the iodine particles change?
 - A particles slide over one another → particles move freely
 - B particles slide over one another → particles vibrate about fixed positions
 - c particles vibrate about fixed positions → particles move freely
 - **D** particles vibrate about fixed positions → particles slide over one another
- 2 A beaker of nitrogen is inverted over a porous pot containing carbon monoxide as shown.

The water level does not change.

Which statement is correct?

- A Both gases are diatomic.
- B Nitrogen is an unreactive gas.
- C The gas particles are too large to pass through the porous pot.
- **D** The two gases have the same relative molecular mass.
- In which of the following do both gases change the colour of damp red litmus paper?
 - A ammonia and chlorine
 - B ammonia and sulfur dioxide
 - C carbon dioxide and chlorine
 - D carbon dioxide and sulfur dioxide
- 4 A solid can be purified by crystallisation from its aqueous solution.

Which of the following properties does the solid have?

- A It dissolves in cold water, but not in hot water.
- **B** It is equally soluble in hot and cold water.
- C It is more soluble in hot water than in cold water.
- **D** It is very soluble in cold water.

5 The table shows some information about the solubilities of three solids.

solid	solubility in water	solubility in propanol
P	insoluble	soluble
Q	soluble	insoluble
R	insoluble	insoluble

The following operations could be carried out to obtain pure P from a mixture of P, Q and R.

- 1 evaporate filtrate to dryness
- 2 add propanol
- 3 filter
- 4 add water
- 5 collect residue

In what order should the operations be carried out?

- **A** 2, 3, 4, 5, 1
- **B** 2, 3, 5 only
- **C** 4, 1, 2, 3 only
- **D** 2, 3, 1 only
- An element E forms a negative ion, E²⁻, with the electronic structure 2,8,8. What is the proton number of E?
 - **A** 16
 - **B** 17
 - **C** 18
 - **D** 20
- 7 Which statements correctly describes the properties of mixtures of iron and sulfur, and the compound iron(II) sulfide, FeS?

	mixtures of iron and sulfur	compound iron(II) sulfide
1	iron and sulfur mix without chemically reacting	iron and sulfur combine in a chemical reaction to form iron(II) sulfide
2	the ratio of iron to sulfur in mixture can vary	the ratio of iron to sulfur in iron(II) sulfide is always the same
3	the mixtures do not have the properties of iron or sulfur	iron(II) sulfide has the properties of iron and sulfur

- A 1 only
- **B** 1 and 2
- **C** 2 and 3
- **D** 3 only

8 Deuterium (chemical symbol D) is an isotope of hydrogen. An atom of deuterium contains one neutron.

Which of the following statements is not true?

- A An atom of deuterium is heavier than an atom of hydrogen.
- B An atom of deuterium has a relative atomic mass of 1.
- C An atom of deuterium has one valence electron.
- D The formula of the compound formed between deuterium and oxygen is D₂O.
- **9** The diagram shows the structural formula of propyl methanoate.

What is the total number of electrons that are **not** involved in chemical bonding in the molecule?

- **A** 8
- B 14
- **C** 20
- **D** 28
- 10 The table shows four elements W, X, Y and Z with their atomic numbers.

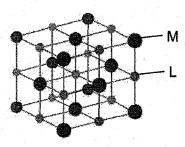
·W	X	Y	Z
6	8	11	17
	6	6 8	6 8 11

What are the likely formulae of ionic compound and covalent compound formed from the four elements?

	formula of	ionic compound	formula of covalent compound
Α		WX	YZ
В		Y_2X	WX_{2}
C		YW	WZ_4
D		YZ	ZX

- 11 Which particles are responsible for the conduction of electricity through metals?
 - A electrons only
 - **B** electrons and positive ions
 - c negative ions only
 - D negative ions and positive ions
- 12 The table shows some of the physical properties of P, Q, R and S.

	melting	boiling	electrical conductivity		solubility in
substance	point / °C	point / °C	solid	liquid	water
Р	122	550	poor	poor	insoluble
Q	690	1790	poor	good	soluble
R	1510	2489	poor	poor	insoluble
S	1453	2730	good	good	insoluble


Which of the following statements about the four substances is correct?

- A P is a simple molecular compound held by weak covalent bonds.
- B Q is an ionic compound with mobile electrons in the liquid state.
- **C** R is a macromolecule held by strong electrostatic forces of attraction between ions.
- **D** S has a giant lattice structure with mobile electrons.
- 13 The melting points of magnesium oxide and calcium oxide are given below.

metal oxide	melting point/ °C
magnesium oxide	2852
calcium oxide	2572

- A The charge of the calcium ion is higher than that of the magnesium ion.
- **B** The charge of the magnesium ion is higher than that of the calcium ion.
- C The radius of the calcium ion is smaller than that of the magnesium ion.
- **D** The radius of the magnesium ion is smaller than that of the calcium ion.

14 Element L and M form a compound which has a structure shown below.

Based on the structure shown above, deduce the chemical formula of the compound formed between element L and M.

- A LM
- B L₂M
- C LM₂
- $D = L_{14}M_{13}$

When sugar, $C_{12}H_{22}O_{11}$, $(M_r = 342)$ is fermented using yeast, the following reaction takes place.

$$C_{12}H_{22}O_{11}(s) + H_2O(l) \rightarrow 4C_2H_5OH(aq) + 4CO_2(g)$$

1kg of sugar is completely fermented.

Which expression shows the volume of carbon dioxide produced?

- A 342 x 4 x 24 dm³ 1000
- $\begin{array}{cc} \textbf{B} & \underline{1000 \times 24} \text{ dm}^3 \\ & 342 \times 4 \end{array}$

C 342 x 24 dm³ 1000 x 4

 $\begin{array}{cc} \textbf{D} & \underline{1000 \times 4 \times 24} \text{ dm}^3 \\ & 342 \end{array}$

16 A sample of nitrogen gas contains the same number of atoms as found in 4.00 g of methane gas.

What is the mass of the sample of nitrogen gas?

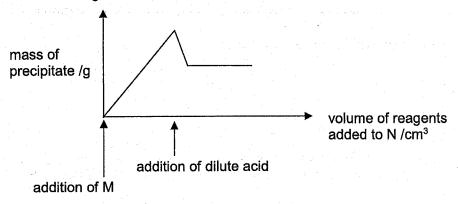
- **A** 7.00 g
- **B** 14.0 g
- C 17.5 g
- **D** 35.0 g

17 In an experiment carried out at room conditions, 1.0 dm³ of carbon dioxide was collected when an excess of dilute hydrochloric acid was added to 5.0 g of calcium carbonate.

$$CaCO_3(s) + 2HC/(aq) \rightarrow CaC/_2(aq) + CO_2(g) + H_2O(I)$$

What is the percentage yield of carbon dioxide gas?

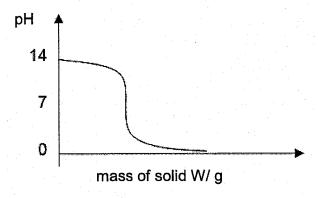
- **A** 4.16%
- **B** 12.0%
- **C** 41.6%
- **D** 83.3%
- What is the total volume of gas, measured at room temperature and pressure, that remains if 20 cm³ of sulfur dioxide reacts with 20 cm³ of oxygen to form sulfur trioxide?


$$2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$$

- **A** 10 cm³
- **B** 20 cm³
- **C** 30 cm³
- **D** 60 cm³
- An excess sample of an alloy, containing two metals, was dissolved in dilute sulfuric acid. Aqueous sodium hydroxide was then added to the solution. A precipitate was formed. An excess of the alkali caused the mass of the precipitate to decrease leaving a dirty green solid and a colourless solution.

What were the two metals present in the alloy?

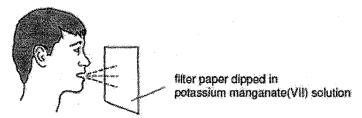
- A calcium and zinc
- B copper and iron
- C copper and lead
- D iron and zinc
- 20 Which equation shows the most suitable reaction for the production of lead(II) sulfate in the school laboratory with good yield?
 - A Pb + $H_2SO_4 \rightarrow PbSO_4$
 - **B** $Pb(OH)_2 + H_2SO_4 \rightarrow PbSO_4 + 2H_2O$
 - C $Pb(NO_3)_2 + H_2SO_4 \rightarrow PbSO_4 + 2HNO_3$
 - **D** PbCO₃ + H₂SO₄ \rightarrow PbSO₄ + CO₂ + H₂O


21 In a qualitative analysis, reagent M is gradually added to a salt solution N followed by the addition of a dilute acid. The graph below shows how the mass of the precipitate formed changes with the reagents added.

Which of the following set of anions would produce the given results?

	reagents (M and acid) added	anion(s) in N
A	add silver nitrate, followed by dilute nitric acid	Cl⁻, CO₃²-
В	add silver nitrate, followed by dilute nitric acid	
С	add aqueous barium nitrate, followed by dilute hydrochloric acid	Cl⁻, CO₃²-
D	add aqueous barium nitrate, followed by dilute hydrochloric acid	CO ₃ ² -

22 Solid W is gradually added to solution X. The changes in pH are shown on the graph.


What are W and X?

	solution X	solid W	
Α	nitric acid	insoluble metal oxide	
В	hydrochloric acid	soluble metal oxide	
C	aqueous ammonia soluble non-metal o		
D	sodium hydroxide	soluble non-metal oxide	

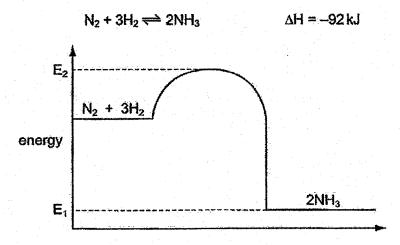
- 23 In which of the reactions is the underlined substance acting as a reducing agent?
 - A $Cl_2 + 2FeCl_2 \rightarrow 2FeCl_3$
 - **B** $2HCl + MgO \rightarrow MgCl_2 + H_2O$
 - C $H_2 + \underline{CuO} \rightarrow \underline{Cu} + \underline{H_2O}$
 - **D** $ZnO + CO \rightarrow Zn + CO_2$
- 24 Disproportionation is a reaction in which the same element is both oxidised and reduced.

Which reaction is an example of disproportionation?

- A $Cl_2 + H_2O \rightarrow HClO + HCl$
- $\mathbf{B} \quad 2\text{Pb}(\text{NO}_3)_2 \rightarrow 2\text{PbO} + 4\text{NO}_2 + \text{O}_2$
- $C \qquad Cu + 2H_2SO_4 \rightarrow CuSO_4 + 2H_2O + SO_2$
- D Cu + $4HNO_3 \rightarrow Cu(NO_3)_2 + 2H_2O + 2NO_2$
- 25 Acidified potassium manganate(VII) can be used to detect the presence of ethanol vapour in the breath of a person who has consumed alcohol.

A colour change of the filter paper is observed.

Which of the following conclusion about ethanol is observed?

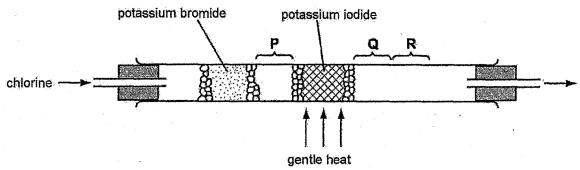

- A It is a reducing agent because it reduces the oxidation state of the manganese.
- **B** It is an alkali because the final colour is purple.
- C It is an oxidising agent because the manganese atoms gain oxygen atoms.
- **D** It is neutralised by acidified potassium manganate(VII) solution.
- Which of the following substances could be used to reduce atmospheric pollution caused by flue gases?
 - A ammonium carbonate and ammonium sulfate
 - B ammonium sulfate and calcium carbonate
 - C calcium carbonate and calcium oxide
 - D calcium oxide and ammonium sulfate

27 The equation for a particular reaction is shown below.

$$2Agl + light \rightarrow 2Ag + l_2$$

Why is this an endothermic reaction?

- A Energy is required to vaporise iodine.
- B It involves the formation of covalent I I bonds.
- **C** It involves the transfer of electrons from iodide ions to silver ions.
- **D** Light energy is absorbed when the reaction takes place.
- 28 The energy profile diagram is that for the Haber process.


What does the energy change E2 - E1 represent?

- A activation energy of the forward reaction
- B activation energy of the reverse reaction
- **C** enthalpy change of the forward reaction
- **D** enthalpy change of the reverse reaction
- 29 Caesium is an element in the same group of the Periodic Table as lithium, sodium and potassium.

Which statements about caesium are likely to be false?

- It reacts explosively with cold water.
- Il It forms a soluble carbonate salt.
- III It forms a carbonate with a formula of CsCO₃.
- IV It can be extracted via electrolysis of concentrated aqueous CsCl.
- A l and ll
- B I and III
- C II and III
- **D** III and IV

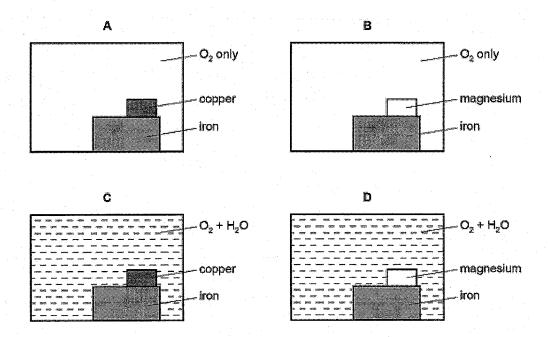
30 Using the apparatus shown, chlorine is passed through the tube. After a short time, coloured substances are seen at P, Q and R.

What are these coloured substances?

	P	Q	R
Α	reddish-brown vapour	violet vapour	black solid
В	reddish-brown vapour	reddish-brown vapour	reddish-brown vapour
C	green gas	violet vapour	black solid
D	green gas	reddish-brown vapour	reddish-brown liquid

31 The table below gives some information about element Y.

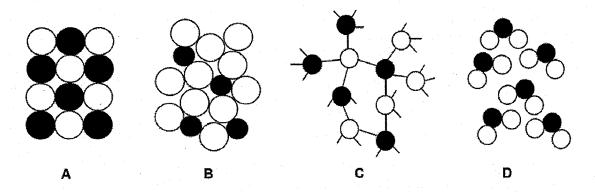
density / g/cm ³	6.2	
melting point / °C	1280	
formation of existen	YO (white)	
formulae of oxides	Y ₂ O ₃ (brown)	
chemical properties	reacts readily with O2 or Cl2	

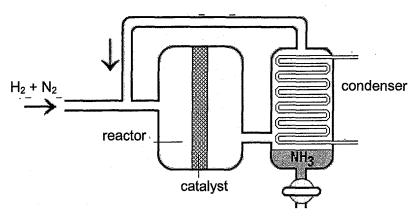

Which of the following statements about element Y is likely to be correct?

- A It is a metal in Group III.
- B It is a transition metal.
- C It is an alkali metal.
- **D** It forms oxides that are amphoteric in nature.
- 32 A new element, Hb, placed in Group VII of the Periodic Table, has a higher relative atomic mass than astatine.

Which statement about element Hb is not correct?

- A Hb atom gains electrons less readily than a chlorine atom.
- B Hb displaces a tatine out from aqueous potassium a tatide.
- C Hb has a higher boiling point than bromine.
- D Hb is a less powerful oxidizing agent than iodine.


33 Which diagram correctly shows the conditions necessary for rusting of iron and also the metal that can be used to prevent rusting by sacrificial protection?

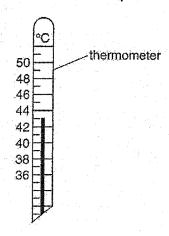

34 Scrap iron is often recycled.

Which reason for recycling is not correct?

- A It reduces the amount of pollution at the site of the ore extraction.
- B It reduces the amount of waste taken to landfill sites.
- **C** It reduces the need to collect the scrap iron.
- D It saves natural resources.
- 35 Which diagram below shows the structure of an alloy?

36 Ammonia is produced by Haber process as shown in the diagram.

Which one of the following processes separates ammonia from the reaction mixture?


- A cooling the gaseous mixture
- **B** distillation of the gaseous mixture
- **C** filtering out the other two gases
- D passing the gaseous mixture through fused calcium oxide
- 37 Which solution(s) would produce hydrogen gas at the cathode upon electrolysis?
 - 1 dilute nitric acid
 - 2 aqueous potassium hydroxide
 - 3 aqueous sodium chloride
 - A 1 only
 - **B** 1 and 2
 - C 2 and 3
 - D all of the above
- **38** The table shows the energy released by complete combustion of some compounds used as fuels.

compound	Mr	ΔH (kJ/mol)
methane	16	-880
ethanol	46	-1380
propane	44	-2200
heptane	100	-4800

Which fuel produces the least energy when 1 g of the compound is completely burned?

- A methane
- **B** ethanol
- C propane
- D heptane

39 A thermometer is placed in warm water and the temperature is measured as shown.

When a solid is dissolved in the water, an exothermic change takes place. The temperature changes by 5°C.

What is the final temperature?

- **A** 38.0 °C
- **B** 38.5 °C
- **C** 48.0 °C
- **D** 48.5 °C
- 40 In which reaction is the pressure **not** likely to affect the rate of reaction?
 - **A** $3H_2(g) + N_2(g) \rightarrow 2NH_3(g)$
 - **B** CuO (s) + H₂ (g) \rightarrow Cu (s) + H₂O (l)
 - **C** Fe₂O₃ (s) + 3CO (g) \rightarrow 2Fe (s) + 3CO₂ (g)
 - D H_2SO_4 (aq) + 2NaOH (aq) \rightarrow Na₂SO₄ (aq) + 2H₂O (l)

End of Paper

The Periodic Table of Elements	
Periodic Table of Ele	ents
Periodic Table of	0
Periodic Table	Ш
Periodic T	Ō
Periodic 1	able
7	
7	ğ
The	Peric
	The

	1	m.mpy.commu			-		T			Т				T		- magana		T	n proces		en selvana		***************************************	4		7
		£ 5	mellum 4	2	Š	S 36	130	Ąŗ	argon 45	⊋ 8	ና :	'	krypton	2	3	*	Wellow .	2	8 (Ź	radon	1	,,,,,,,,,,,,	00001001000		
	S			ග	L1	fluorine 15	47	ರ	chlorine 25.5	33,3	8 1	ă	promine	8	R	 t	odine	17.1	£	¥	astatine	1	e,			
				∞	0	oxygen 16	16	လ	Suffur 35	76	\$ 4	80	selenium	3	8	e	tellurium	87.	æ ₁	ဂ	polonium	1	<u>5</u>	<u>구</u>	livermonum	
	7			*	~	nitrogen 14	35	<u> </u>	afrosphorus 24	5 5	:: ::	Ş	arsenic	75	ঠ	සි	antimony	72	8	66	bismuth	508				
	M			တ	ပ	carbon 12	14	Ö	Silicon	27	83	B	germanlum	2	යි	హ	E !	118	8	£	peq	207	114	ì.	merovium	
				r	മ	baran 11	£	? ₹	alumimlum	17	~	සු	gallum	2	49		mdium	115	₩.		thallium	\$				
				L					<u></u>		ස	5	zinc	92	48	ਲ	cadmium	112	8	2	mercury	201	112	දි .	copernicium	
										-	83	ਠੋ	copper	22	47	Ad	silver	108	2	Æ	plog	197	111	2	roentgenium	1
an											82	Z	nickel	29	46	2	palladium	106	<u>&</u>	췹	platinum	195	110	മ്	dermstadtium	ı
Group											77	ප	cobalt	23	45	몺	rhodium	103	11	<u></u>	migin	192	109	W.	melmerium	1
***************************************		- I	hydrogen 1	and the second second							292	£	uou	æ	44	2	nuthentum	Ď	92	රි	osmium	180	108	坣	hassium	1
***************************************				J.							25	Z	manganese	32	43	Ľ	technetium	*	75	å	rhenium	136	107	큡	pohríum	_
		***************************************		mher			Z A				24	ర	chromium	25	42	Ç	molybdenum	98	7.4	3	fundsten	<u>\$</u>	106	SG	seaborgium	1
***************************************		***************************************	Kev	nrotrin (atomic) number	mic symb	name	rejative atolitic mass				ន	>	vanadium	હ્ય	41	ž	milopium	S	73	<u>~</u>	tantalum	<u></u>	105	රි	dubnium	ı
***************************************		***************************************		nroton	Cta		relativ				22	F	lifanium	48	40	72	zirconium	જ	72	Ŧ	hafnism	178		ğ.	Rutherfordium	1
		-		L							21	ů,	scandium	45	39	>	vitrium	88	57-71	lanthanoids			89 - 103	actinoids	<u> محمد بند</u>	
***************************************	2000			V	t å	Servillum Vervillum	» [2 :	magnesium	25,	20				1				28			13.5	88	2	milper	1
		***************************************		Ç	о ::	ığı		~ :	sodium sodium	es	19	: ×	notassium	39	37	ទីក	2 10	88	22	ڻ ڏ	395	133	87	ů.	francium	1

71 Lu lutettum 175	103 Lr lawrendum
Yb Yb yfferblum 173	102 No nothellum
8 E # 8	Mandele Middle M
88 克斯斯	Figure 1
67 Holmium 165	99 Es einsteinium
66 Dy dysprosium 163	Sallo C 88
65 terbium 159	97 BK berkellum
gadolinium 157	& Carlon
63 Eu europium 152	95 Am americium
Sm Sm samartum 150	94 Pu philtonium
61 Pm promethum	93 Np neptunium
Nd Nd neodymium	92 U uranium 238
59 Pr praxecdymium	91 Pa n protectinium u
8 9 mg 5	89 90 Ac Th actinum thorium 232
57 La lanthanum	Ac Ac actinium

lanthanoids

actinoids

Name Index Number Class

HUA YI SECONDARY SCHOOL

Mid Year Examination 2018

4E

4E

CHEMISTRY

6092/2

Paper 2

7 May 2018

1 hr 45 min

Candidates answer on the Question Paper. Additional Materials: NIL

READ THESE INSTRUCTIONS FIRST

Write your name, index number and class on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Section A

Answer all questions.

Write your answers in the spaces provided on the question paper.

Section B

Answer all questions.

Write your answers in the spaces provided on the question paper.

The number of marks is given in brackets [] at the end of each question or part question.

A copy of the Periodic Table is printed on page 21.

The use of an approved scientific calculator is expected, where appropriate.

For Examiner's Use					
Section A					
Section B					
-					
Total					

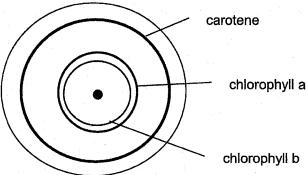
This document consists of **21** printed pages including the cover page. © HYSS 2018

No part of this document may be reproduced in any form or transmitted in any form or by any means without the prior permission of Hua Yi Secondary School.

[Turn Over

Setter: Ms Tok Peilin

Section A


Answer all the questions in this section in the spaces provided.

The total mark for this section is 50.

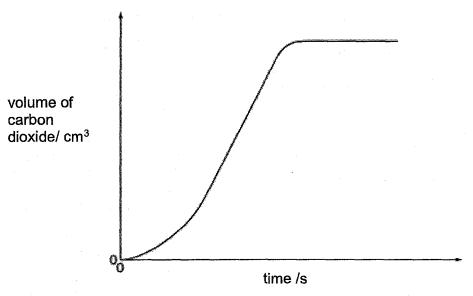
A1

The	following compounds	are used in manufac	sturing chemicals for agriculture.		
		A :	K₃PO₄		
		В	H ₂ SO ₄		
		С	NH ₃		
		D	Ca(OH) ₂		
		E	NH ₄ NO ₃		
Use	the letters A, B, C, D	and E to answer the	following questions.		
(a)	Which solid compou	nd is added to increa	se the pH of soil?	,	
					[1]
(b)	Two raw materials a	re used to make a co	ompound.		
			by cracking petroleum. d by fractional distillation of air.		
	Which compound is	manufactured from th	nese two raw materials?		
					[1]
(c)	Which two compour	nds can be reacted to	gether to form an ammonium salt?		
		aı	nd		[1]
(d)	NPK fertilisers are so potassium.	olid fertilisers that cor	ntain compounds of nitrogen, phosphorus a	and	
	Which two compour	nds could be mixed to	produce an NPK fertiliser?		
		aı	nd		[1]
				[Tota	al: 41

A2 Spinach is an edible plant that has a deep green colour. The following chromatogram is obtained when water-acetone mixture is added to a drop of spinach extract in the centre of a piece of filter paper.

	using chromatography.				
					[1]
(b)	The experiment was repeated u	sing a typical c	hromatography paper	as shown below.	
		•			
	Draw and label the expected chromatogram.	positions of th	e components of spi	nach extract on the	[2]
(c)	State one experimental procedu of the components.	ure that should	be followed to obtain	a good separation	

	(d)	Suggest why a water-acetone mixture is used as the solvent, instead of just a pure water or pure acetone solvent.						
				[4]				
				Fotal: 5]				
A 3	One	of the	ways to reduce air pollution is to curb the number of vehicles on the road.	otai. Oj				
	(a)	Nam	e two air pollutants produced by motor vehicles.					
		,		[2]				
	(b)	moto	lytic converters are fitted in cars to reduce the amount of air pollutants emitted or vehicles. In the catalytic converter, nitrogen monoxide and carbon monoxide together to form harmless products.					
	. •	(i)	Write a chemical equation to show how air pollutants are removed by cataly converters.	tic				
				[1]				
		(ii)	Explain why catalytic converters do not solve all the environmental probler caused by motor vehicles.	ns				
				••				
				[2]				
				Fotal: 5]				
Α4	The	reaction	on below is an example of a redox reaction.					
			$I^{-}(aq) +H^{+}(aq) +H_{2}O_{2}(aq) \rightarrowI_{2}(aq) +H_{2}O(I)$					
	(a)	Bala	nce the equation by inserting numbers (if necessary) on the dotted lines provided.	[1]				
	(b)	Iden	tify the oxidising agent in this reaction. Explain your answer using oxidation states	•				
			,	•••				
				[2]				


[Total: 4]

5

The	table sh	ows some data about t	the different components		[Tota
		components	melting point / °C	boiling point / °C	
		argon	– 189	– 186	
		carbon dioxide	- 78	- 78	
		krypton	– 157	– 153	
		neon	– 249	- 246	
		nitrogen	– 210	– 196	
		oxygen	– 219	– 183	
		water vapour	0	100	
(a)	State t	he percentage by volur	me of nitrogen and oxyge	n in air.	
	nitroge	n	oxygen		
(b)		nal distillation of liquid	oxygen and the noble g air. Before air is liquefi		
	(i) S	Suggest why air is dried	d before it is liquefied.		
	•				
	(ii) <i>/</i>	At 200 °C liquid air is	s fractionally distilled by a	llowing it to warm up grad	dually

A6 In Experiment I, a sample of magnesium carbonate is heated in a test-tube using a hot plate at 300 °C. The total volume of carbon dioxide formed is measured every 10 seconds.

The graph shows his results.

(a)	Suggest why there is no significant increase in the volume of carbon dioxide when magnesium carbonate is first heated.	
		[1]
		[1]
(b)	In Experiment II , the same mass of magnesium carbonate is heated in a test-tube using a hot plate at a higher temperature of 500 °C.	
	Sketch a curve on the graph above to show the results for this experiment.	
	Explain your answer.	
	,	
		[0]
		[3]

(c) Ron wishes to investigate how the thermal stability of metal carbonates is related to the position of their metal in the reactivity series.

To ensure a fair experiment, he repeated **Experiment I** using different metal carbonates, while keeping all other variables constant.

The table below shows the results of the experiment after the first 60 seconds.

metal carbonate	total volume of gas collected/ cm ³
X ₂ CO ₃	0
YCO₃	0
CaCO ₃	2
FeCO ₃	7
ZnCO ₃	5

(i)	FeCO ₃ .					
		[2]				
(ii)	Explain why X ₂ CO ₃ and Y CO ₃ do not decompose.					
		[2]				
(iii)	A solution containing 0.002 mol of sulfuric acid is titrated with a solution containing 9.2 g/dm 3 of X_2CO_3 . The volume of X_2CO_3 solution needed to exactly neutralise the acid is 23.2 cm 3 .					
	1 mole of sulfuric acid reacts with 1 mole of X₂CO₃.					
	Calculate the relative atomic mass, Ar, of X and suggest its identity.					

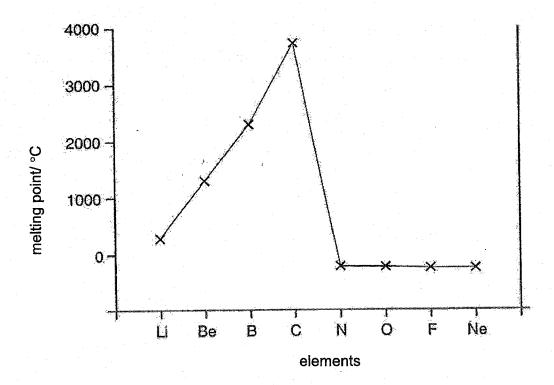
A_{r} of X =	
dentity of X	[3]

(b)		nergy output of the ergy profile diagram		nagnesium and	steam can be shown	using
	Draw a	an energy profile dia	agram for the reacti	on.		
		diagram should ind n enthalpy change			d products, labels f	or the
	, 5 5.0 1.5	A				
	(KJ)					
	energy (kJ)					
				pr	ogress of reaction	
(c)		n, using ideas abou rmic.	it bond breaking ar	nd bond making,	why the overall read	tion is

[4]

(a)	(i)	Write the ionic equation for the reaction at the cathode.	[1
a ti	(ii)	Write the ionic equation for the reaction at the anode.	Ι'
			[1
	(iii)	State the observation at the cathode during the electrolysis.	
			[1
(b)	The	setup shows the electrolysis of concentrated sodium chloride solution.	
		30 V	
		P graphite electrode	
		concentrated sodium chloride solution with universal indicator	
	(i)	Describe the observations at the electrodes of P and Q .	
		Electrode P:	

(ii)	How does the pH of the electrolyte change as the electrolysis proceeds? Explain your answer.	
		[2]
(iii)	Suggest why iron is not suitable to be used as an electrode for this experiment.	
		[1]
	[Tota	:10]


11

Section B

Answer all **three** questions in this section.

The last question is in the form of an either/or and only one of the alternatives should be attempted.

This information is about the elements in **Period 2** of the Periodic Table. B9

element	electrical conductivity (at room temperature and pressure)
Li	good
Be	good
В	poor
С	good
N	does not conduct
0	does not conduct
F	does not conduct
Ne	does not conduct

(a)	(i)	conductivity across Period 2.	
			[2]
	(ii)	How does the data show that the first four elements in Period 2 are solids at room temperature and pressure?	
			[1]
(b)	(i)	Does the electrical conductivity of carbon fit the general pattern across the period? Justify your answer.	
		<u></u>	[2]
	(ii)	There are two forms of carbon: diamond and graphite.	
		Which form of carbon does the data refer to? Explain your answer with reference to the structure of the substance you have chosen.	
			[2]

[1]

4	2
1	-3

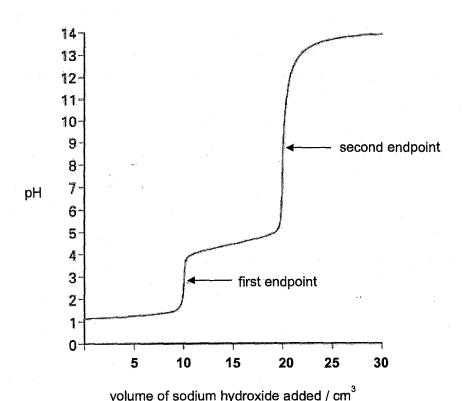
(d) An element in **Period 3** has the following properties.

melting point/ °C

conductivity

98	
good	

Use the information given in the question to suggest the element that this data is most likely to refer to.


Explain your ans	swer.		

			[2]
			[Total: 10]

B10 Different experiments were set up to investigate the reactions of sulfuric acid.

25.0 cm³ of 0.10 mol/dm³ sulfuric acid was transferred to a conical flask and sodium hydroxide was added from a burette.

After each addition of sodium hydroxide, the pH of the solution was recorded using a pH probe attached to a data logger.

The display from the data logger shows the results below. The pH curve has two endpoints, which resulted because H_2SO_4 undergoes two stages of ionisation in water to produce hydrogen sulfate ions, and sulfate ions respectively.

(a) (i) Sulfuric acid ionises in water in two stages. In stage I, it ionises to produce HSO₄⁻ ions.

$$H_2SO_4$$
 (aq) $\rightarrow HSO_4^-$ (aq) + H^+ (aq)

Write an equation to show the second stage of ionisation of HSO₄ in water.

.....[1]

(ii) State the chemical formula and name of the salt formed at the first endpoint.

chemical formula

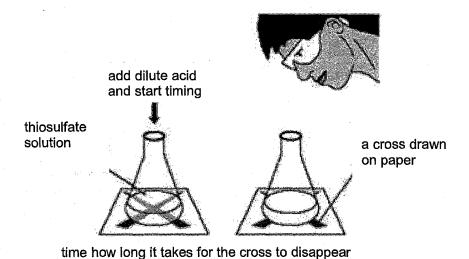
chemical name

(iii) H₂SO₄ is completely neutralised when the second endpoint is reached.

Use the information from the pH curve to calculate the concentration of sodium hydroxide used in the experiment.

mass of hydrated salt at the start	27.8 g
mass of anhydrous salt at the end	15.2 g

Use the results to work out the empirical formula of the hydrated iron(II) sulfate used in this experiment.


[3]

Either

B11 Aqueous sodium thiosulfate, $Na_2S_2O_3$, reacts with dilute hydrochloric acid. The reaction was used in an experiment to determine the effects of varying concentration and temperature on the speed of the reaction.

The equation for the reaction is:

$$Na_2S_2O_3(aq) + 2HCl(aq) \rightarrow 2NaCl(aq) + S(s) + SO_2(g) + H_2O(l)$$

A cloudy suspension of sulfur forms and covers the cross (X) slowly. When the cross completely disappears from top view, the time taken is recorded.

The table below shows the results obtained in different experiments using 10 cm³ of acid and 10 cm³ of 1 mol/dm³ aqueous sodium thiosulfate.

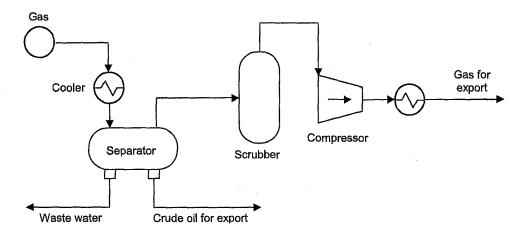
experiment	concentration of acid / mol/dm ³	temperature / °C	time taken / s	1/time / s ⁻¹
Α	0.15	20	65	
В	0.10	30	45	
С	0.10	20	85	
D	0.05	30	55	
E	0.05	20	105	

(a)	(i)	Complete the table by calculating the values of 1/time for each experiment. Leave your answers to 3 significant figures.	[1]
	(ii)	Explain the significance of 1/ time.	٠. ۲
			[2]
(b)		ch of the experiments (A to E) are suitable to be used to show the effect of entration on the speed of the reaction? Explain your answer.	
			[2]
(c)	reac		
			[2]
(d)	said,	ying to explain the effect of temperature on the speed of the reaction, a student "The higher the temperature, the faster is the speed of the reaction. This is tuse at a higher temperature, the activation energy of the reaction is lowered. In more effective collisions can occur."	
	is the	e student correct? Justify your answer.	

	•••••		

			[3]

OR B11


Natural gas is a mixture of hydrocarbon compounds formed from the remains of dead plants and animals over a long period of time. It is often found together with other fossil fuels such as crude oil.

An example of components of natural gas is shown in the table.

name	formula	percentage composition / %	boiling point /°C	liquid density / g/cm³
methane	CH₄	70	- 162	0.423
ethane	C ₂ H ₆	10	- 89	0.546
propane	C ₃ H ₈	10	- 42	0.493
others (carbon dioxide, hydrogen sulfide, etc.)	-	10	-	· .

Adapted from: www.naturalgas.org

Natural gas that is extracted from the ground must be purified before it can be used. A simplified diagram showing the process of purification is given in the diagram below. The first step is to cool the mixture and remove water and other dense components like crude oil. The raw gas is then sent to a series of scrubbers, compressors and coolers. Finally, the gas is either compressed or liquefied, and then exported.

Compressed natural gas (CNG) is compressed to 200 to 250 times atmospheric pressure, such that it occupies about 1% of the volume it would otherwise have occupied, and stored in high-pressure tanks. Liquefied natural gas (LNG) is cooled to about -170°C, where it occupies about 1/600th of the volume it would otherwise have occupied, and stored in special insulated tanks.

(ii)	Draw a dot and cross diagram to show the bonding of one molecule of the main
	component of natural gas stated in (a) (i). You only need to show the outer shell electrons.
	rou only need to show the outer shell electrons.
(iii)	Explain, using ideas about bonding and structure, why natural gas is volatile.
	en de filosopologos en estados por estados de la composição de la composição de la composição de la composição Canada filosopologos de la composição de l

		20	
(c)	(i)	The diagram shows the arrangement of particles in natural gas at room temperature and pressure. Draw similar diagrams to show the arrangement of the same number of particles in liquefied natural gas (LNG) and compressed natural gas (CNG).	
		LNG CNG	
	• 1		[2
	(ii)	Using the information given, suggest one advantage of using liquefied natural gas (LNG) over compressed natural gas (CNG).	

[Total: 10]

[2]

21

-					····													·····	************	· · · · · · · · · · · · · · · · · · ·	*****							***************************************	······
	0	ત	里	helium	4	9	2	перп	8	₩	Ā	argon	40	36	호	krypton	8	\$	×	xenon	131	88	줃	radon	1				
	MI		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			တ	ш.	fluorine	9	7	Ö	chlorine	35.5	35	ä	bromine	80	53	—	iodine	127	85	¥	astatine	1				
	- IN						0	nagyxo	9	\$	ဟ	sulfur	32	34	ශී	selenium	79	25	<u>a</u>	tellurium	128	84	<u>چ</u>	polonium	1	116	<u></u>	rermonium	1
	Λ				ı							42										83				***************************************			
												ā.				c										114	Œ	lerovium	,
	=					iO	<u>~</u>	poron	~	€	~	iuminium	27	34	ලි	gallium gr	70	49	a	mdium	115		<u></u>	mallum	204				
					l							a		<u> </u>												112	5	pernicium	ĭ
										-										•••••								<u>5</u>	
														88	2	nickel	28	46	2	alladium	106	78	盂	Matinum	195	110	ජ	mstadfium ro	1
Group				:																s.a.					-	109		8	
		*	I	ydrogen	·									26	Œ.	<u></u>	56	44	₽	Ithenium	101	9/	රි	osmium	190	108	£	m misseu	,
				_EE												8)		-								107	_		
						ther			SS					24	ප්	Iromium. mis	25	42	Mo Mo	lybdenum te	96	74	*	Ingsten	184	90‡	S	aborgium	,
					Key	proton (atomic) numb	ic symbol	name	atomic ma					ឌ			51					ı			- 1	105		dubnium se	1
						proton (at	atom		relative					22				·man.	Z'				T					Rulherfordium d	1
								***************************************										*********	www.ww	oranie.		57-71	********			89 – 103	dinoids	2	entrew.
					1							Æ		1	*********	**********	············		*********			 	***************************************		20110100	***************************************	쓚		
						4	8	berylliun	a	12	Š	magnesiu	<u>~</u>	ន	Microscope Microscope		xooooote	occurrence of	regeneesee	********	компени	29			*******	*******	8	radium]
						ന	=	lithium	ستما	#	2	sodium	S	19	¥	potassium	33	37	2	nubidium	32	55	క	caesium	133	87	ŭ.	francium	1
	.h			*******			***************************************	*********				*********	********	********	********	********													,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

The Periodic Table of Elements

***************************************						**********	
71	3	lutetium	175	103	ت	lawrencium)
70	\$	yfferblum	173	102	2	mopelinm	1
69	E	thulium	169	101	ğ	mendelevium	ı
89	ш	erbium	167	100	Ē	fermium	1
29	유	holmium	165	66	Ŋ	einsteinium	ı
99	ු	dysprosium	163	96	ಶ	californium	1
65	£	terbium	126	16	盉	perkelium	1
64	පි	gadolinium	157	98	క్ర	curium	1
83	团	entoplum	152	95	Am	americium	1
62	ఙ	samarium	150	94	2	plutonium	1
61	Ĕ a	promethium	1	83	2	neptunium	1
09	2	neodymium	144	92	_		
65	ል	prasecdymium	4	8	Ç.	protectinium	231
58	ඵ	cerium	140	8	f		- 1
24	2	lanthanum	139	88	Ac	actinium)

lanthanoids

actinoids

4E Pure Chem MYE P1 MS 2018

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20	C D A C D A D C D C D C
Q2	D
Q3	Α
Q4	С
Q5	D
Q6	A
Q7	В
Q8	B
Q9	С
Q10	В
Q11	Α
Q12	D :
Q13	D
Q14	A
Q15	D
Q16	С
Q17:	D
Q18	С
Q19	D
Q20	C

Q21 Q22 Q23 Q24 Q25 Q26 Q27 Q28 Q29 Q30 Q31 Q32 Q33 Q34 Q35 Q36 Q37 Q38 Q39 Q40	Α
Q22	A D D A A C D B B D C B A D B C D
Q23	D
Q24_	Α
Q25	A
Q26	<u> </u>
Q27	D
Q28	В
Q29	D
Q30	Α
Q31	В
Q32	В
Q33	D
Q34	С
Q35	В
Q36	A
Q37	D
Q38	В
Q39	C
Q40	<u> D</u>

4E Chemistry Paper 2 2018 Mark scheme

Λ1		1
A1 (a)	D	[41
	C	[1]
(b)	B and C	[1] [1]
(d)	A and E	[1]
<u>(u)</u>	Adilu L	Total: 4
A2		Total, 4
(a)	The components have different solubilities in the solvent.	[1]
(b)	3 components [1]	[2]
	correct distance (relative height): • chlorophyll b – 0.8 to 1 cm	
	• chlorophyll a – 1.0 to 1.2 cm	
	• carotene – 1.8 to 2.1 cm [1]	
(c)	The chromatography should be allowed to run until the solvent front almost reaches the top of the filter paper/	[1]
	The drop of extract spotted on the filter paper should be as small as possible.	
	Cover with a lid to ensure consistent acetone/water composition.	
	Use a longer chromatography paper.	
	NB: Do not award: solvent level should be below starting line/ startling line should be drawn in pencil	
(d)	Spinach extract consists of substances that are soluble only in acetone-water mixture.	[1]
	mixure.	Total: 5
A3		rotal. o
(a)	carbon monoxide, nitrogen oxides, sulfur dioxide, unburnt hydrocarbons (No chemical formula)	[2]
(1-)	Any two answers. [1] each.	[4]
(b)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	[1]
	(ii) Carbon dioxide [1 mk pt] is produced by the reactions in the catalytic converters and it is a greenhouse gas [1 mk pt] that causes global warming. [1 mk pt] 3 mk pts – [2] 1-2 mk pts – [1]	[2]
		Total:5
A4		1 Otal.O
(a)	2 2 (1) → (1) 2	[1]
(b)	H_2O_2 is the oxidizing agent. It oxidizes $\underline{I = to I_2}$ which increases in oxidation number from $\underline{-1 (I =)}$ to $\underline{0 (I_2)}$.	[1] [1]
(c)	Colourless solution turns vellow/ brown.	[1]
		Total:4
A5		
(a)	Nitrogen – 78% [1]	[2]
(b)	Oxygen – 21% [1] (i) At low temperature (for fractional distillation of liquefied air), water is a solid [1]. {Hence, it would block the flow of liquid air through the pumps and pipes.}	[1]
	(ii) (distilled first) Nitrogen, Argon, Oyygen, Krynton	 [1]

1	1	2

	143	
	NB: 0 M if students include Ne or compounds.	
4.0		Total:4
A6 (a)	Not much magnesium carbonate has achieved <u>activation energy</u> required. [1]	[1]
499		1.74
	Accept: The flame is not hot enough to decompose much magnesium carbonate.	
	Note: Many students' responses reflect a poor understanding of the question The question involves decomposition and hence responses that revolve around rate of effective collision is invalid as there's no collision of reactants involve here. Other responses which are inaccurate include 'There wasn't enough energy to overcome the activation energy'.	
(b)		[3]
	volume of carbon	
	dioxide /cm³	
	/dm-	
	time/s	
	Correct graph [1]	
	At higher temperature, rate of reaction increases because more zinc carbonate particles have sufficient energy to overcome the activation energy. [1]	
	Volume of carbon dioxide stays constant as it is dependent on the number of	
	moles/mass of zinc carbonate which did not change. [1]	
(c)	(i) $FeCO_3(s) \rightarrow FeO'(s) + CO_2(g)$	[2]
•		
	Correct state symbols – 1M Correct formula – 1M	
	(ii) X and Y are highly reactive metals [1], thus forming highly stable metal	[2]
	carbonates [1] that do not decompose on heating	
	carbonates [1] that do not decompose on heating	
	(iii) Mass of X ₂ CO ₃ used = 9.2 x 0.0232 = 0.2134 g [1]	[3]
	M_r of $X_2CO_3 = 0.2134/0.002 = 106.72$	
	A_{r} of X = $(106.72 - 12 - 16 \times 3)/2 = 23.4[1](3 s.f.)$	
	$A_{\rm in}$ of X = 23.4	
	identity of X sodium [1]	
·		Total: 11
A 7		LIVIGIT L.I.

	144	
	1M for all accurate formula 1M for all accurate state symbols	
	kan di persona di mendengan di mengenangan di mengenangan di mengenangan di mengenangan di mengenangan di meng Kanangan di mengenangan di mengenangan di mengenangan di mengenangan di mengenangan di mengenangan di mengenan	
(b)		[3]
	$\int E $	
	3 Mg + H ₂ O	
	Mg + H ₂ O	
	Mgo-h₂	
		·
	progress of reaction	
	- Carroot chano (4)	
	 Correct shape [1] Labels (Ea, ΔH); directions must be both correct [1] 	
	Reactants and products (correct indicators of reactants and products) [1]	
(c)	Heat energy released for bond forming in 1 mole of magnesium oxide and 1 mole of hydrogen is greater than heat absorbed for bond breaking in 1 mole of water	[2]
	and 1 mole of magnesium.	
		i e
	[1] – underlined phrases i.e. where the bonds are broken and formed; [1] – bold words i.e. connecting energy released/gained to bond forming/breaking	÷
	Note: This question involves the overcoming of ionic bonds and the phrasing proves to be difficult for students. Students who gave responses such as Mg-O will be	
	marked down as this is a denotation for covalent bond.	
A8		Total: 7
(a)	$(i) Pb^{2+}(I) + 2e^- \rightarrow Pb(I)$	[1]
	(ii) $2Br(I) \rightarrow Br_2(g) + 2e^{-g}$	[1]
	(iii) Shiny, silvery globule was found at the bottom of the beaker.	[1]
(b)	(i) P: Green Universal indicator turned blue/violet. [1] /bubbling / effervescence of pale green gas [1] [max 2]	[4]
ļ., I	Q: Green Universal indicator turned red. [1] / bubbling / effervescence of	
	colourless gas [1]	
	(ii) pH will increase. [1] Hydrogen ions preferentially discharged at cathode results	[2]

	higher than that of hydrogen ions. [1]	
	NB: reject if students write gas instead of ions are discharged.	
(iii)	Chlorine gas formed at anode will oxidise iron anode away/ hydrogen ions at cathode will react iron cathode away	[1]
	Reject: chloride ions will react with iron. [Reaction of chloride ions with iron is slow] NB: reject if students write gas instead of ions are discharged.	
		Total: 10

B9				
(a)	(i)	The melting points increase across Period 2 from Li to C, then decrease sharply from C to N. The melting points decreases gradually from N to Ne. [1] The electrical conductivity is high for the first elements in the period and is low for the last four elements. Boron is the exception as it is one of the first few elements in the period, yet it has poor electrical conductivity.	[2]	
		NB: X Wrong: merely restating the table information in sentence form, for example, "lithium, beryllium and carbon are good conductors, boron is poor and the other elements do not conduct.		
		√ Right: answers that identified a general trend, "the conductivity is high for the first elements in the period and is low for the last four elements' and then highlighted the exception 'except for boron' or 'except for carbon'.		
	(ii)	They have high melting points that are above room temperature.	[1]	
(b)	(i)	No. Electrical conductivity generally decreases across Period 2. [1] (specific mention of a trend)	[2]	
		However, carbon is a good electrical conductor despite the preceding element, boron, being a poor conductor, and the following element, nitrogen, being a non-conductor. [1]		
		NB: Only ans that presents the idea of a <u>general pattem</u> will be accepted.		
	(ii)	Graphite. [no marks] Graphite has a giant molecular structure consisting of layers of carbon atoms. Each carbon atom is covalently bonded to three other carbon atoms. This leaves each carbon atom with one valence electron not involved in bonding. [1] This electron becomes delocalised and can move freely along the layers of carbon atoms, [1] thus conducting electricity. NB: Reject if students write each atom is bonded to 3 other electrons. Concept must be entirely correct.	[2]	

				146	
	(c)		Atomic		[1]
			number		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
			1		
			10 +		
			8 +		
			6+		
			4		
	1.		2 +		
			-		
			Li Be	B C N O F Ne	
				Period,2 elements	
		•			
			if axes are unla	abeled.	
(d)	Sodi	um. [no ma	irk]		[2]
	A re	latively low	melting point	(compared to other metals) [1] and good electrical group I/alkali metals [1]	
	Cond	uctivity at e	hioheines of G	roup rainair metais.[.i]	
					Total: 10
		•			NOTE TO THE
B10					
(a)	(i)		$q) \rightarrow H^+ (aq) + S$	SO ₄ ²⁻ (aq)	[1]
	(ii)	NaHSO ₄		ratio	[2]
		Socium ri	ydrogensulfate [
	(iii)	No. of mo	I HzSO4		[3]
	(,		000) x 0.10		,
		= 0.0025	mol [1]		
			ON- OU > N- O	00 . 011 0	e e
		From equ	2NaOH→ Na₂S	5U4 + 2H2U	
			304 : 2 mol NaC	OH seed to be a se	
			ol H ₂ SO ₄ :0.005		
			ation of NaOH		
			(20.0/1000) nol/dm³ [1]		
		_ U.ZUU II	www.ante.17.1	ing the state of t	
(b)	Add	2 to 3 drop	s, and then, exc	cess of NaOH solution [1].	[1]
- A- A-	lf a c	lirty green i	<u>precipitate</u> that i	s insoluble in excess NaOH is formed, iron (II) sulfate	[1]
	is for	med. [1]			
768					101
(c)	COM	npound	FeSO ₄	H ₂ O	[2]
		7.		<u></u>	, , , , , ,
	mas	ss/g	15.2	27.8 - 15.2 = 12.6	
		of moles	15.2 / 152	12.6/18	
	I'IO.	or mores	= 0.1 mol	= 0.7 mol	
	gim	plest			
	ratio		0.170,1=1	0.7 / 0.1= 7	
	1 44	7.			
	Emp	irical formu	ıla is Fe <mark>SO₄.7</mark> H	₂ O.	
	1 592	or simplest			
	1m e	mpirical fo	rmula		
	<u> </u>				
	1				Total:10

	147	
B11	EITHER	
(a)	(i)	[1]
	1/time/ (1/s)	
	0.0154	
i	0.0222	
-	0.0118	
	0.0182	
	0.00952	1
	<u> </u>	101
	(ii) 1/ time provides information about the speed of reaction. [1]	[2]
İ	The longer the time taken, the slower is the speed of the reaction. / The shorter	1
	the time taken, the faster is the speed of the reaction. [1]	
<u> </u>	 _ , 	101
(b)	The results of experiments A, C and E can be used. / The results of experiments B	[2]
	and D can be used. [1]	· .
]	These experiments were conducted using different concentrations of acid but the	
	temperature was kept constant. [1]	
}		
		*
ł		
(c)	The higher the concentration, the faster is the speed of the reaction.	[2]
	No marks awarded.] * .4
[With a higher concentration, there are more reactant particles in a unit volume. [1]	
	Thus, there are more collisions between reactant particles. This results in a higher	
	frequency of effective collisions occurring. [1]	'
	modulator of official and offic	
(d)	The student is not correct. The activation energy of the reaction is not lowered with	[3]
(-)	higher temperature. [1]	, L = 1
	g.,,, [.]	
Ì	Must mention what is wrong with the student's explanation.	
	3 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	At higher temperatures, reactant particles possess greater amount of kinetic energy.	
	Thus, they are able move more quickly [1] and collide into one another more	
ĺ	frequently.	
	This results in a higher frequency of effective collisions occurring. [1]	
		Total:10
B11	OR	
(a)	(i) Methane	[1]
(a)	(i) Wethate	[2]
	$I \cap I = I \cap I$	[4]
[
ļ		
	(H() C ()H)	
	H	
	(iii) • Natural gas is a mixture of covalent compounds which have a simple	[2]
}	molecular structure.	- -
	There are weak intermolecular/ van der Waals forces of attraction between	
	the molecules, [1]	
	hence <u>little energy</u> must be supplied to <u>overcome these forces of attraction</u> ,	
	and natural gas has a low boiling point, which makes it volatile. [1]	
	and flatal at gas has a low pointing point, which makes it volutio.	
(b)	Separating funnel	[1]
(b)		[2]
(c)	(i) LNG (liquid state) [1]	114

		148	
	a fill to Tay		
		CNG (gaseous state, but closer together than original diagram) [1]	
	5.0		
		그는 가게 되는 사람들은 사람들이 모르는 물에 되었다. 그리나 먹다	
and the state of t			4
	(ii)	Data quoted:	[2]
	(ii)	 Compared to the original volume of natural gas, LNG occupies 1/600th 	[2]
	(ii)	 Compared to the original volume of natural gas, LNG occupies 1/600th /0.167% of the original volume, which is 100 times/ significantly less 	[2]
	(II)	 Compared to the original volume of natural gas, LNG occupies 1/600th 	[2]
	(ii)	Compared to the original volume of natural gas, LNG occupies 1/600 th /0.167% of the original volume, which is 100 times/ significantly less than CNG, which occupies 1% of the original volume. [1] *Student must quote the data of both CNG and LNG Implication:	[2]
	(11)	Compared to the original volume of natural gas, LNG occupies 1/600 th /0.167% of the original volume, which is 100 times/ significantly less than CNG, which occupies 1% of the original volume. [1] *Student must quote the data of both CNG and LNG Implication: Hence,	[2]
		 Compared to the original volume of natural gas, LNG occupies 1/600th /0.167% of the original volume, which is 100 times/ significantly less than CNG, which occupies 1% of the original volume. [1] *Student must quote the data of both CNG and LNG Implication: Hence, LNG is likely to be easier to transport than CNG, [1] OR for the same volume, LNG contains more natural gas than CNG 	[2]
		 Compared to the original volume of natural gas, LNG occupies 1/600th /0.167% of the original volume, which is 100 times/ significantly less than CNG, which occupies 1% of the original volume. [1] *Student must quote the data of both CNG and LNG Implication: Hence, LNG is likely to be easier to transport than CNG, [1] OR for the same volume, LNG contains more natural gas than CNG [1] OR 	[2]
		 Compared to the original volume of natural gas, LNG occupies 1/600th /0.167% of the original volume, which is 100 times/ significantly less than CNG, which occupies 1% of the original volume. [1] *Student must quote the data of both CNG and LNG Implication: Hence, LNG is likely to be easier to transport than CNG, [1] OR for the same volume, LNG contains more natural gas than CNG 	[2]
		 Compared to the original volume of natural gas, LNG occupies 1/600th /0.167% of the original volume, which is 100 times/ significantly less than CNG, which occupies 1% of the original volume. [1] *Student must quote the data of both CNG and LNG Implication: Hence, LNG is likely to be easier to transport than CNG, [1] OR for the same volume, LNG contains more natural gas than CNG [1] OR LNG is safer to use than CNG because CNG is compressed but 	
		Compared to the original volume of natural gas, LNG occupies 1/600 th /0.167% of the original volume, which is 100 times/ significantly less than CNG, which occupies 1% of the original volume. *Student must quote the data of both CNG and LNG Implication: Hence, LNG is likely to be easier to transport than CNG, [1] OR for the same volume, LNG contains more natural gas than CNG [1] OR LNG is safer to use than CNG because CNG is compressed but LNG is not, hence if a pressurised CNG cylinder is damaged, the danger of an explosion is much greater [1]	[2]
		 Compared to the original volume of natural gas, LNG occupies 1/600th /0.167% of the original volume, which is 100 times/ significantly less than CNG, which occupies 1% of the original volume. [1] *Student must quote the data of both CNG and LNG Implication: Hence, LNG is likely to be easier to transport than CNG, [1] OR for the same volume, LNG contains more natural gas than CNG [1] OR LNG is safer to use than CNG because CNG is compressed but LNG is not, hence if a pressurised CNG cylinder is damaged, the 	
		Compared to the original volume of natural gas, LNG occupies 1/600 th /0.167% of the original volume, which is 100 times/ significantly less than CNG, which occupies 1% of the original volume. *Student must quote the data of both CNG and LNG Implication: Hence, LNG is likely to be easier to transport than CNG, [1] OR for the same volume, LNG contains more natural gas than CNG [1] OR LNG is safer to use than CNG because CNG is compressed but LNG is not, hence if a pressurised CNG cylinder is damaged, the danger of an explosion is much greater [1] Im for comparison of volume/ evidence Im for stating implication	
		 Compared to the original volume of natural gas, LNG occupies 1/600th /0.167% of the original volume, which is 100 times/ significantly less than CNG, which occupies 1% of the original volume. [1] *Student must quote the data of both CNG and LNG Implication: Hence, LNG is likely to be easier to transport than CNG, [1] OR for the same volume, LNG contains more natural gas than CNG [1] OR LNG is safer to use than CNG because CNG is compressed but LNG is not, hence if a pressurised CNG cylinder is damaged, the danger of an explosion is much greater [1] 1m for comparison of volume/ evidence 	
		Compared to the original volume of natural gas, LNG occupies 1/600 th /0.167% of the original volume, which is 100 times/ significantly less than CNG, which occupies 1% of the original volume. *Student must quote the data of both CNG and LNG Implication: Hence, LNG is likely to be easier to transport than CNG, [1] OR for the same volume, LNG contains more natural gas than CNG [1] OR LNG is safer to use than CNG because CNG is compressed but LNG is not, hence if a pressurised CNG cylinder is damaged, the danger of an explosion is much greater [1] Im for comparison of volume/ evidence Im for stating implication	[2]