| Name: | Index Number: | Class: | |-------|---------------|--------| | | | | # **HUA YI SECONDARY SCHOOL** Mid Year Examination 2018 4E 4E **CHEMISTRY** 6092/1 Paper 1 9 May 2018 1 hour Candidates answer on the Multiple Choice Answer Sheet provided. Additional Materials: Multiple Choice Answer Sheet ### **READ THESE INSTRUCTIONS FIRST** Write your name, index number and class on all the work you have done. Write in soft pencil. Do not use staples, paper clips, highlighters, glue or correction fluid. There are **forty** questions on this paper. Answer **all** questions. For each question there are four possible answers **A**, **B**, **C** and **D**. Choose the **one** you consider correct and record your choice in **soft pencil** on the separate Answer Sheet. # Read the instructions on the Answer Sheet very carefully. Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this booklet. A copy of the Periodic Table is printed on page 15. | For Examiner's
Use | | |-----------------------|--| | Paper 1 | | | | | This document consists of 15 printed pages including the cover page. © HYSS 2018 No part of this document may be reproduced in any form or transmitted in any form or by any means without the prior permission of Hua Yi Secondary School. [Turn Over Setter: Ms Tok Peilin - 1 When iodine crystals were heated in a test tube, the iodine sublimed. How did the movement of the iodine particles change? - A particles slide over one another → particles move freely - B particles slide over one another → particles vibrate about fixed positions - c particles vibrate about fixed positions → particles move freely - **D** particles vibrate about fixed positions → particles slide over one another - 2 A beaker of nitrogen is inverted over a porous pot containing carbon monoxide as shown. The water level does not change. Which statement is correct? - A Both gases are diatomic. - B Nitrogen is an unreactive gas. - C The gas particles are too large to pass through the porous pot. - **D** The two gases have the same relative molecular mass. - In which of the following do both gases change the colour of damp red litmus paper? - A ammonia and chlorine - B ammonia and sulfur dioxide - C carbon dioxide and chlorine - D carbon dioxide and sulfur dioxide - 4 A solid can be purified by crystallisation from its aqueous solution. Which of the following properties does the solid have? - A It dissolves in cold water, but not in hot water. - **B** It is equally soluble in hot and cold water. - C It is more soluble in hot water than in cold water. - **D** It is very soluble in cold water. 5 The table shows some information about the solubilities of three solids. | solid | solubility in water | solubility in propanol | |-------|---------------------|------------------------| | P | insoluble | soluble | | Q | soluble | insoluble | | R | insoluble | insoluble | The following operations could be carried out to obtain pure P from a mixture of P, Q and R. - 1 evaporate filtrate to dryness - 2 add propanol - 3 filter - 4 add water - 5 collect residue In what order should the operations be carried out? - **A** 2, 3, 4, 5, 1 - **B** 2, 3, 5 only - **C** 4, 1, 2, 3 only - **D** 2, 3, 1 only - An element E forms a negative ion, E²⁻, with the electronic structure 2,8,8. What is the proton number of E? - **A** 16 - **B** 17 - **C** 18 - **D** 20 - 7 Which statements correctly describes the properties of mixtures of iron and sulfur, and the compound iron(II) sulfide, FeS? | | mixtures of iron and sulfur | compound iron(II) sulfide | |---|---|---| | 1 | iron and sulfur mix without chemically reacting | iron and sulfur combine in a chemical reaction to form iron(II) sulfide | | 2 | the ratio of iron to sulfur in mixture can vary | the ratio of iron to sulfur in iron(II) sulfide is always the same | | 3 | the mixtures do not have the properties of iron or sulfur | iron(II) sulfide has the properties of iron and sulfur | - A 1 only - **B** 1 and 2 - **C** 2 and 3 - **D** 3 only 8 Deuterium (chemical symbol D) is an isotope of hydrogen. An atom of deuterium contains one neutron. Which of the following statements is not true? - A An atom of deuterium is heavier than an atom of hydrogen. - B An atom of deuterium has a relative atomic mass of 1. - C An atom of deuterium has one valence electron. - D The formula of the compound formed between deuterium and oxygen is D₂O. - **9** The diagram shows the structural formula of propyl methanoate. What is the total number of electrons that are **not** involved in chemical bonding in the molecule? - **A** 8 - B 14 - **C** 20 - **D** 28 - 10 The table shows four elements W, X, Y and Z with their atomic numbers. | ·W | X | Y | Z | |----|---|-----|--------| | 6 | 8 | 11 | 17 | | | 6 | 6 8 | 6 8 11 | What are the likely formulae of ionic compound and covalent compound formed from the four elements? | | formula of | ionic compound | formula of covalent compound | |---|------------|----------------|------------------------------| | Α | | WX | YZ | | В | | Y_2X | WX_{2} | | C | | YW | WZ_4 | | D | | YZ | ZX | - 11 Which particles are responsible for the conduction of electricity through metals? - A electrons only - **B** electrons and positive ions - c negative ions only - D negative ions and positive ions - 12 The table shows some of the physical properties of P, Q, R and S. | | melting | boiling | electrical conductivity | | solubility in | |-----------|------------|------------|-------------------------|--------|---------------| | substance | point / °C | point / °C | solid | liquid | water | | Р | 122 | 550 | poor | poor | insoluble | | Q | 690 | 1790 | poor | good | soluble | | R | 1510 | 2489 | poor | poor | insoluble | | S | 1453 | 2730 | good | good | insoluble | Which of the following statements about the four substances is correct? - A P is a simple molecular compound held by weak covalent bonds. - B Q is an ionic compound with mobile electrons in the liquid state. - **C** R is a macromolecule held by strong electrostatic forces of attraction between ions. - **D** S has a giant lattice structure with mobile electrons. - 13 The melting points of magnesium oxide and calcium oxide are given below. | metal oxide | melting point/ °C | |-----------------|-------------------| | magnesium oxide | 2852 | | calcium oxide | 2572 | - A The charge of the calcium ion is higher than that of the magnesium ion. - **B** The charge of the magnesium ion is higher than that of the calcium ion. - C The radius of the calcium ion is smaller than that of the magnesium ion. - **D** The radius of the magnesium ion is smaller than that of the calcium ion. 14 Element L and M form a compound which has a structure shown below. Based on the structure shown above, deduce the chemical formula of the compound formed between element L and M. - A LM - B L₂M - C LM₂ - $D = L_{14}M_{13}$ When sugar, $C_{12}H_{22}O_{11}$, $(M_r = 342)$ is fermented using yeast, the following reaction takes place. $$C_{12}H_{22}O_{11}(s) + H_2O(l) \rightarrow 4C_2H_5OH(aq) + 4CO_2(g)$$ 1kg of sugar is completely fermented. Which expression shows the volume of carbon dioxide produced? - A 342 x 4 x 24 dm³ 1000 - $\begin{array}{cc} \textbf{B} & \underline{1000 \times 24} \text{ dm}^3 \\ & 342 \times 4 \end{array}$ C 342 x 24 dm³ 1000 x 4 $\begin{array}{cc} \textbf{D} & \underline{1000 \times 4 \times 24} \text{ dm}^3 \\ & 342 \end{array}$ **16** A sample of nitrogen gas contains the same number of atoms as found in 4.00 g of methane gas. What is the mass of the sample of nitrogen gas? - **A** 7.00 g - **B** 14.0 g - C 17.5 g - **D** 35.0 g 17 In an experiment carried out at room conditions, 1.0 dm³ of carbon dioxide was collected when an excess of dilute hydrochloric acid was added to 5.0 g of calcium carbonate. $$CaCO_3(s) + 2HC/(aq) \rightarrow CaC/_2(aq) + CO_2(g) + H_2O(I)$$ What is the percentage yield of carbon dioxide gas? - **A** 4.16% - **B** 12.0% - **C** 41.6% - **D** 83.3% - What is the total volume of gas, measured at room temperature and pressure, that remains if 20 cm³ of sulfur dioxide reacts with 20 cm³ of oxygen to form sulfur trioxide? $$2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$$ - **A** 10 cm³ - **B** 20 cm³ - **C** 30 cm³ - **D** 60 cm³ - An excess sample of an alloy, containing two metals, was dissolved in dilute sulfuric acid. Aqueous sodium hydroxide was then added to the solution. A precipitate was formed. An excess of the alkali caused the mass of the precipitate to decrease leaving a dirty green solid and a colourless solution. What were the two metals present in the alloy? - A calcium and zinc - B copper and iron - C copper and lead - D iron and zinc - 20 Which equation shows the most suitable reaction for the production of lead(II) sulfate in the school laboratory with good yield? - A Pb + $H_2SO_4 \rightarrow PbSO_4$ - **B** $Pb(OH)_2 + H_2SO_4 \rightarrow PbSO_4 + 2H_2O$ - C $Pb(NO_3)_2 + H_2SO_4 \rightarrow PbSO_4 + 2HNO_3$ - **D** PbCO₃ + H₂SO₄ \rightarrow PbSO₄ + CO₂ + H₂O 21 In a qualitative analysis, reagent M is gradually added to a salt solution N followed by the addition of a dilute acid. The graph below shows how the mass of the precipitate formed changes with the reagents added. Which of the following set of anions would produce the given results? | | reagents (M and acid) added | anion(s) in N | |---|---|--------------------------------| | A | add silver nitrate,
followed by dilute nitric acid | Cl⁻, CO₃²- | | В | add silver nitrate,
followed by dilute nitric acid | | | С | add aqueous barium nitrate,
followed by dilute hydrochloric acid | Cl⁻, CO₃²- | | D | add aqueous barium nitrate,
followed by dilute hydrochloric acid | CO ₃ ² - | 22 Solid W is
gradually added to solution X. The changes in pH are shown on the graph. What are W and X? | | solution X | solid W | | |---|-------------------------------------|-------------------------|--| | Α | nitric acid | insoluble metal oxide | | | В | hydrochloric acid | soluble metal oxide | | | C | aqueous ammonia soluble non-metal o | | | | D | sodium hydroxide | soluble non-metal oxide | | - 23 In which of the reactions is the underlined substance acting as a reducing agent? - A $Cl_2 + 2FeCl_2 \rightarrow 2FeCl_3$ - **B** $2HCl + MgO \rightarrow MgCl_2 + H_2O$ - C $H_2 + \underline{CuO} \rightarrow \underline{Cu} + \underline{H_2O}$ - **D** $ZnO + CO \rightarrow Zn + CO_2$ - 24 Disproportionation is a reaction in which the same element is both oxidised and reduced. Which reaction is an example of disproportionation? - A $Cl_2 + H_2O \rightarrow HClO + HCl$ - $\mathbf{B} \quad 2\text{Pb}(\text{NO}_3)_2 \rightarrow 2\text{PbO} + 4\text{NO}_2 + \text{O}_2$ - $C \qquad Cu + 2H_2SO_4 \rightarrow CuSO_4 + 2H_2O + SO_2$ - D Cu + $4HNO_3 \rightarrow Cu(NO_3)_2 + 2H_2O + 2NO_2$ - 25 Acidified potassium manganate(VII) can be used to detect the presence of ethanol vapour in the breath of a person who has consumed alcohol. A colour change of the filter paper is observed. Which of the following conclusion about ethanol is observed? - A It is a reducing agent because it reduces the oxidation state of the manganese. - **B** It is an alkali because the final colour is purple. - C It is an oxidising agent because the manganese atoms gain oxygen atoms. - **D** It is neutralised by acidified potassium manganate(VII) solution. - Which of the following substances could be used to reduce atmospheric pollution caused by flue gases? - A ammonium carbonate and ammonium sulfate - B ammonium sulfate and calcium carbonate - C calcium carbonate and calcium oxide - D calcium oxide and ammonium sulfate 27 The equation for a particular reaction is shown below. $$2Agl + light \rightarrow 2Ag + l_2$$ Why is this an endothermic reaction? - A Energy is required to vaporise iodine. - B It involves the formation of covalent I I bonds. - **C** It involves the transfer of electrons from iodide ions to silver ions. - **D** Light energy is absorbed when the reaction takes place. - 28 The energy profile diagram is that for the Haber process. What does the energy change E2 - E1 represent? - A activation energy of the forward reaction - B activation energy of the reverse reaction - **C** enthalpy change of the forward reaction - **D** enthalpy change of the reverse reaction - 29 Caesium is an element in the same group of the Periodic Table as lithium, sodium and potassium. Which statements about caesium are likely to be false? - It reacts explosively with cold water. - Il It forms a soluble carbonate salt. - III It forms a carbonate with a formula of CsCO₃. - IV It can be extracted via electrolysis of concentrated aqueous CsCl. - A l and ll - B I and III - C II and III - **D** III and IV 30 Using the apparatus shown, chlorine is passed through the tube. After a short time, coloured substances are seen at P, Q and R. What are these coloured substances? | | P | Q | R | |---|----------------------|----------------------|----------------------| | Α | reddish-brown vapour | violet vapour | black solid | | В | reddish-brown vapour | reddish-brown vapour | reddish-brown vapour | | C | green gas | violet vapour | black solid | | D | green gas | reddish-brown vapour | reddish-brown liquid | 31 The table below gives some information about element Y. | density / g/cm ³ | 6.2 | | |-----------------------------|---------------------------------------|--| | melting point / °C | 1280 | | | formation of existen | YO (white) | | | formulae of oxides | Y ₂ O ₃ (brown) | | | chemical properties | reacts readily with O2 or Cl2 | | Which of the following statements about element Y is likely to be correct? - A It is a metal in Group III. - B It is a transition metal. - C It is an alkali metal. - **D** It forms oxides that are amphoteric in nature. - 32 A new element, Hb, placed in Group VII of the Periodic Table, has a higher relative atomic mass than astatine. Which statement about element Hb is not correct? - A Hb atom gains electrons less readily than a chlorine atom. - B Hb displaces a tatine out from aqueous potassium a tatide. - C Hb has a higher boiling point than bromine. - D Hb is a less powerful oxidizing agent than iodine. 33 Which diagram correctly shows the conditions necessary for rusting of iron and also the metal that can be used to prevent rusting by sacrificial protection? 34 Scrap iron is often recycled. Which reason for recycling is not correct? - A It reduces the amount of pollution at the site of the ore extraction. - B It reduces the amount of waste taken to landfill sites. - **C** It reduces the need to collect the scrap iron. - D It saves natural resources. - 35 Which diagram below shows the structure of an alloy? 36 Ammonia is produced by Haber process as shown in the diagram. Which one of the following processes separates ammonia from the reaction mixture? - A cooling the gaseous mixture - **B** distillation of the gaseous mixture - **C** filtering out the other two gases - D passing the gaseous mixture through fused calcium oxide - 37 Which solution(s) would produce hydrogen gas at the cathode upon electrolysis? - 1 dilute nitric acid - 2 aqueous potassium hydroxide - 3 aqueous sodium chloride - A 1 only - **B** 1 and 2 - C 2 and 3 - D all of the above - **38** The table shows the energy released by complete combustion of some compounds used as fuels. | compound | Mr | ΔH (kJ/mol) | |----------|-----|-------------| | methane | 16 | -880 | | ethanol | 46 | -1380 | | propane | 44 | -2200 | | heptane | 100 | -4800 | Which fuel produces the least energy when 1 g of the compound is completely burned? - A methane - **B** ethanol - C propane - D heptane 39 A thermometer is placed in warm water and the temperature is measured as shown. When a solid is dissolved in the water, an exothermic change takes place. The temperature changes by 5°C. What is the final temperature? - **A** 38.0 °C - **B** 38.5 °C - **C** 48.0 °C - **D** 48.5 °C - 40 In which reaction is the pressure **not** likely to affect the rate of reaction? - **A** $3H_2(g) + N_2(g) \rightarrow 2NH_3(g)$ - **B** CuO (s) + H₂ (g) \rightarrow Cu (s) + H₂O (l) - **C** Fe₂O₃ (s) + 3CO (g) \rightarrow 2Fe (s) + 3CO₂ (g) - D H_2SO_4 (aq) + 2NaOH (aq) \rightarrow Na₂SO₄ (aq) + 2H₂O (l) **End of Paper** | The Periodic Table of Elements | | |--------------------------------|-------| | Periodic Table of Ele | ents | | Periodic Table of | 0 | | Periodic Table | Ш | | Periodic T | Ō | | Periodic 1 | able | | 7 | | | 7 | ğ | | The | Peric | | | The | | | 1 | m.mpy.commu | | | - | | T | | | Т | | | | T | | - magana | | T | n proces | | en selvana | | *************************************** | 4 | | 7 | |---|------|---|---------------|-------------------------|-------------|------------------------|------------------------|----------|-------------------|------|--------------|----------|-----------|----------|----------|---------------|------------|------|--------------|-------------|------------|-----------|---|-------------|------------------|---| | | | £ 5 | mellum
4 | 2 | Š | S 36 | 130 | Ąŗ | argon
45 | ⊋ 8 | ና : | ' | krypton | 2 | 3 | * | Wellow . | 2 | 8 (| Ź | radon | 1 | ,,,,,,,,,,,, | 00001001000 | | | | | S | | | ග | L1 | fluorine
15 | 47 | ರ | chlorine
25.5 | 33,3 | 8 1 | ă | promine | 8 | R | t | odine | 17.1 | £ | ¥ | astatine | 1 | e, | | | | | | | | | ∞ | 0 | oxygen
16 | 16 | လ | Suffur
35 | 76 | \$ 4 | 80 | selenium | 3 | 8 | e | tellurium | 87. | æ ₁ | ဂ | polonium | 1 | <u>5</u> | <u>구</u> | livermonum | | | | 7 | | | * | ~ | nitrogen
14 | 35 | <u> </u> | afrosphorus
24 | 5 5 | ::
:: | Ş | arsenic | 75 | ঠ | සි | antimony | 72 | 8 | 66 | bismuth | 508 | | | | | | | M | | | တ | ပ | carbon
12 | 14 | Ö | Silicon | 27 | 83 | B | germanlum | 2 | යි | హ | E ! | 118 | 8 | £ | peq | 207 | 114 | ì. | merovium | | | | | | | r | മ | baran
11 | £ | ? ₹ | alumimlum | 17 | ~ | සු | gallum | 2 | 49 | | mdium | 115 | ₩. | | thallium | \$ | | | | | | | | | | L | | | | | <u></u> | | ස | 5 | zinc | 92 | 48 | ਲ | cadmium | 112 | 8 | 2 | mercury | 201 | 112 | දි . | copernicium | | | | | | | | | | | | | - | 83 | ਠੋ | copper | 22 | 47 | Ad | silver | 108 | 2 | Æ | plog | 197 | 111 | 2 | roentgenium | 1 | | an | | | | | | | | | | | 82 | Z | nickel | 29 | 46 | 2 | palladium | 106 | <u>&</u> | 췹 | platinum | 195 | 110 | മ് | dermstadtium | ı | | Group | | | | | | | | | | | 77 | ප | cobalt | 23 | 45 | 몺 | rhodium | 103 | 11 | <u></u> | migin | 192 | 109 | W. | melmerium | 1 | | *************************************** | | - I | hydrogen
1 | and the second second | | | | | | | 292 | £ | uou | æ | 44 | 2 | nuthentum | Ď | 92 | රි | osmium | 180 | 108 | 坣 | hassium | 1 | | *************************************** | | | | J. | | | | | | | 25 | Z | manganese | 32 | 43 | Ľ | technetium | * | 75 | å | rhenium | 136 | 107 | 큡 | pohríum | _ | | | | *************************************** | | mher | | | Z A | | | | 24 | ర | chromium | 25 | 42 | Ç | molybdenum | 98 | 7.4 | 3 | fundsten | <u>\$</u> | 106 | SG | seaborgium | 1 | | *************************************** | | *************************************** | Kev | nrotrin (atomic) number | mic symb | name | rejative atolitic mass | | | | ន | > | vanadium | હ્ય | 41 | ž | milopium | S | 73 | <u>~</u> | tantalum | <u></u> | 105 | රි | dubnium | ı | | *************************************** | | *************************************** | | nroton | Cta | | relativ | | | | 22 | F | lifanium | 48 | 40 | 72 | zirconium | જ | 72 | Ŧ | hafnism | 178 | |
ğ. | Rutherfordium | 1 | | | | - | | L | | | | | | | 21 | ů, | scandium | 45 | 39 | > | vitrium | 88 | 57-71 | lanthanoids | | | 89 - 103 | actinoids | <u> محمد بند</u> | | | *************************************** | 2000 | | | V | t å | Servillum
Vervillum | » [| 2 : | magnesium | 25, | 20 | | | | 1 | | | | 28 | | | 13.5 | 88 | 2 | milper | 1 | | | | *************************************** | | Ç | о :: | ığı | | ~ : | sodium
sodium | es | 19 | : × | notassium | 39 | 37 | ទីក | 2 10 | 88 | 22 | ڻ ڏ | 395 | 133 | 87 | ů. | francium | 1 | | 71
Lu
lutettum
175 | 103
Lr
lawrendum | |-------------------------------|--| | Yb
Yb
yfferblum
173 | 102
No
nothellum | | 8 E # 8 | Mandele Middle M | | 88
克斯斯 | Figure 1 | | 67
Holmium
165 | 99
Es
einsteinium | | 66
Dy
dysprosium
163 | Sallo C 88 | | 65
terbium
159 | 97
BK
berkellum | | gadolinium
157 | & Carlon | | 63
Eu
europium
152 | 95
Am
americium | | Sm
Sm
samartum
150 | 94
Pu
philtonium | | 61
Pm
promethum | 93
Np
neptunium | | Nd Nd neodymium | 92
U
uranium
238 | | 59
Pr
praxecdymium | 91
Pa
n protectinium u | | 8 9 mg 5 | 89 90 Ac Th actinum thorium 232 | | 57
La
lanthanum | Ac Ac actinium | lanthanoids actinoids Name Index Number Class # **HUA YI SECONDARY SCHOOL** Mid Year Examination 2018 4E 4E **CHEMISTRY** 6092/2 Paper 2 7 May 2018 1 hr 45 min Candidates answer on the Question Paper. Additional Materials: NIL #### READ THESE INSTRUCTIONS FIRST Write your name, index number and class on all the work you hand in. Write in dark blue or black pen. You may use a pencil for any diagrams, graphs, tables or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. ### Section A Answer all questions. Write your answers in the spaces provided on the question paper. #### Section B Answer all questions. Write your answers in the spaces provided on the question paper. The number of marks is given in brackets [] at the end of each question or part question. A copy of the Periodic Table is printed on page 21. The use of an approved scientific calculator is expected, where appropriate. | For Examiner's Use | | | | | | |--------------------|--|--|--|--|--| | Section A | | | | | | | Section B | | | | | | | | | | | | | | - | | | | | | | Total | | | | | | This document consists of **21** printed pages including the cover page. © HYSS 2018 No part of this document may be reproduced in any form or transmitted in any form or by any means without the prior permission of Hua Yi Secondary School. [Turn Over Setter: Ms Tok Peilin Section A Answer all the questions in this section in the spaces provided. The total mark for this section is 50. **A1** | The | following compounds | are used in manufac | sturing chemicals for agriculture. | | | |-----|-----------------------------------|----------------------------|--|-------|--------| | | | A : | K₃PO₄ | | | | | | В | H ₂ SO ₄ | | | | | | С | NH ₃ | | | | | | D | Ca(OH) ₂ | | | | | | E | NH ₄ NO ₃ | | | | Use | the letters A, B, C, D | and E to answer the | following questions. | | | | (a) | Which solid compou | nd is added to increa | se the pH of soil? | , | | | | | | | | [1] | | (b) | Two raw materials a | re used to make a co | ompound. | | | | | | | by cracking petroleum.
d by fractional distillation of air. | | | | | Which compound is | manufactured from th | nese two raw materials? | | | | | | | | | [1] | | (c) | Which two compour | nds can be reacted to | gether to form an ammonium salt? | | | | | | aı | nd | | [1] | | (d) | NPK fertilisers are so potassium. | olid fertilisers that cor | ntain compounds of nitrogen, phosphorus a | and | | | | Which two compour | nds could be mixed to | produce an NPK fertiliser? | | | | | | aı | nd | | [1] | | | | | | [Tota | al: 41 | A2 Spinach is an edible plant that has a deep green colour. The following chromatogram is obtained when water-acetone mixture is added to a drop of spinach extract in the centre of a piece of filter paper. | | using chromatography. | | | | | |-----|---|------------------|-----------------------|--------------------------|-----| | | | | | | [1] | | (b) | The experiment was repeated u | sing a typical c | hromatography paper | as shown below. | | | | | | | | | | | | | | | | | | | • | | | | | | Draw and label the expected chromatogram. | positions of th | e components of spi | nach extract on the | [2] | | (c) | State one experimental procedu of the components. | ure that should | be followed to obtain | a good separation | | | | (d) | Suggest why a water-acetone mixture is used as the solvent, instead of just a pure water or pure acetone solvent. | | | | | | | |------------|-----|---|---|-----------|--|--|--|--| | | | | | [4] | | | | | | | | | | Fotal: 5] | | | | | | A 3 | One | of the | ways to reduce air pollution is to curb the number of vehicles on the road. | otai. Oj | | | | | | | (a) | Nam | e two air pollutants produced by motor vehicles. | | | | | | | | | , | | [2] | | | | | | | (b) | moto | lytic converters are fitted in cars to reduce the amount of air pollutants emitted or vehicles. In the catalytic converter, nitrogen monoxide and carbon monoxide together to form harmless products. | | | | | | | | . • | (i) | Write a chemical equation to show how air pollutants are removed by cataly converters. | tic | | | | | | | | | | [1] | | | | | | | | (ii) | Explain why catalytic converters do not solve all the environmental probler caused by motor vehicles. | ns | | | | | | | | | | •• | [2] | | | | | | | | | | Fotal: 5] | | | | | | Α4 | The | reaction | on below is an example of a redox reaction. | | | | | | | | | | $I^{-}(aq) +H^{+}(aq) +H_{2}O_{2}(aq) \rightarrowI_{2}(aq) +H_{2}O(I)$ | | | | | | | | (a) | Bala | nce the equation by inserting numbers (if necessary) on the dotted lines provided. | [1] | | | | | | | (b) | Iden | tify the oxidising agent in this reaction. Explain your answer using oxidation states | • | | | | | | | | | | | | | | | | | | | , | ••• | | | | | | | | | | [2] | | | | | [Total: 4] 5 | The | table sh | ows some data about t | the different components | | [Tota | |-----|---------------|----------------------------|--|----------------------------|--------| | | | components | melting point / °C | boiling point / °C | | | | | argon | – 189 | – 186 | | | | | carbon dioxide | - 78 | - 78 | | | | | krypton | – 157 | – 153 | | | | | neon | – 249 | - 246 | | | | | nitrogen | – 210 | – 196 | | | | | oxygen | – 219 | – 183 | | | | | water vapour | 0 | 100 | | | (a) | State t | he percentage by volur | me of nitrogen and oxyge | n in air. | | | | nitroge | n | oxygen | | | | (b) | | nal distillation of liquid | oxygen and the noble g
air. Before air is liquefi | | | | | (i) S | Suggest why air is dried | d before it is liquefied. | | | | | • | | | | | | | (ii) <i>/</i> | At 200 °C liquid air is | s fractionally distilled by a | llowing it to warm up grad | dually | A6 In Experiment I, a sample of magnesium carbonate is heated in a test-tube using a hot plate at 300 °C. The total volume of carbon dioxide formed is measured every 10 seconds. The graph shows his results. | (a) | Suggest why there is no significant increase in the volume of carbon dioxide
when magnesium carbonate is first heated. | | |-----|---|-----| | | | [1] | | | | [1] | | (b) | In Experiment II , the same mass of magnesium carbonate is heated in a test-tube using a hot plate at a higher temperature of 500 °C. | | | | Sketch a curve on the graph above to show the results for this experiment. | | | | Explain your answer. | | | | | | | | , | | | | | | | | | [0] | | | | [3] | (c) Ron wishes to investigate how the thermal stability of metal carbonates is related to the position of their metal in the reactivity series. To ensure a fair experiment, he repeated **Experiment I** using different metal carbonates, while keeping all other variables constant. The table below shows the results of the experiment after the first 60 seconds. | metal carbonate | total volume of gas collected/ cm ³ | |--------------------------------|--| | X ₂ CO ₃ | 0 | | YCO₃ | 0 | | CaCO ₃ | 2 | | FeCO ₃ | 7 | | ZnCO ₃ | 5 | | (i) | FeCO ₃ . | | | | | | |-------|---|-----|--|--|--|--| | | | [2] | | | | | | (ii) | Explain why X ₂ CO ₃ and Y CO ₃ do not decompose. | [2] | | | | | | (iii) | A solution containing 0.002 mol of sulfuric acid is titrated with a solution containing 9.2 g/dm 3 of X_2CO_3 . The volume of X_2CO_3 solution needed to exactly neutralise the acid is 23.2 cm 3 . | | | | | | | | 1 mole of sulfuric acid reacts with 1 mole of X₂CO₃. | | | | | | | | Calculate the relative atomic mass, Ar, of X and suggest its identity. | | | | | | | A_{r} of X = | | |-----------------------|-----| | dentity of X | [3] | | (b) | | nergy output of the
ergy profile diagram | | nagnesium and | steam can be shown | using | |-----|-------------|---|----------------------|-----------------|----------------------|---------| | | Draw a | an energy profile dia | agram for the reacti | on. | | | | | | diagram should ind
n enthalpy change | | | d products, labels f | or the | | | , 5 5.0 1.5 | A | | | | | | | | | | | | | | | (KJ) | | | | | | | | energy (kJ) | pr | ogress of reaction | | | (c) | | n, using ideas abou
rmic. | it bond breaking ar | nd bond making, | why the overall read | tion is | [4] | (a) | (i) | Write the ionic equation for the reaction at the cathode. | [1 | |------|-------|--|----| | a ti | (ii) | Write the ionic equation for the reaction at the anode. | Ι' | | | | | [1 | | | (iii) | State the observation at the cathode during the electrolysis. | | | | | | [1 | | (b) | The | setup shows the electrolysis of concentrated sodium chloride solution. | | | | | 30 V | | | | | P graphite electrode | | | | | | | | | | concentrated sodium chloride solution with universal indicator | | | | | | | | | (i) | Describe the observations at the electrodes of P and Q . | | | | | Electrode P: | | | | | | | | (ii) | How does the pH of the electrolyte change as the electrolysis proceeds? Explain your answer. | | |-------|--|------| | | | | | | | | | | | [2] | | (iii) | Suggest why iron is not suitable to be used as an electrode for this experiment. | | | | | | | | | [1] | | | [Tota | :10] | 11 Section B Answer all **three** questions in this section. The last question is in the form of an either/or and only one of the alternatives should be attempted. This information is about the elements in **Period 2** of the Periodic Table. B9 | element | electrical conductivity (at room temperature and pressure) | |---------|--| | Li | good | | Be | good | | В | poor | | С | good | | N | does not conduct | | 0 | does not conduct | | F | does not conduct | | Ne | does not conduct | | (a) | (i) | conductivity across Period 2. | | |-----|------|--|-----| | | | | | | | | | | | | | | [2] | | | (ii) | How does the data show that the first four elements in Period 2 are solids at room temperature and pressure? | | | | | | | | | | | [1] | | (b) | (i) | Does the electrical conductivity of carbon fit the general pattern across the period? Justify your answer. | <u></u> | [2] | | | (ii) | There are two forms of carbon: diamond and graphite. | | | | | Which form of carbon does the data refer to? Explain your answer with reference to the structure of the substance you have chosen. | [2] | [1] | 4 | 2 | |---|----| | 1 | -3 | (d) An element in **Period 3** has the following properties. melting point/ °C conductivity | 98 | | |------|--| | good | | Use the information given in the question to suggest the element that this data is most likely to refer to. | Explain your ans | swer. | | | |------------------|---|--|-------------| | | | | | | | *************************************** | | | | | | | [2] | | | | | [Total: 10] | B10 Different experiments were set up to investigate the reactions of sulfuric acid. 25.0 cm³ of 0.10 mol/dm³ sulfuric acid was transferred to a conical flask and sodium hydroxide was added from a burette. After each addition of sodium hydroxide, the pH of the solution was recorded using a pH probe attached to a data logger. The display from the data logger shows the results below. The pH curve has two endpoints, which resulted because H_2SO_4 undergoes two stages of ionisation in water to produce hydrogen sulfate ions, and sulfate ions respectively. (a) (i) Sulfuric acid ionises in water in two stages. In stage I, it ionises to produce HSO₄⁻ ions. $$H_2SO_4$$ (aq) $\rightarrow HSO_4^-$ (aq) + H^+ (aq) Write an equation to show the second stage of ionisation of HSO₄ in water.[1] (ii) State the chemical formula and name of the salt formed at the first endpoint. chemical formula chemical name (iii) H₂SO₄ is completely neutralised when the second endpoint is reached. Use the information from the pH curve to calculate the concentration of sodium hydroxide used in the experiment. | ***** | |-------| | mass of hydrated salt at the start | 27.8 g | |------------------------------------|--------| | mass of anhydrous salt at the end | 15.2 g | Use the results to work out the empirical formula of the hydrated iron(II) sulfate used in this experiment. [3] ## **Either** B11 Aqueous sodium thiosulfate, $Na_2S_2O_3$, reacts with dilute hydrochloric acid. The reaction was used in an experiment to determine the effects of varying concentration and temperature on the speed of the reaction. The equation for the reaction is: $$Na_2S_2O_3(aq) + 2HCl(aq) \rightarrow 2NaCl(aq) + S(s) + SO_2(g) + H_2O(l)$$ A cloudy suspension of sulfur forms and covers the cross (X) slowly. When the cross completely disappears from top view, the time taken is recorded. The table below shows the results obtained in different experiments using 10 cm³ of acid and 10 cm³ of 1 mol/dm³ aqueous sodium thiosulfate. | experiment | concentration of acid / mol/dm ³ | temperature / °C | time taken / s | 1/time / s ⁻¹ | |------------|---|------------------|----------------|--------------------------| | Α | 0.15 | 20 | 65 | | | В | 0.10 | 30 | 45 | | | С | 0.10 | 20 | 85 | | | D | 0.05 | 30 | 55 | | | E | 0.05 | 20 | 105 | | | (a) | (i) | Complete the table by calculating the values of 1/time for each experiment. Leave your answers to 3 significant figures. | [1] | |-----|--------|--|------| | | (ii) | Explain the significance of 1/ time. | ٠. ۲ | | | | | | | | | | | | | | | [2] | | (b) | | ch of the experiments (A to E) are suitable to be used to show the effect of entration on the speed of the reaction? Explain your answer. | | | | | | | | | | | | | | | | [2] | | (c) | reac | | | | | | | | | | | | | | | | | [2] | | (d) | said, | ying to explain the effect of temperature on the speed of the reaction, a student "The higher the temperature, the faster is the speed of the reaction. This is tuse at a higher temperature, the activation energy of the reaction is lowered. In more effective collisions can occur." | | | | is the | e student correct? Justify your answer. | | | | ***** | | | | | ••••• | | | | | ***** | | | | | | | [3] | OR B11 Natural gas is a mixture of hydrocarbon compounds formed from the remains of dead plants and animals over a long period of time. It is often found together with other fossil fuels such as crude oil. An example of components of natural gas is shown in the table. | name | formula | percentage
composition
/ % | boiling point
/°C | liquid
density
/ g/cm³ | |--|-------------------------------|----------------------------------|----------------------|------------------------------| | methane | CH₄ | 70 | - 162 | 0.423 | | ethane | C ₂ H ₆ | 10 | - 89 | 0.546 | | propane | C ₃ H ₈ | 10 | - 42 | 0.493 | | others
(carbon dioxide,
hydrogen sulfide,
etc.) | - | 10 | - | · . |
Adapted from: www.naturalgas.org Natural gas that is extracted from the ground must be purified before it can be used. A simplified diagram showing the process of purification is given in the diagram below. The first step is to cool the mixture and remove water and other dense components like crude oil. The raw gas is then sent to a series of scrubbers, compressors and coolers. Finally, the gas is either compressed or liquefied, and then exported. Compressed natural gas (CNG) is compressed to 200 to 250 times atmospheric pressure, such that it occupies about 1% of the volume it would otherwise have occupied, and stored in high-pressure tanks. Liquefied natural gas (LNG) is cooled to about -170°C, where it occupies about 1/600th of the volume it would otherwise have occupied, and stored in special insulated tanks. | (ii) | Draw a dot and cross diagram to show the bonding of one molecule of the main | |-------|--| | | component of natural gas stated in (a) (i). You only need to show the outer shell electrons. | | | rou only need to show the outer shell electrons. | (iii) | Explain, using ideas about bonding and structure, why natural gas is volatile. | | | | | | | | | en de filosopologos en estados por estados de la composição de la composição de la composição de la composição
Canada filosopologos de la composição de l | 20 | | |-----|------|--|----| | (c) | (i) | The diagram shows the arrangement of particles in natural gas at room temperature and pressure. Draw similar diagrams to show the arrangement of the same number of particles in liquefied natural gas (LNG) and compressed natural gas (CNG). | | | | | | | | | | LNG CNG | | | | • 1 | | [2 | | | (ii) | Using the information given, suggest one advantage of using liquefied natural gas (LNG) over compressed natural gas (CNG). | | | | | | | | | | | | [Total: 10] [2] 21 | - | | | | | ···· | | | | | | | | | | | | | ····· | ************ | · · · · · · · · · · · · · · · · · · · | ***** | | | | | | | *************************************** | ······ | |-------|------|-------------|---|---------|------|----------------------|---|---|-----------|-----------|---|-----------|----------|----------|--------------------------|--------------|--------------|---------------|--------------|---------------------------------------|---------|---|---|----------|----------|---|---------|---|---| | | 0 | ત | 里 | helium | 4 | 9 | 2 | перп | 8 | ₩ | Ā | argon | 40 | 36 | 호 | krypton | 8 | \$ | × | xenon | 131 | 88 | 줃 | radon | 1 | | | | | | | MI | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | တ | ш. | fluorine | 9 | 7 | Ö | chlorine | 35.5 | 35 | ä | bromine | 80 | 53 | — | iodine | 127 | 85 | ¥ | astatine | 1 | | | | | | | - IN | | | | | | 0 | nagyxo | 9 | \$ | ဟ | sulfur | 32 | 34 | ශී | selenium | 79 | 25 | <u>a</u> | tellurium | 128 | 84 | <u>چ</u> | polonium | 1 | 116 | <u></u> | rermonium | 1 | | | Λ | | | | ı | | | | | | | 42 | | | | | | | | | | 83 | | | | *************************************** | | | | | | | | | | | | | | | | | ā. | | | | c | | | | | | | | | | 114 | Œ | lerovium | , | | | = | | | | | iO | <u>~</u> | poron | ~ | € | ~ | iuminium | 27 | 34 | ලි | gallium gr | 70 | 49 | a | mdium | 115 | | <u></u> | mallum | 204 | | | | | | | | | | | l | | | | | | | a | | <u> </u> | | | | | | | | | | | | 112 | 5 | pernicium | ĭ | | | | | | | | | | | | - | | | | | | | | | | ••••• | | | | | | | | <u>5</u> | | | | | | | | | | | | | | | | | 88 | 2 | nickel | 28 | 46 | 2 | alladium | 106 | 78 | 盂 | Matinum | 195 | 110 | ජ | mstadfium ro | 1 | | Group | | | | : | | | | | | | | | | | | | | | | s.a. | | | | | - | 109 | | 8 | | | | | * | I | ydrogen | · | | | | | | | | | 26 | Œ. | <u></u> | 56 | 44 | ₽ | Ithenium | 101 | 9/ | රි | osmium | 190 | 108 | £ | m misseu | , | | | | | | _EE | | | | | | | | | | | | 8) | | - | | | | | | | | 107 | _ | | | | | | | | | | ther | | | SS | | | | | 24 | ප් | Iromium. mis | 25 | 42 | Mo
Mo | lybdenum te | 96 | 74 | * | Ingsten | 184 | 90‡ | S | aborgium | , | | | | | | | Key | proton (atomic) numb | ic symbol | name | atomic ma | | | | | ឌ | | | 51 | | | | | ı | | | - 1 | 105 | | dubnium se | 1 | | | | | | | | proton (at | atom | | relative | | | | | 22 | | | | ·man. | Z' | | | | T | | | | | Rulherfordium d | 1 | | | | | | | | | | *************************************** | | | | | | | | | | ********* | www.ww | oranie. | | 57-71 | ******** | | | 89 – 103 | dinoids | 2 | entrew. | | | | | | | 1 | | | | | | | Æ | | 1 | ********* | ********** | ············ | | ********* | | | | *************************************** | | 20110100 | *************************************** | 쓚 | | | | | | | | | | 4 | 8 | berylliun | a | 12 | Š | magnesiu | <u>~</u> | ន | Microscope
Microscope | | xooooote | occurrence of | regeneesee | ******** | компени | 29 | | | ******* | ******* | 8 | radium |] | | | | | | | | ന | = | lithium | ستما | # | 2 | sodium | S | 19 | ¥ | potassium | 33 | 37 | 2 | nubidium | 32 | 55 | క | caesium | 133 | 87 | ŭ. | francium | 1 | | | .h | | | ******* | | | *************************************** | ********* | | | | ********* | ******** | ******** | ******** | ******** | | | | | | | | | | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | The Periodic Table of Elements | *************************************** | | | | | | ********** | | |---|--------|--------------|-----|-----|-----|--------------|-----| | 71 | 3 | lutetium | 175 | 103 | ت | lawrencium |) | | 70 | \$ | yfferblum | 173 | 102 | 2 | mopelinm | 1 | | 69 | E | thulium | 169 | 101 | ğ | mendelevium | ı | | 89 | ш | erbium | 167 | 100 | Ē | fermium | 1 | | 29 | 유 | holmium | 165 | 66 | Ŋ | einsteinium | ı | | 99 | ු | dysprosium | 163 | 96 | ಶ | californium | 1 | | 65 | £ | terbium | 126 | 16 | 盉 | perkelium | 1 | | 64 | පි | gadolinium | 157 | 98 | క్ర | curium | 1 | | 83 | 团 | entoplum | 152 | 95 | Am | americium | 1 | | 62 | ఙ | samarium | 150 | 94 | 2 | plutonium | 1 | | 61 | Ĕ
a | promethium | 1 | 83 | 2 | neptunium | 1 | | 09 | 2 | neodymium | 144 | 92 | _ | | | | 65 | ል | prasecdymium | 4 | 8 | Ç. | protectinium | 231 | | 58 | ඵ | cerium | 140 | 8 | f | | - 1 | | 24 | 2 | lanthanum | 139 | 88 | Ac | actinium |) | lanthanoids actinoids 4E Pure Chem MYE P1 MS 2018 | Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10
Q11
Q12
Q13
Q14
Q15
Q16
Q17
Q18
Q19
Q20 | C D A C D A D C D C D C | |---|-------------------------| | Q2 | D | | Q3 | Α | | Q4 | С | | Q5 | D | | Q6 | A | | Q7 | В | | Q8 | B | | Q9 | С | | Q10 | В | | Q11 | Α | | Q12 | D : | | Q13 | D | | Q14 | A | | Q15 | D | | Q16 | С | | Q17: | D | | Q18 | С | | Q19 | D | | Q20 | C | | Q21
Q22
Q23
Q24
Q25
Q26
Q27
Q28
Q29
Q30
Q31
Q32
Q33
Q34
Q35
Q36
Q37
Q38
Q39
Q40 | Α | |--|-----------------------------------| | Q22 | A D D A A C D B B D C B A D B C D | | Q23 | D | | Q24_ | Α | | Q25 | A | | Q26 | <u> </u> | | Q27 | D | | Q28 | В | | Q29 | D | | Q30 | Α | | Q31 | В | | Q32 | В | | Q33 | D | | Q34 | С | | Q35 | В | | Q36 | A | | Q37 | D | | Q38 | В | | Q39 | C | | Q40 | <u> D</u> | # 4E Chemistry Paper 2 2018 Mark scheme | Λ1 | | 1 | |-------------|--|------------| | A1 (a) | D | [41 | | | C | [1] | | (b) | B and C | [1]
[1] | | (d) | A and E | [1] | | <u>(u)</u> | Adilu L | Total: 4 | | A2 | | Total, 4 | | (a) | The components have different solubilities in the solvent. | [1] | | (b) | 3 components [1] | [2] | | | correct distance (relative height): • chlorophyll b – 0.8 to 1 cm | | | | • chlorophyll a – 1.0 to 1.2 cm | | | | • carotene – 1.8 to 2.1 cm [1] | | | | | | | (c) | The chromatography should be allowed to run until the solvent front almost reaches the top of the filter paper/ | [1] | | | The drop of extract spotted on the filter paper should be as small as possible. | | | | Cover with a lid to ensure consistent acetone/water composition. | | | | | | | | Use a longer chromatography paper. | | | | NB: Do not award: solvent level should be below starting line/ startling line should be drawn in pencil | | | (d) | Spinach extract consists of substances that are soluble only in acetone-water mixture. | [1] | | | mixure. | Total: 5 | | A3 | | rotal. o | | (a) | carbon monoxide, nitrogen oxides, sulfur dioxide, unburnt hydrocarbons (No chemical formula) | [2] | | (1-) | Any two answers. [1] each. | [4] | | (b) | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | [1] | | | (ii) Carbon dioxide [1 mk pt] is produced by the reactions in the catalytic converters and it
is a greenhouse gas [1 mk pt] that causes global warming. [1 mk pt] 3 mk pts – [2] 1-2 mk pts – [1] | [2] | | | | Total:5 | | A4 | | 1 Otal.O | | (a) | 2 2 (1) → (1) 2 | [1] | | (b) | H_2O_2 is the oxidizing agent. It oxidizes $\underline{I = to I_2}$ which increases in oxidation number from $\underline{-1 (I =)}$ to $\underline{0 (I_2)}$. | [1]
[1] | | (c) | Colourless solution turns vellow/ brown. | [1] | | | | Total:4 | | A5 | | | | (a) | Nitrogen – 78% [1] | [2] | | (b) | Oxygen – 21% [1] (i) At low temperature (for fractional distillation of liquefied air), water is a solid [1]. {Hence, it would block the flow of liquid air through the pumps and pipes.} | [1] | | | (ii) (distilled first) Nitrogen, Argon, Oyygen, Krynton |
 [1] | | | | | | 1 | 1 | 2 | |---|---|---| | | 143 | | |-----------|--|--------------| | | NB: 0 M if students include Ne or compounds. | | | | | | | 4.0 | | Total:4 | | A6
(a) | Not much magnesium carbonate has achieved <u>activation energy</u> required. [1] | [1] | | 499 | | 1.74 | | | Accept: The flame is not hot enough to decompose much magnesium carbonate. | | | | Note: Many students' responses reflect a poor understanding of the question The question involves decomposition and hence responses that revolve around rate of effective collision is invalid as there's no collision of reactants involve here. Other responses which are inaccurate include 'There wasn't enough energy to overcome the activation energy'. | | | (b) | | [3] | | | | | | | | | | | | | | | volume of carbon | | | | dioxide /cm³ | | | | /dm- | | | | | | | | | | | | | | | | time/s | | | | Correct graph [1] | | | | At higher temperature, rate of reaction increases because more zinc carbonate particles have sufficient energy to overcome the activation energy. [1] | | | | | | | | Volume of carbon dioxide stays constant as it is dependent on the number of | | | | moles/mass of zinc carbonate which did not change. [1] | | | (c) | (i) $FeCO_3(s) \rightarrow FeO'(s) + CO_2(g)$ | [2] | | • | | | | | Correct state symbols – 1M Correct formula – 1M | | | | (ii) X and Y are highly reactive metals [1], thus forming highly stable metal | [2] | | | carbonates [1] that do not decompose on heating | | | | carbonates [1] that do not decompose on heating | | | | (iii) Mass of X ₂ CO ₃ used = 9.2 x 0.0232 = 0.2134 g [1] | [3] | | | M_r of $X_2CO_3 = 0.2134/0.002 = 106.72$ | | | | | | | | A_{r} of X = $(106.72 - 12 - 16 \times 3)/2 = 23.4[1](3 s.f.)$ | | | | $A_{\rm in}$ of X = 23.4 | | | | identity of X sodium [1] | | | · | | Total: 11 | | A 7 | | LIVIGIT L.I. | | | 144 | | |-------|--|----------| | | 1M for all accurate formula
1M for all accurate state symbols | | | | | | | | kan di persona di mendengan di mengenangan di mengenangan di mengenangan di mengenangan di mengenangan di meng
Kanangan di mengenangan di mengenangan di mengenangan di mengenangan di mengenangan di mengenangan di mengenan | | | | | | | | | | | (b) | | [3] | | | | | | | | | | | | | | | | | | | $\int E $ | | | | 3 Mg + H ₂ O | | | | Mg + H ₂ O | | | | | | | | Mgo-h₂ | | | | | | | | | | | | | · | | | progress of reaction | | | | - Carroot chano (4) | | | | Correct shape [1] Labels (Ea, ΔH); directions must be both correct [1] | | | | Reactants and products (correct indicators of reactants and products) [1] | | | (c) | Heat energy released for bond forming in 1 mole of magnesium oxide and 1 mole of hydrogen is greater than heat absorbed for bond breaking in 1 mole of water | [2] | | | and 1 mole of magnesium. | | | | | i e | | | [1] – underlined phrases i.e. where the bonds are broken and formed; [1] – bold words i.e. connecting energy released/gained to bond forming/breaking | ÷ | | | | | | | Note: This question involves the overcoming of ionic bonds and the phrasing proves to be difficult for students. Students who gave responses such as Mg-O will be | | | | marked down as this is a denotation for covalent bond. | | | | | | | A8 | | Total: 7 | | (a) | $(i) Pb^{2+}(I) + 2e^- \rightarrow Pb(I)$ | [1] | | | (ii) $2Br(I) \rightarrow Br_2(g) + 2e^{-g}$ | [1] | | | (iii) Shiny, silvery globule was found at the bottom of the beaker. | [1] | | (b) | (i) P: Green Universal indicator turned blue/violet. [1] /bubbling / effervescence of pale green gas [1] [max 2] | [4] | | | | | | ļ., I | Q: Green Universal indicator turned red. [1] / bubbling / effervescence of | | | | colourless gas [1] | | | | | | | | | | | | (ii) pH will increase. [1] Hydrogen ions preferentially discharged at cathode results | [2] | | | higher than that of hydrogen ions. [1] | | |-------|---|-----------| | | NB: reject if students write gas instead of ions are discharged. | | | (iii) | Chlorine gas formed at anode will oxidise iron anode away/ hydrogen ions at cathode will react iron cathode away | [1] | | | Reject: chloride ions will react with iron. [Reaction of chloride ions with iron is slow] NB: reject if students write gas instead of ions are discharged. | | | | | Total: 10 | | B9 | | | | | |-----|------|--|-----|--| | (a) | (i) | The melting points increase across Period 2 from Li to C, then decrease sharply from C to N. The melting points decreases gradually from N to Ne. [1] The electrical conductivity is high for the first elements in the period and is low for the last four elements. Boron is the exception as it is one of the first few elements in the period, yet it has poor electrical conductivity. | [2] | | | | | NB: X Wrong: merely restating the table information in sentence form, for example, "lithium, beryllium and carbon are good conductors, boron is poor and the other elements do not conduct. | | | | | | √ Right: answers that identified a general trend, "the conductivity is high for the first elements in the period and is low for the last four elements' and then highlighted the exception 'except for boron' or 'except for carbon'. | | | | | (ii) | They have high melting points that are above room temperature. | [1] | | | (b) | (i) | No. Electrical conductivity generally decreases across Period 2. [1] (specific mention of a trend) | [2] | | | | | However, carbon is a good electrical conductor despite the preceding element, boron, being a poor conductor, and the following element, nitrogen, being a non-conductor. [1] | | | | | | NB: Only ans that presents the idea of a <u>general pattem</u> will be accepted. | | | | | (ii) | Graphite. [no marks] Graphite has a giant molecular structure consisting of layers of carbon atoms. Each carbon atom is covalently bonded to three other carbon atoms. This leaves each carbon atom with one valence electron not involved in bonding. [1] This electron becomes delocalised and can move freely along the layers of carbon atoms, [1] thus conducting electricity. NB: Reject if students write each atom is bonded to 3 other electrons. Concept must be entirely correct. | [2] | | | | | | | 146 | | |---------|----------|--------------------|---
--|---------------------------------------| | | (c) | | Atomic | | [1] | | | | | number | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | 1 | | | | | | | 10 + | | | | | | | 8 + | | | | | | | | | | | | | | 6+ | | | | | | | 4 | | | | | 1. | | 2 + | | | | | | | - | | | | | | | Li Be | B C N O F Ne | | | | | | | Period,2 elements | | | | | • | | | | | | | | if axes are unla | abeled. | | | (d) | Sodi | um. [no ma | irk] | | [2] | | | A re | latively low | melting point | (compared to other metals) [1] and good electrical group I/alkali metals [1] | | | | Cond | uctivity at e | hioheines of G | roup rainair metais.[.i] | | | | | | | | Total: 10 | | | | • | | | NOTE TO THE | | B10 | | | | | | | (a) | (i) | | $q) \rightarrow H^+ (aq) + S$ | SO ₄ ²⁻ (aq) | [1] | | | (ii) | NaHSO ₄ | | ratio | [2] | | | | Socium ri | ydrogensulfate [| | | | | (iii) | No. of mo | I HzSO4 | | [3] | | | (, | | 000) x 0.10 | | , | | | | = 0.0025 | mol [1] | | | | | | | ON- OU > N- O | 00 . 011 0 | e e | | | | From equ | 2NaOH→ Na₂S | 5U4 + 2H2U | | | | | | 304 : 2 mol NaC | OH seed to be a se | | | | | | ol H ₂ SO ₄ :0.005 | | | | | | | | | | | | | | ation of NaOH | | | | | | | (20.0/1000)
nol/dm³ [1] | | | | | | _ U.ZUU II | www.ante.17.1 | ing the state of t | | | (b) | Add | 2 to 3 drop | s, and then, exc | cess of NaOH solution [1]. | [1] | | - A- A- | lf a c | lirty green i | <u>precipitate</u> that i | s insoluble in excess NaOH is formed, iron (II) sulfate | [1] | | | is for | med. [1] | | | | | 768 | | | | | 101 | | (c) | COM | npound | FeSO ₄ | H ₂ O | [2] | | | | 7. | | <u></u> | , , , , , , | | | mas | ss/g | 15.2 | 27.8 - 15.2
= 12.6 | | | | | of moles | 15.2 / 152 | 12.6/18 | | | | I'IO. | or mores | = 0.1 mol | = 0.7 mol | | | | gim | plest | | | | | | ratio | | 0.170,1=1 | 0.7 / 0.1= 7 | | | | 1 44 | 7. | | | | | | Emp | irical formu | ıla is Fe <mark>SO₄.7</mark> H | ₂ O. | | | | 1 592 | or simplest | | | | | | 1m e | mpirical fo | rmula | | | | | <u> </u> | | | | | | | 1 | | | | Total:10 | | | 147 | | |-------------|--|----------------| | B11 | EITHER | | | (a) | (i) | [1] | | | | | | | 1/time/ (1/s) | | | | 0.0154 | | | i | 0.0222 | | | - | 0.0118 | | | | 0.0182 | | | | 0.00952 | 1 | | | <u> </u> | 101 | | | (ii) 1/ time provides information about the speed of reaction. [1] | [2] | | | | | | İ | The longer the time taken, the slower is the speed of the reaction. / The shorter | 1 | | | the time taken, the faster is the speed of the reaction. [1] | | | <u> </u> | _ , | 101 | | (b) | The results of experiments A, C and E can be used. / The results of experiments B | [2] | | | and D can be used. [1] | · . | |] | These experiments were conducted using different concentrations of acid but the | | | | temperature was kept constant. [1] | | | } | | | | | | * | | ł | | | | (c) | The higher the concentration, the faster is the speed of the reaction. | [2] | | | No marks awarded. |] * .4
 | | | | | | [| With a higher concentration, there are more reactant particles in a unit volume. [1] | | | | Thus, there are more collisions between reactant particles. This results in a higher | | | | frequency of effective collisions occurring. [1] | ' | | | modulator of official and offic | | | (d) | The student is not correct. The activation energy of the reaction is not lowered with | [3] | | (-) | higher temperature. [1] | , L = 1 | | | g.,,, [.] | | | Ì | Must mention what is wrong with the student's explanation. | | | | 3 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | At higher temperatures, reactant particles possess greater amount of kinetic energy. | | | | Thus, they are able move more quickly [1] and collide into one another more | | | ĺ | frequently. | | | | This results in a higher frequency of effective collisions occurring. [1] | | | | | Total:10 | | B11 | OR | | | (a) | (i) Methane | [1] | | (a) | (i) Wethate | [2] | | | $I \cap I = I \cap I$ | [4] | | [| | | | ļ | | | | | (H() C ()H) | | | | | | | | H | | | | | | | | (iii) • Natural gas is a mixture of covalent compounds which have a simple | [2] | | } | molecular structure. | - - | | | There are weak intermolecular/ van der Waals forces of attraction between | | | | the molecules, [1] | | | | hence <u>little energy</u> must be supplied to <u>overcome these forces of attraction</u> , | | | | and natural gas has a low boiling point, which makes it volatile. [1] | | | | and flatal at gas has a low pointing point, which makes it volutio. | | | (b) | Separating funnel | [1] | | (b) | | [2] | | (c) | (i) LNG (liquid state) [1] | 114 | | | | 148 | |
--|---------------|--|-----| | | a fill to Tay | CNG (gaseous state, but closer together than original diagram) [1] | 5.0 | | | | | | | | | | | 그는 가게 되는 사람들은 사람들이 모르는 물에 되었다. 그리나 먹다 | | | and the state of t | | | 4 | | | | | | | | (ii) | Data quoted: | [2] | | | (ii) | Compared to the original volume of natural gas, LNG occupies 1/600th | [2] | | | (ii) | Compared to the original volume of natural gas, LNG occupies 1/600th /0.167% of the original volume, which is 100 times/ significantly less | [2] | | | (II) | Compared to the original volume of natural gas, LNG occupies 1/600th | [2] | | | (ii) | Compared to the original volume of natural gas, LNG occupies 1/600 th /0.167% of the original volume, which is 100 times/ significantly less than CNG, which occupies 1% of the original volume. [1] *Student must quote the data of both CNG and LNG Implication: | [2] | | | (11) | Compared to the original volume of natural gas, LNG occupies 1/600 th /0.167% of the original volume, which is 100 times/ significantly less than CNG, which occupies 1% of the original volume. [1] *Student must quote the data of both CNG and LNG Implication: Hence, | [2] | | | | Compared to the original volume of natural gas, LNG occupies 1/600th /0.167% of the original volume, which is 100 times/ significantly less than CNG, which occupies 1% of the original volume. [1] *Student must quote the data of both CNG and LNG Implication: Hence, LNG is likely to be easier to transport than CNG, [1] OR for the same volume, LNG contains more natural gas than CNG | [2] | | | | Compared to the original volume of natural gas, LNG occupies 1/600th /0.167% of the original volume, which is 100 times/ significantly less than CNG, which occupies 1% of the original volume. [1] *Student must quote the data of both CNG and LNG Implication: Hence, LNG is likely to be easier to transport than CNG, [1] OR for the same volume, LNG contains more natural gas than CNG [1] OR | [2] | | | | Compared to the original volume of natural gas, LNG occupies 1/600th /0.167% of the original volume, which is 100 times/ significantly less than CNG, which occupies 1% of the original volume. [1] *Student must quote the data of both CNG and LNG Implication: Hence, LNG is likely to be easier to transport than CNG, [1] OR for the same volume, LNG contains more natural gas than CNG | [2] | | | | Compared to the original volume of natural gas, LNG occupies 1/600th /0.167% of the original volume, which is 100 times/ significantly less than CNG, which occupies 1% of the original volume. [1] *Student must quote the data of both CNG and LNG Implication: Hence, LNG is likely to be easier to transport than CNG, [1] OR for the same volume, LNG contains more natural gas than CNG [1] OR LNG is safer to use than CNG because CNG is compressed but | | | | | Compared to the original volume of natural gas, LNG occupies 1/600 th /0.167% of the original volume, which is 100 times/ significantly less than CNG, which occupies 1% of the original volume. *Student must quote the data of both CNG and LNG Implication: Hence, LNG is likely to be easier to transport than CNG, [1] OR for the same volume, LNG contains more natural gas than CNG [1] OR LNG is safer to use than CNG because CNG is compressed but LNG is not, hence if a pressurised CNG cylinder is damaged, the danger of an explosion is much greater [1] | [2] | | | | Compared to the original volume of natural gas, LNG occupies 1/600th /0.167% of the original volume, which is 100 times/ significantly less than CNG, which occupies 1% of the original volume. [1] *Student must quote the data of both CNG and LNG Implication: Hence, LNG is likely to be easier to transport than CNG, [1] OR for the same volume, LNG contains more natural gas than CNG [1] OR LNG is safer to use than CNG because CNG is compressed but LNG is not, hence if a pressurised CNG cylinder is damaged, the | | | | | Compared to the original volume of natural gas, LNG occupies 1/600 th /0.167% of the original volume, which is 100 times/ significantly less than CNG, which occupies 1% of the original volume. *Student must quote the data of both CNG and LNG Implication: Hence, LNG is likely to be easier to transport than CNG, [1] OR for the same volume, LNG contains more natural gas than CNG [1] OR LNG is safer to use than CNG because CNG is compressed but LNG is not, hence if a pressurised CNG cylinder is damaged, the danger of an explosion is much greater [1] Im for comparison of volume/ evidence Im for stating implication | | | | | Compared to the original volume of natural gas, LNG occupies 1/600th /0.167% of the original volume, which is 100 times/ significantly less than CNG, which occupies 1% of the original volume. [1] *Student must quote the data of both CNG and LNG Implication: Hence, LNG is likely to be easier to transport than CNG, [1] OR for the same volume, LNG contains more natural gas than CNG [1] OR LNG is safer to use than CNG because CNG is compressed but LNG is not, hence if a pressurised CNG cylinder is damaged, the danger of an explosion is much greater [1] 1m for comparison of volume/ evidence | | | | | Compared to the original volume of natural gas, LNG occupies 1/600 th /0.167% of the original volume, which is 100 times/ significantly less than CNG, which occupies 1% of the original volume. *Student must quote the data of both CNG and LNG Implication: Hence, LNG is likely to be easier to transport than CNG, [1] OR for the same volume, LNG contains more natural gas than CNG [1] OR LNG is safer to use than CNG because CNG is compressed but LNG is not, hence if a pressurised CNG cylinder is damaged, the danger of an explosion is much greater [1] Im for comparison of volume/ evidence Im for stating implication | [2] |