

GAN ENG SENG SCHOOLMid-Year Examination 2018

CANDIDATE NAME			
CLASS		INDEX NUMBER	

CHEMISTRY

Secondary 4 Express

Paper 1 Multiple Choice

Additional Materials: OTAS

Calculators are allowed in the examination

6092/01 7 May 2018 1 hour

READ THESE INSTRUCTIONS FIRST

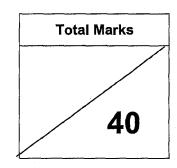
Write in soft pencil.

Do not use staples, paper clips, glue or correction fluid.

Write your name, class and index number on the OTAS.

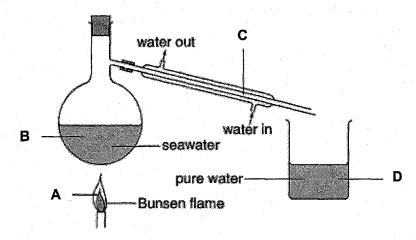
There are **forty** questions in this paper. Answer **all** questions. For each question there are four possible answers **A**, **B**, **C**, and **D**.

Choose the **one** you consider correct and record your choice in **soft pencil** on the separate OTAS.


Read the instructions on the OTAS very carefully.

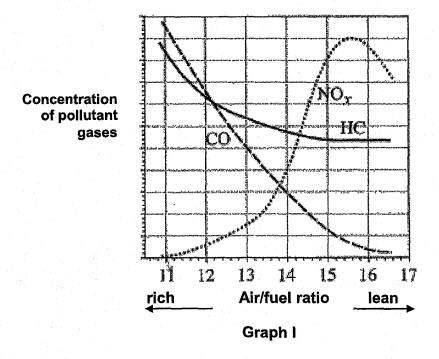
Each correct answer will score one mark. A mark will not be deducted for a wrong answer.

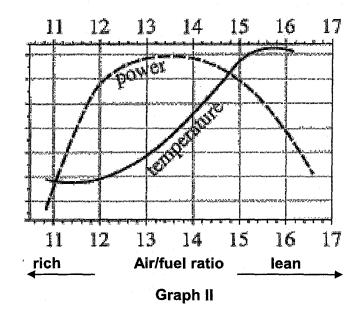
Any rough working should be done in this booklet.


A copy of the Periodic Table is on page 14.

The use of an approved scientific calculator is expected, where appropriate.

1 The diagram shows how to obtain pure water from seawater.

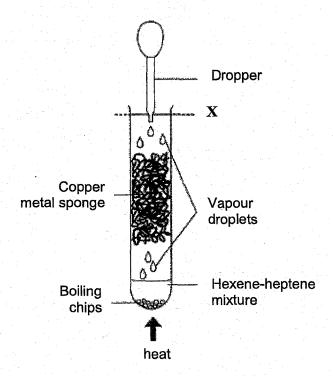

Where do water molecules lose energy?


Refer to the following to answer questions 2 and 3.

In a car engine, petrol vapour is mixed with air and undergoes combustion. When different amounts of petrol are mixed with air, different amounts of pollutant gases will be formed.

Graph I shows how the production of carbon monoxide (CO), nitrogen oxides (NOx) and hydrocarbons (HC) is dependent on the ratio of air to petrol.

Graph II shows how the engine power and temperature vary with the different ratios of air to fuel of the fuel mixture.


Which of the following is not true?

- A The amount of carbon monoxide decreases as the air to fuel ratio increases.
- B The emission of nitrogen oxides increases as temperature of engine increases.
- C Increasing the proportion of air in the mixture will increase the amount of hydrocarbons emitted.
- **D** Increasing the proportion of air in the mixture will increase the level of nitrogen oxides produced.
- **3** Which of the following conclusions **cannot** be drawn based on the information from the graphs?
 - A A fuel-rich mixture and low combustion temperature will reduce nitrogen oxide formation.
 - B The overall levels of the three pollutants are best reduced by increasing the air-to-fuel ratio.
 - A fuel-lean mixture reduces the carbon monoxide and hydrocarbons but reduces the engine output.
 - A fuel-rich mixture reduces the level of nitrogen oxides emitted but reduces the engine power output.

Refer to the following to answer questions 4 and 5.

1-hexene and 1-heptene are two members of the alkene class of hydrocarbons.

A small amount of mixture of 1-hexene and 1-heptene was placed in a boiling tube and gently heated to boiling in a sand bath using the following setup:

Droplets were formed and could be seen condensing on the sides of the tube. When the vapour condensation line reached the level marked \mathbf{X} , the hot vapours were very slowly withdrawn and condensed by using a small dropper.

D

- 4 What is the purpose of the copper metal sponge?
 - A Minimises contact of the mixture with air
 - Acts as a catalyst to speed up the reaction of the two compounds.
- Prevents the two compounds from escaping.
- Provides a large surface area for repeated vapourisation and condensation.
- 5 What process is demonstrated in this experiment?
 - A Cracking

- **B** Combustion
- C Addition reaction D Fractional distillation
- 6 Which of the following does not affect the rate at which a gas spreads throughout a room?
 - A Boiling point of gas

B Temperature of gas

C Molecular mass of gas

D Density

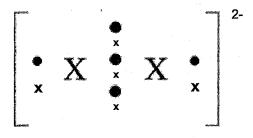
7 Three elements, X, Y and Z have consecutive increasing atomic numbers.

If element Y is a noble gas, what will be the symbol for the ions formed by elements X and Z in their compounds?

Α X- and Z+ X^{2-} and Z^{2+} X^{2+} and Z^{2-}

C X⁺ and Z⁻

Potassium ferrate, K₂FeO₄, has been described as a 'green oxidising agent' because the 8 by-products generated are environmentally-friendly.


What are the ions in this compound?

- K+, FeO₄2-Α
- K₂⁺, FeO₄⁻ В
- K+, Fe6+, O2-C
- D K₂+, Fe²⁺, O²⁻
- 9 Peeling onions often causes tearing of the eyes due to the release of a sulfide compound. Peeling them under running water reduces the problem. Which of the following statements are true of the sulfide compound?
 - I. It is soluble in water
 - II. It has low boiling point.
 - III. It has small and light ions with weak bonding.
 - IV. It is a covalent compound with weak covalent bonds.
 - Α I and II only

В I and IV only

I, II and III only

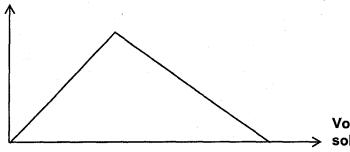
- D I, II and IV only
- Element **X** forms the ion X_2^{2-} with the following structure:

What is the formula of the covalent compound **X** forms with chlorine?

Α XCI В XC_{l2}

C XCI₃ XCI₄

A B


C

Calcium chloride Ammonium nitrate Calcium nitrate Zinc chloride

11	What H₃PO₄	?	ons in	0.250 mol/am* of phosphoric(v) acid
		0.125 mol/dm ³ 0.500 mol/dm ³	B D	0.250 mol/dm³ 0.750 mol/dm³
12	determ	ng iron in dry chlorine gas results in the nination gives a reading of 34.5% by ma charge of the iron in the chloride?		
	A C	2- 3-	B D	2+ 3+
13		of the following results is obtained whadded to 60.0 g of granular solid lead(I		
	A C	No visible reaction. Colourless solution with white precipitate	B D	Colourless solution with effervescence is produced. A colourless solution with white precipitate, effervescence and
14	Which salts?	of the following pairs of aqueous rea	gents i	granular remains. s not suitable for preparing insoluble
	A B C D	Sulfuric acid and calcium chloride Aluminium chloride and silver nitrate Barium hydroxide and copper(II) sulfa Lithium carbonate and iron(II) sulfate	te	
15	to an a	has the formula $NH_4Fe(SO_4)_2.12H_2O$. Eaqueous solution of the salt in a test tu of the following would not be observed	be and	
	A B C D	A pungent gas was detected. A green precipitate was formed. A reddish brown precipitate was obtain A piece of moist litmus paper placed a		nouth of the test tube turned blue.
16	Aquec	npound Q formed white precipitate whous ammonia was used to identify the change. Identify compound Q .		

17 An aqueous solution of a salt **X** is placed in a test tube and sodium hydroxide solution is gradually added. The height of the precipitate in a test tube is plotted against the volume of sodium hydroxide solution added.

Height of precipitate

Volume of sodium hydroxide solution added

What could be X?

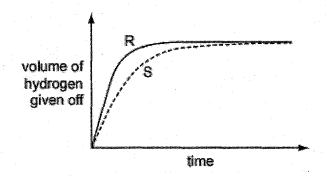
- A Aluminium sulfate
- B Calcium nitrate
- C Iron(II) sulfate
- D Ammonium nitrate
- 18 The formula for hydrated copper(II) nitrate is Cu(NO₃)₂.xH₂O. It contains 36.5% water of crystallisation by mass.

What is the value of x?

A 4

B 5

C 6


- **D** 7
- 19 Element X is found in Group IV of the Periodic table. Which of the following could not be a formula for a compound of X?
 - A XO
 - B XO₂
 - $C XO_3^2$
 - **D X**O₄
- 20 Which of the following statements best explains why 99.99% copper is used in manufacturing high quality electrical wires for audio equipment?
 - A Copper is a good conductor of electricity.
 - B Copper is a very reactive metal.
 - **C** 99.99% copper is less ductile and cannot be stretched easily.
 - D Copper is of high purity and is able to conduct electric current.

- 21 Which of the following statements about Group VII is false?
 - A Colours of elements become darker down the Group.
 - C Melting points of elements increase down the Group.
- B Densities of elements increase down the Group.
 - Number of valence electrons of elements increases down the Group.
- Methane gas reacts extremely slowly with air at room temperature. If a piece of warm platinum is held in a methane-air mixture, methane ignites. Which of the following statements correctly describes the reaction with platinum?

D

- I The activation energy is low.
- II The energy change is greater.
- III The energy of the reactants is lower than expected.
- IV The rate of reaction is faster.
- A I and II
- B I and IV
- C I, II and IV
- D I, II, III and IV
- 23 A student investigates the rate of reaction between magnesium and excess sulfuric acid. The volume of hydrogen given off in the reaction is measured over time.

The graph shows the results of two experiments, **R** and **S**.

Which change in conditions would cause the difference between R and S?

- A Catalyst is added into S.
- B The acid is more concentrated in R than in S.
- C The magnesium is less finely powdered in **R** than in **S**.
- D The temperature in R is lower than in S.

- 24 Which statement is correct for the element of proton number 19?
 - A It is a gas that dissolves in water.
 - **B** It is a hard metal that is not very reactive with water.
 - C It is a non-metal that burns quickly in air.
 - **D** It is a soft metal that is highly reactive with water.
- 25 Statement 1: Alloying iron with other materials to form stainless steel prevents iron from rusting by excluding oxygen.

Statement 2: Painting, oiling and electroplating are all methods of preventing iron from rusting.

Which is correct?

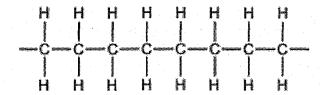
- A Both statements are correct and statement 2 explains statement 1.
- **B** Both statements are correct but statement 2 does not explain statement 1.
- C Statement 1 is correct but statement 2 is incorrect.
- **D** Statement 2 is correct but statement 1 is incorrect.
- 26 The reactions shown may occur in the air during a thunder-storm.

$$N_2 + O_2 \rightarrow 2NO$$

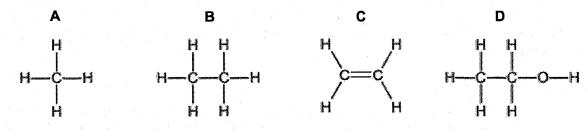
$$2NO + O_2 \rightarrow 2NO_2$$

$$NO + O_3 \rightarrow NO_2 + O_2$$

Which row shows what happens to the reactant molecules in each of these reactions?

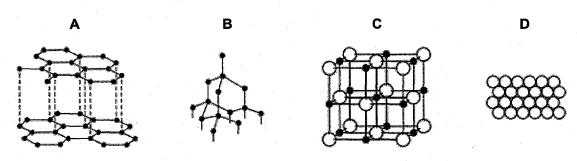

	N_2	NO	O ₃
Α	oxidised	oxidised	oxidised
В	oxidised	oxidised	reduced
С	reduced	reduced	oxidised
D	reduced	reduced	reduced

27 Iron is extracted from hematite in a blast furnace.


Which reaction contributes most of the heat in the blast furnace as it increases the temperature to over 1500°C?

- A calcium carbonate → calcium oxide + carbon dioxide
- B calcium oxide + silicon dioxide → calcium silicate
- **C** carbon + oxygen → carbon dioxide
- D carbon dioxide + carbon → carbon monoxide

The diagram shows part of the molecule of a polymer.

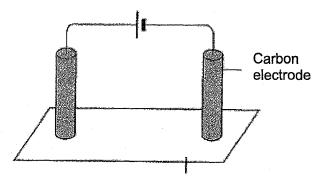


Which diagram shows the monomer from which this polymer could be manufactured?

Slate has a layered structure and is slippery.

Which diagram shows a structure that closely resembles slate?

In separate experiments conducted, a gaseous halogen was bubbled into an aqueous solution of a halide salt.

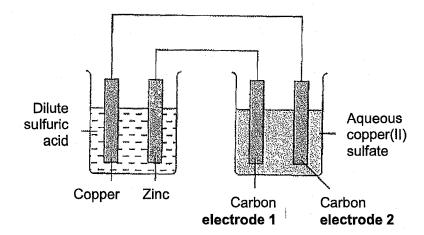

The following results were observed.

		Halides							
Halo	gen	Y	Z-						
X	2	No observable reaction	Displaced as Z ₂						
Y	2	No observable reaction	Displaced as Z ₂						
Z	2	No observable reaction	No observable reaction						

What is the arrangement of halogens X, Y and Z in Group VII in order of decreasing reactivity?

- X, Y, Z Y, X, Z A B
- C
- Z, X, Y Y, Z, X

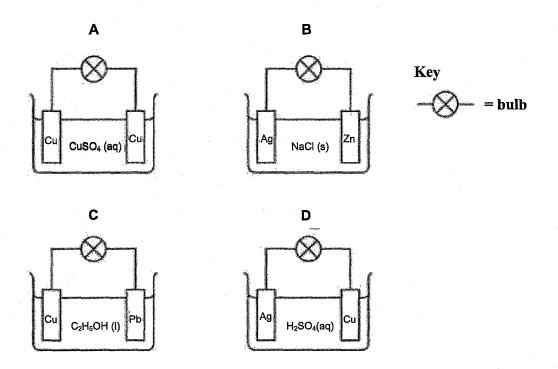
31 Two carbon electrodes are placed on a piece of red litmus paper soaked in concentrated sodium chloride solution as shown:



Litmus paper soaked in concentrated sodium chloride solution

What are the observations of the litmus paper at the respective electrodes?

	Cathode	Anode
Α	Litmus paper is bleached.	Litmus paper turns blue.
В	Litmus paper turns blue.	Litmus paper is bleached.
С	Litmus paper turns blue.	Litmus paper remains red.
D	Litmus paper remains red.	Litmus paper remains red.


32 Two simple cells were set up as shown:

Two substances were discharged at the carbon electrodes. What were these two substances?

	Electrode 1	Electrode 2
A	Copper metal	Hydrogen gas
В	Hydrogen gas	Copper metal
C	Copper metal	Oxygen gas
D	Oxygen gas	Copper metal

33 In which circuit does the bulb light?

- 34 What are the main gases that escape from the top of the blast furnace in the manufacture of iron by the blast furnace?
 - A Nitrogen, steam and oxygen
 - B Oxygen, carbon dioxide and steam
 - C Nitrogen, carbon monoxide and carbon dioxide
 - D Carbon monoxide, carbon dioxide and nitrogen monoxide
- **35** A molten compound is electrolysed. Two atoms of X are deposited at the negative electrode at the same time as three atoms of Y are deposited at the positive electrode.

These results show that:

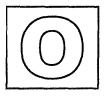
X is a ...1...;

Y is a ...2...;

the formula of the compound is ...3....

How are gaps 1, 2 and 3 correctly completed?

	1	2	3
Α	Metal	Non-metal	X ₃ Y ₂
В	Metal	Non-metal	X ₂ Y ₃
С	Non-metal	Metal	X_3Y_2
D	Non-metal	metal	X ₂ Y ₃


36		reacts with acids to of reaction when r			the foll	owing solutions	would give t	he slowest
	A B C D	0.0500 mol sulf 0.0250 mol sulf 0.0500 mol hyd 0.0250 mol hyd	uric acid in 10 rochloric acid	00 cm³ of [.] I in 200 cn	water. n³ of w			
37		h compound will r CH2CH2OH?	eact with ste	eam, in the	e prese	ence of catalyst,	to produce	the alcohol
	A C	CH ₃ CHCH ₂ CH ₃ CH ₂ CH ₂ CH ₃			B D	CH₃CHCHCH CH₃CH₂COO		
38	Whic	h type of reaction	does this equ	uation sho	w?			
			СзН	$+ F_2 \rightarrow$	C ₃ H ₇	F + HF		
	A B C D	Hydration Neutralisation Addition Substitution						
39		nsaturated hydroc hydrocarbon is rea						ole bonds.
	What	is the formula of	he resulting	hydrocarb	on?			
	A C	C ₆ H ₈ Br ₃ C ₆ H ₈ Br ₆			B D	C ₆ H ₁₀ Br ₃ C ₆ H ₁₄		
40	A hyd	drocarbon is found	to contain a	bout 80%	of carb	oon by mass. Wi	nat is the hyd	irocarbon?
	A C	Methane Propane			B D	Ethene Hexene		
						a de la composition		

The Periodic Table of Elements

	<u>.</u>	untrivaria			engen	eneme.	sound	unione	····T	******		CATALOG TO	anning.	SELECTION OF THE PERSON OF THE	olekiyarv	sassaying.	~~~	*********	auxian	Mariera	<u></u>	Karriika	easter (exce	************			******	*******	4444
G	3 c	v S	2]	•	* 5	2 ;	2	<u> </u>	8	<u></u>	*	subject .	3	8	**	Ž.	\$	X :	%		2 3	8 6	£	ragou	1		********		20000
M	**					2) (fucilité	a l	Pro-	ರ	chiorite	35.5	8	ක්	anung G	3	Z ,	{		**	8 :	ď.	astativa	,				
- 17	*				***************************************	** (0		9	\$	Ø	in the second	83	75	ß	Soleniem	8	8	0		97	Ž (2	polonium	•	<u>.</u>	<u></u>	live month	į
1 /1	>				. [~	KHOOMKI	*******	*********	····•	********	xxxxxxxx		ñ	www.	Megaeconoco	**********	erentağı.	A1009099444	erecenter.			***********	cectorcus	00000000	····	**********	900000,40		ordeo
17.	*				***************************************		O	catton	2	4.2. 4.3.	Ö	#00//s	82	8	ඵ	germanium	2	8	S		2	8	2	lead	301	# # #	î.	Merow.m.	1
488	***					u (Ω	50	Aur Avs	Ç	₹	aluminium i	S	\$*** \$***	8	min de	8	8	<u> </u>		6	75 i		thattum	ă	~33000000	apriliani i		
					L					L			**********	S	S	20,000	98	\$	ප	Cadmium	22	8	£	mercury	ā	2	5	coperacional	1
THE REAL PROPERTY OF THE PERSON OF THE PERSO														83	8	Jaddiso	\$	4	2	No.	28	R	3	70.	197	\$ \$ \$	2	coentgenium	1
43.0		\$ 												28	:	T T	33	99	a.	paled	8	æ	<u>T</u>	phalinum	185	9	8	farmstadflum	**
3555								 						22	ී	coball	88	45	É	moder	\$	E	****	tridium	192	8	Z	meimerium)
***************************************		Ana ,		fiydrogen	4	-								92	ů.	5	ß	77	Ž	ruthenium	Ş	R	ඊ	CSTAINT	8	108	2	hassium	1
**************************************		*********				-								2	S	marqanese	18	\$	Ľ	Marketine Marketine	3	ĸ	2	menium ·	8	6	£	popoga	
		7				38	www.	*******	SSE					24	ة ۵		8	2	2	maybrenum)	88	Z		t-moster 1	, \$	38	ß	seaborgium	rete
***************************************					Ş	proton (atomic) number	Tir sumh		manine afortic mass					×	>	. September	ζū	l"""	2000000000			£		,,,,,,,,	*	1	8	E	***
***************************************					-) LOSOIG	Č	3	reizin					30	1 =	, W	***********	89	Ä	miles and a	ő	22	¥.	Makeum	20	104	ř	Rutherfordum	
						Lunu	***************************************	**********	***************************************	1				34	: <i>6</i>	3 8	45	88	>		88	21-12	lanthonoids	***************************************	in the second	88-103	Xirdiy.	**********	2000
	******					4	, e	3	ļo) ·	2	بر چ		36	3 6	10241.00110	8		- New York	*********	*********	Į	- NALL COLD	10000000	133	of man	escent.		rices
						ham				,l	6m: 4m://wa	iiiiiiiii	engs	111/2	ennan		ia	33			100	T.		9			, ti	i i	1000

e a § c	

R S { E	2 2 1
8 E]	
ន្ធ ្វា	3E[
<u>ا</u> الله	ខល់ ្វ
8 2 }	85 1
ន៩ខ្លឹ	3 6 a a b 1
នន្ទឹន	8581
ឧញ្ទឹ	A S B I
88	Baa a
σĒ	82
3 Z	# 8 = § 8
ខត់	₹ 5 &
888	音 8 年 章 窓
	284
lantharoids	actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

GAN ENG SENG SCHOOLMid-Year Examination 2018

CANDIDATE NAME	
CLASS	INDEX NUM BER

CHEMISTRY

6092/02

Paper 2

3 May 2018 1 hour 45 minutes

Secondary 4 Express

Candidates answer on the Question Paper. Calculators are allowed in the examination

READ THESE INSTRUCTIONS FIRST

Write your class, index number and name on all the work you hand in. Write in dark blue or black pen.
You may use a soft pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid / tape.

Section A

Answer all questions in the spaces provided.

Section B

Answer all **three** questions, the last question is in the form either/or. Answer **all** questions in the spaces provided.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

A copy of the Periodic Table is on page 20.

The use of an approved scientific calculator is expected, where appropriate.

	For Examiner's Use
Section A	
Section B	
B7	•
В8	***************************************
B9 *Either / OR	
*Circle where appropriate	***************************************
Total	80

Section A (50 marks)

Answer all the questions in the spaces provided.

A1 The table below shows some information about elements A-F. The letters are **not** the chemical symbols of the elements.

Element	Colour	Melting point / °C	Boiling point / °C	Conducts electricity	Density / g/cm³
A	Dull grey	1415	2898	Yes	2.0300
В	Pale yellow	-219	-188	No	0.0017
С	Orange brown	-7	59	No	3.1000
D	Shiny brown	1074	2927	Yes	8.9200
E	Shiny grey	1540	2861	Yes	7.8700
F	Colourless	-157	-153	No	0.0033

(a)

	melting point and boiling point.
(iii)	The diagram shows an outline of the Periodic Table.
	x y z
	Element A is found in area Y of the Periodic Table shown above. Explain how the information in the table above supports this statement.

(b) Methane reacts violently with fluroine according to the following equation.

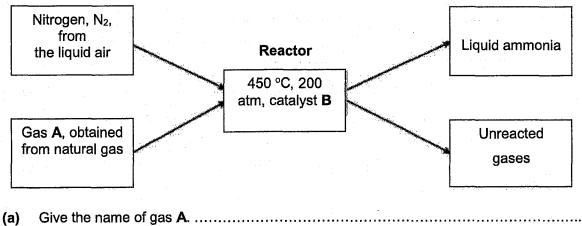
$$CH_4(g) + 4F_2(g) \rightarrow CF_4(g) + 4HF(g)$$
 $\Delta H = -1904 \text{ kJ/mol}$

Mean bond energies are given in the table shown below.

Bond	C-H	C-F	H-F
Mean bond energy	412	484	562
/ kJ/mol	·		

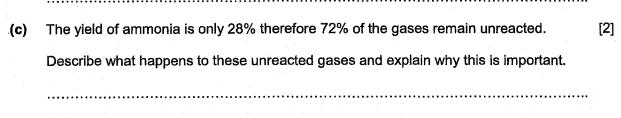
A student suggested that one reason for the high reactivity of fluorine is a weak F-F bond.

Is the student correct? Justify your answer with calculations using the above data.

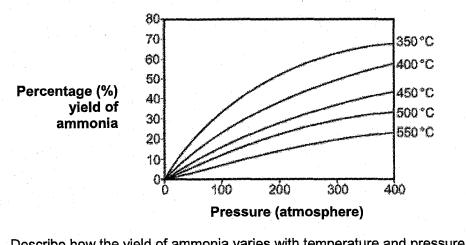

c)	Write an ionic equation for the reaction between potassium and cold water.					

[Total: 9]

[4]


[2]

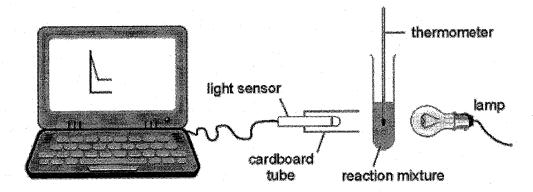
A2 Ammonia is produced during the Haber process. The reaction is summarised in the diagram below.



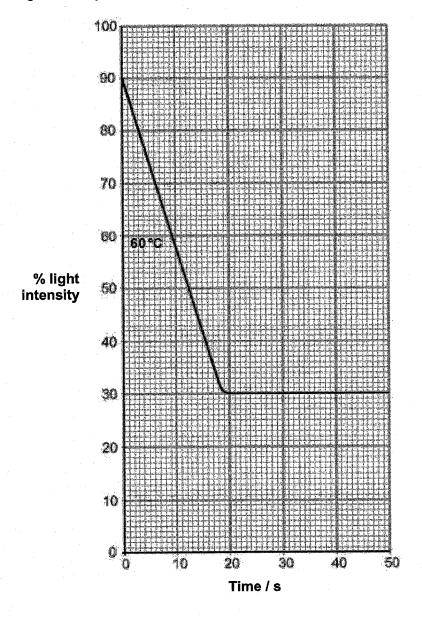
(b)	Name the catalyst B and explain why it is used.	[2]

(d) The following graph below shows the effect of temperature and pressure on the yield of ammonia during the Haber process.

.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	 ***************************************	 	

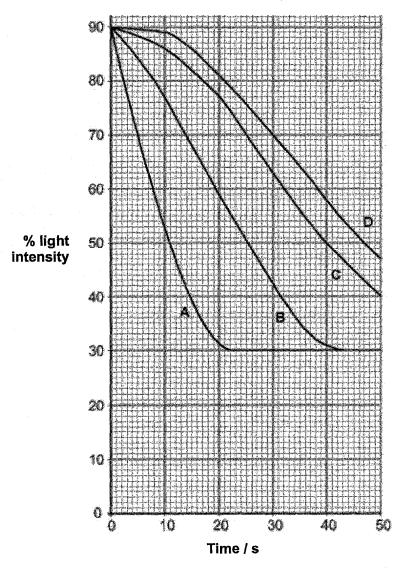

OFFICE ATTORNOON AND DOLL OF THE STATE OF TH

63 5


e)	(i)	Construct an equation for the production of ammonia in a Haber process. State symbols are required.	[1]
	(ii)	Explain if the above process is a redox reaction. Use oxidation number in your explanation.	[2]

[Total: 10]

A3 Sodium thiosulfate solution reacts with dilute hydrochloric acid forming a yellow precipitate. This reaction was investigated using the equipment below.



 $5~\rm cm^3$ of dilute hydrochloric acid was added to $10~\rm cm^3$ of sodium thiosulfate solution at $60~\rm ^{\circ}C$ and the light intensity was measured over time. The results are shown on the grid below.

(a)	Explain why the light intensity decreases as the reaction takes place.	[2]
(b)	Suggest one possible reason why the light intensity does not fall to 0%.	[1]
(c)	In a separate experiment, 5 cm³ of dilute hydrochloric acid was added separately to	

(c) In a separate experiment, 5 cm³ of dilute hydrochloric acid was added separately to 10 cm³ of sodium thiosulfate solution at four different temperatures. All other factors were kept the same. The results are shown on the grid below.

(i)	Provide the letter A, B, C or D from the graph shown that represents the reaction	[1]
• •	carried out at the highest temperature. Explain your choice.	

.....

(i)	The	rate	of	reaction	can	be	calculated	using	the	formula:

[1]

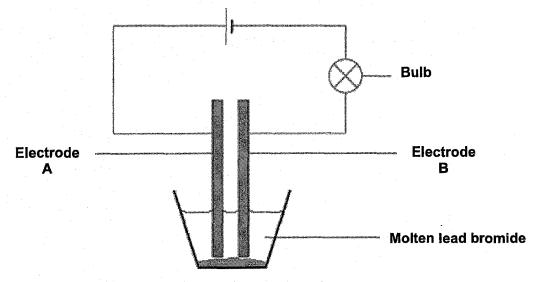
Rate = 1 / time

The reaction is considered to be complete when the percentage light intensity reaches 30%. Calculate the mean rate for experiment **B**.

(iii)	Using collision investigation.	theory,	provide	a conclusion	you can draw	from the above	[3]

(d) A chemist carried out an experiment to find out the reactivity of the metals. Below shows the time taken for limewater to form white precipitate for each metal carbonate.

Metal carbonate	Time taken to form white precipitate / s
Copper carbonate	10
Magnesium carbonate	40
Zinc carbonate	24


Explain these results in terms of reactivity of the metals.				

[Total: 10]

An a	alcohol G was known to be one of the following.		
	НОНОСНСН=СНСНОНОН	Alcohol 1	
	CH₃CH₂CH₂CH₂OH	Alcohol 2	
A sa form	ample of 1.20 g of alcohol G was burned in excess ded.	oxygen. 1.79 g of carbon dioxide was	
(a)	Calculate the mass of carbon present in the same	ole of alcohol G .	[1]
			•
(þ)	The mass of hydrogen in the sample is 0.0812 g. is oxygen, calculate the mass of oxygen in the sample is 0.0812 g.		[1]
			,
(c)	Use your answers above to find the empirical form	nula of alcohol G .	[2]
(d)	State the identity of alcohol G . Explain clearly how	you reached this conclusion.	[1]

b)	(i)	In an experiment, a chemist calculated the maximum yield of aspirin is 400 g. The chemist did the experiment but only made 250 g of aspirin. Calculate the percentage yield of aspirin for this experiment.	
		Show clearly how you work out your answer and suggest one possible reason why the chemist did not have a percentage yield of 100%.	[2]
	(ii)	Suggest how the use of catalyst might reduce costs in the industrial production of aspirin.	[1]
c)	Insta	ant cold packs are used to treat sports injuries.	
		INSTANT Cold Pack	
	bag	type of cold pack has a plastic bag containing water. Inside the bag is a smaller containing solid ammonium nitrate. The outer bag is squeezed so that the inner bursts.	
	Expl	ain why the bag becomes cold.	[2]
		······································	
		pt-j	al: 7]

A6 The diagram below shows the apparatus used during electrolysis of molten lead (II) bromide.

(a)	Sugg	est a reason why lead (II) bromide must be molten in order for electricity to flow.	[1]
(b)	Write	the half equation for the reaction taking place at the electrode A.	[1]
(c)	(i)	State, in terms of electrons, what happens to the ions at the electrode B .	[1]
į			
	(ii)	Describe an observation you would expect at the electrode B .	[2]
	(iii)	Electrolysis is allowed to continue for some time before the apparatus is cooled to room temperature. The bulb remains lit.	[1]
		Explain this observation.	

Section B (30 marks)

Answer all **three** questions. The last question is in the form **either/or**. Write your answers in the spaces provided.

B7 The investigation of hydrocarbons

Information 1

From its modest beginning in 1980, the U.S. ethanol industry has grown tremendously in response to surging domestic use and worldwide demand.

The table below shows two different identified processes to produce ethanol.

Process 1	Process 2
Fermentation of a sugar solution by yeast in a reaction vessel.	Reaction of ethene (from crude oil) with steam in a reactor.
The reaction vessel has to be emptied, cleaned and refilled every few days.	The reaction is only stopped if there is a fault in the reactor.
The process produces a 15% ethanol solution in water daily.	The process produces 100% pure ethanol.

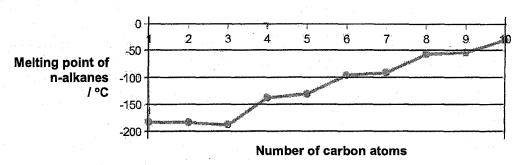
Information 2

An advertisement for crisps claimed that they are healthier because they are cooked in certain oils. A student found the following information about four oils that are used to make crisps.

	Rapeseed oil	Sunflower oil	Olive oil	Corn oil
Saturated fat / %	6.6	12.0	14.2	14.4
Poly- unsaturated fat / %	29.3	63.3	8.1	51.3
Melting point / °C	+5	-18	-12	-15

One hypothesis is that oils are thought to be healthier if they are:

- Low in saturated fat.
- High in poly-unsaturated fat.


For certain oils and fats such as olive oil, soybean oil, or nut oils, when compared with others, such as margarine, butter, chicken fat and beef fat (the white stuff found in and around slabs of meat), the most prominent difference that was discovered was that different oils and fats have different states of matter at room temperature.

Some oils and fats are liquid at room temperature, and even when kept in the fridge, like olive oil and soybean oil. By contrast, other fats have higher melting temperatures.

The melting point of fats is the temperature at which they become liquid. **Graph 1** shows the change in melting point for saturated hydrocarbon.

Graph 1

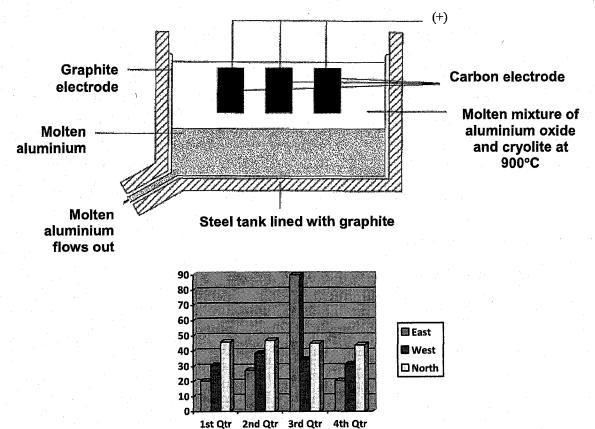
Melting point of n-alkanes

The melting temperature is the same as freezing temperature; it is the temperature where the fat changes from a liquid to a solid.

In addition, the effect of the percentage of saturated fats within certain oils on the energy released from combustion was investigated. It was found out that as the saturation of the carbon chain increases, the energy released from combustion decreases.

Table 1: Experimental results on the four different oil used

		Rapeseed oil	Sunflower oil	Olive oil	Corn oil
Energy	Trial 1	5.05	3.48	6.55	3.95
released from	Trial 2	4.98	3.20	5.98	2.01
combustion (kJ/g)	Trial 3	4.46	2.98	6.24	3.88


Table 2: Hydrocarbon table

Name	Chemical formula	Heat of combustion (kJ/g)
Methane	CH₄	55.6
Ethane	C₂H ₆	52.0
Propane	C ₃ H ₈	50.0
Butane	C ₄ H ₁₀	49.2

Note: Heat of combustion is also known as enthalpy change. It refers to the heat energy released when a compound undergoes complete combustion with oxygen under a given condition.

a)	Usin	g Information 1,	
	(i)	Give one advantage that Process 1 has over Process 2.	[1]
	(ii)	State one advantage Process 2 has over Process 1 as a manufacturer of ethanol.	[2]
b)	Usin	g Information 2,	
·	(i)	Determine which oil should be healthier.	[2]
		Explain your answer.	
	(ii)	These unsaturated oils can be hardened by an addition reaction with hydrogen at 200 °C with nickel catalyst.	[2]
		A student said that this hardening process would make sunflower oil healthier.	
		Is this student's hypothesis correct? Explain your answer.	
	(iii)	Using Table 2 , describe and explain the data patterns for series of heat of combustion on the different alkanes.	[2]
	(iv)	Based on the information given, describe the trend of the melting point of alkanes.	[1]

B8 The diagram shows an electrolysis tank used to extract aluminium from aluminium oxide. Pure aluminium oxide melts at 2055 °C.

(a)	Cryolite is mixed, as an impurity, with aluminium oxide. State the effect it has on the melting point of the mixture and explain why mixing cryolite is necessary.							
(b)	Write half equations for the reactions that take place at the anode and cathode.	[2]						
	Anode:							
	Cathode:							
(c)	Draw two arrows on the diagram to indicate the flow of electrons. Clearly label on the two electrodes.	[1]						
(d)	What is the volume of oxygen produced, under room temperature and pressure when 540 g of aluminium is produced?	[2]						

⁷⁵ 17

(e)	The carbon electrodes are replaced at regular intervals. Explain the need for this.							
(f)	Draw a clearly labelled diagram to show how a metal object could be electroplated with copper.	[2]						

[Total: 10]

EITHER

B9

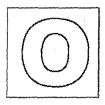
9	blen	ide is	tracted from an ore called zinc blende, which consists mainly of zinc sulfide, ZnS. The z first crushed to powder and then treated by froth flotation (mineral processing, where it be extraction of several metals).	
	Zind gas.		de reacts with oxygen in the air to produce zinc oxide and a gas which escapes as wast	е
	(a)	(i)	Explain why zinc blende is crushed to powder before treatment?	[1]
		(ii)	Write a chemical equation for the reaction in (a)(i).	[1]
	(b)	into	oxide is converted into zinc. Zinc oxide and coke are fed into a furnace. Hot air is bloom the bottom of the furnace. Zinc has a melting point of 420 °C and a boiling point of 907 temperature inside the furnace is over 1000 °C.	
		(i)	Explain how zinc oxide is converted into zinc. Your answer should include details of how the heat is produced and equations for all the reactions you describe.	[3]
		(ii)	Give two reasons why the zinc produced inside the furnace is in gaseous state.	[2]
		(iii)	State the name of the physical change for conversion of gaseous zinc into molten zinc.	[1]
	(c)	Rus	ting of steel can be prevented by coating the steel with a layer of zinc.	[2]
			ain, in terms of electron transfer, why steel does not rust even if the layer of zinc is tched and the steel is exposed to air and water.	

[Total: 10]

OR														
B9	Petr	Petroleum is a source of many important chemicals.												
	(a)	Name two industrial processes which must take place to produce alkenes from petroleum.	[2]											
	(b)	Ethene and propene can both be converted into polymers.												
		(i) State the type of polymerisation that takes place when ethene forms a polymer.	[1]											
			[1]											
		(iii) Draw two repeat units of the polymer made from propene.	[2]											
	(c)	Most of the hydrocarbons obtained from petroleum are alkanes. The alkanes are homologous series of saturated hydrocarbons with the general formula C_nH_{2n+2} .	[2]											
		Give two characteristics, other than having the same general formula, of members in the same homologous series.												

(d) When one mole of chlorine, C_{l2}, reacts with one mole of propane, a mixture of **two** [2] structural isomers is formed in the **first step** of substitution.

Draw **all** the structural formulas of the isomers formed when one mole of chlorine reacts with one mole of propane.


The control of the								~		·		r	·		Process	بيثين		1	X2.417		·	102-11		1
II		O	ov ≟		4	9	Z	<u>a</u> 8	18	₹	#1364 40	36	፟፟	krypton 84.	54	×e	xenon 131	98	Z	un j				
1		VIII		. 9		O O	ļĹ,	fluorine 19	11	ฮ	35.5	35	m	bromine 80	æ	يسو	iodine 127	85	₹	astatine				
1		Ιλ				œ	0	oxygen 16	18	ω	3 Select	₩ 75	8	selenium 79	25	(a)	telluñum 128	84	<u>6</u>	polonium	116	2	Indemoration -	7
III		Λ				7	z	miregen 44	15	ο.	shosphorus 34	33	As	arsenic 75	54	දි	antimony 122	83	m	bismuth 209				distribution of the second
1		M				9	O	Carbon 22	2	(To	28 28 28	32	සී	germanium 73	20	హ	e (1	82	a,	207 207	114	T	Tierowium	£
1		=				ıΩ	ω.	ğ.	en:	₩.	alumimicm 27	85	ගු	milleg 70	49	Ä	malbin 115	280	F	Mallium 204		•••••		-
II									l			 	······		1-			†			†	5	unioimedo:	The second second
II					•							239	3	copper 64	47	Ą	silver 108	79	₹	gold 197	111	8) L L	The same of the same
II	Q		أدرسوا ومساورة والمساورة و									28	Z	g çei	46	8	palladium 106	78	ፚ	pletinum 195	110	ő	armstadtiumin	
1	Grac											27	8	tie op	45	듄	modilum 103	144	-	inditum 192	108	Ź	melinemum d	1
1			-	Ι	nyarogen 1							26	ů.	E 22	4	₽	mulhenium 1011	76	ő	osmium. 190	108	4	masseu I	war and and
1						1						25	Mn	nanganese	3 63	ď	technetium	72	Se Se	thenium 186	101	ф	bohrium	
4 Be eavyllum 9 9 24 24 25 Cadetum candium th 45 38 39 Sr Y Strontium vitrium 2m 45 Sr - 77 Ba 137 Y Y Strontium vitrium 2m 88 89 Ba lanthamods Bandman 137 Rationals						mbar		y,				22	ঠ	dhromium :	18	8	nolybdenum Q&	74	3	tungsten 184	90)	හි	seaborgium	
4 Be eavyllum gaprestum candium tu 45 Sc Caedium candium tu 45 Sr - 77 Sr Sr Sr - 77 Sr Sr Sr Sr - 77 Sr	***************************************				Kev	aformizi n	nic symb	name e afomic n				23	>	vanadium 5.1	4	2	michim	3 8	ļ.	tantalum 181	105	යි	dubnicm	
4 4 Be envillant 9 9 24 20 21 24 20 21 24 45 38 39 39 57 77 150 55 57 77 137 88 89 89 89 88 89 89 88 88 89 89 88 88	***************************************) distant		r da				2	-	titlemium 48	8	Z	zirconium	58	±	fraffarum 474	2 2	涩	Rutherfordium	1
1 1 1 1 1 1 1 1 1 1	***************************************					<u>L</u>			aj .			100	Ġ.	scandium	30	\ >-	yttrium oo	57 - 74	lanthamoids					
CS CS CS CS CS CS CS CS			•				t U	beryllium o	42	Ma	magnesium	192	Č	Calcium	38	ў <i>ў</i>	strontium	3 8	- S	molified To Co.			radium	1
	***************************************									Ž	Sodium	30.	<u> </u>	mnisselod	3 6	<u>م</u> ج	nubidin	8 2	3 2	micaes	3/2	, L	francium	1

73 gg 27	103 T
6 5 States	1 S S I
8 € <u>§</u> 89	Mendelewin
8 ti	8E 1
6 년 ^[8] 19	einsteinum 1
66 Dy dyspresium 163	800mg 1 mg 1
65 TD tentum 159	Derkellüm
Gd Gd 157	Cm euribm
63 Eu europium 152	95 Am amencium
Sm Semantim 150	94 Pu plutonium
P 91 P Tm 1	93 Np neptunium
00 Nd neodymium 144	92 U uranium 238
Pr Pr presentinium 141	91 Pa protectinum 231
8 9 § 3	90 ffrontum 232
La ianthanum 139	BOS A SI

lanthanoids

actinoids

The volume of one mole of any gas is $24\,\mathrm{dm}^3$ at room temperature and pressure (t.t.p.).

GAN ENG SENG SCHOOLMid-Year Examination 2018

CANDIDATE NAME		
CLASS	INDEX NUMBER	

CHEMISTRY

Secondary 4 Express

Paper 1 Multiple Choice

Additional Materials: OTAS

Calculators are allowed in the examination

6092/01 7 May 2018 1 hour

READ THESE INSTRUCTIONS FIRST

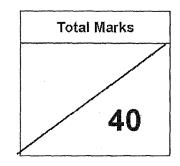
Write in soft pencil.

Do not use staples, paper clips, glue or correction fluid.

Write your name, class and index number on the OTAS.

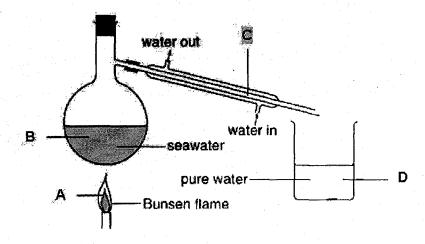
There are forty questions in this paper. Answer all questions. For each question there are four possible answers A, B, C, and D.

Choose the one you consider correct and record your choice in **soft pencil** on the separate OTAS.


Read the instructions on the OTAS very carefully.

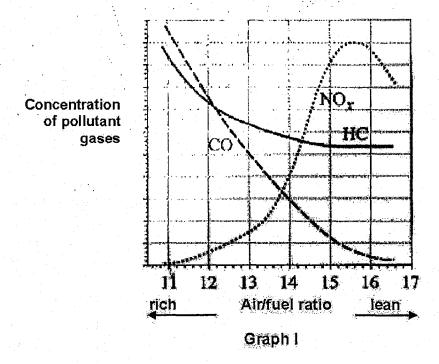
Each correct answer will score one mark. A mark will not be deducted for a wrong answer.

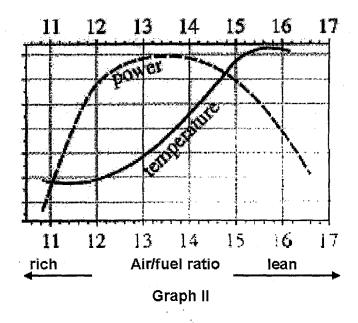
Any rough working should be done in this booklet.


A copy of the Periodic Table is on page 14.

The use of an approved scientific calculator is expected, where appropriate.

1 The diagram shows how to obtain pure water from seawater.


Where do water molecules lose energy?


Refer to the following to answer questions 2 and 3.

In a car engine, petrol vapour is mixed with air and undergoes combustion. When different amounts of petrol are mixed with air, different amounts of pollutant gases will be formed.

Graph I shows how the production of carbon monoxide (CO), nitrogen oxides (NOx) and hydrocarbons (HC) is dependent on the ratio of air to petrol.

Graph II shows how the engine power and temperature vary with the different ratios of air to fuel of the fuel mixture.


Which of the following is not true?

- The amount of carbon monoxide decreases as the air/ratio fuel ratio increases. Α
- The emission of nitrogen oxides increases as temperature of engine increases.
- ВС Increasing the proportion of air in the mixture will increase the amount of hydrocarbons emitted.
- Increasing the proportion of air in the mixture will increase the level of nitrogen D oxides produced.
- Which of the following conclusions cannot be drawn based on the information from the 3 graphs?
 - A fuel-rich mixture and low combustion temperature will reduce nitrogen oxide: formation.
 - ₿ The overall levels of the three pollutants are best reduced by increasing the air-tofuel ratio.
 - C A fuel-lean mixture reduces the carbon monoxide and hydrocarbons but reduces the engine output.
 - D A fuel-rich mixture reduces the level of nitrogen oxides emitted but reduces the engine power output.

Refer to the following to answer questions 4 and 5.

1-hexene and 1-heptene are two members of the alkene class of hydrocarbons.

A small amount of mixture of 1-hexene and 1-heptene was placed in a boiling tube and gently heated to boiling in a sand bath using the following setup:

Droplets were formed and could be seen condensing on the sides of the tube. When the vapour condensation line reached the level marked X, the hot vapours were very slowly withdrawn and condensed by using a small dropper.

В

D

- What is the purpose of the copper metal sponge?
 - Minimises contact of the mixture with A
 - Acts as a catalyst to speed up the reaction of the two compounds.
- Prevents the two compounds from escaping.
- Provides a large surface area for repeated vapourisation and condensation.
- What process is demonstrated in this experiment?
 - A Cracking C

- В Combustion
- Addition reaction
- Fractional distillation
- Which of the following does not affect the rate at which a gas spreads throughout a room?
 - Boiling point of gas Molecular mass of gas

- Temperature of gas
- D Density

7 Three elements, X, Y and Z have consecutive increasing atomic null	numbers
--	---------

If element Y is a noble gas, what will be the symbol for the ions formed by elements X and Z in their compounds?

A X- and Z+ X^+ and Z^- X^{2-} and Z^{2+}

 X^{2+} and Z^{2-}

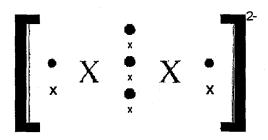
Potassium ferrate, K₂FeO₄, has been described as a 'green oxidising agent' because the by-products generated are environmentally-friendly.

What are the ions in this compound?

K⁺, FeO₄²⁻

A B K₂+, FeO₄-

K+, Fe6+, O2-C

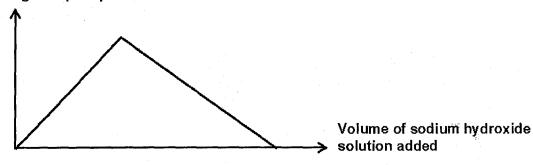

K₂+, Fe²⁺, O²⁻

- Peeling onions often causes tearing of the eyes due to the release of a sulfide compound. Peeling them under running water reduces the problem. Which of the following statements are true of the sulfide compound?
 - I. It is soluble in water
 - II. It has low boiling point.
 - III. It has small and light ions with weak bonding.
 - IV. It is a covalent compound with weak covalent bonds.

I and II only I, II and III only В I and IV only

D I, II and IV only

Element **X** forms the ion X_2^2 with the following structure:


What is the formula of the covalent compound X forms with chlorine?

XCI Α С XCI₃ XCl_2 XCI₄

		is the maximum concentration $0.25 \times 3 = 0.750$	on of H ⁺	ions in	0.25 mol/dm³ of	phosphoric(V) acid,
		0.125 mol/dm³ 0.500 mol/dm³		B	0:250 mol/dm ³ 0:750 mol/dm ³	
	determ	g iron in dry chlorine gas resi nination gives a reading of 34. charge of the iron ion in the ch	5% by ma	ass of ir	on in the Iron(II) ch	
	A C	-2 -3		В	+2	
13		of the following results is ob added to 60 g of granular sol				ol/dm³ dilute sulfuric
	Α	No visible reaction.		В	Colourless solution	· · · · · · · · · · · · · · · · · · ·
	C	Colourless solution with whit precipitate	te	D	effervescence is A solowites s solu precipitate, leffer granular reimalins	tion with white rescence and
		of the following pairs of aqu Salts containing group I meta			s not suitable for	preparing insoluble
	A B C D	Sulfuric acid and calcium ch Aluminium chloride and silve Barium hydroxide and copp Lithium carbonate and iron(er nitrate er(II) sulfa		arium sulfate and o Lithium sulfate al carbonate	
\	to an a	has the formula NH ₄ Fe(SO ₄) ₂ aqueous solution of the salt in of the following would not be	n a test tu	ibe and	the mixture was ti	hen warmed gently.
	A B C D	A pungent gas was detected A green precipitate was form A reddish brown precipitate A piece of moist litmus pape	ned. was obta		outh of the test tub	e turned blue.
	Aquec	npound Q formed white precous ammonia was used to identify compound C	lentify the			
	B C D	Calcium chloride Ammonium nitrate Calcium nitrate Zinc chloride			. ·	

An aqueous solution of a salt X is placed in a test tube and sodium hydroxide solution is gradually added. The height of the precipitate in a test tube is plotted against the volume of sodium hydroxide solution added.

Height of precipitate

What could be X?

A Aluminium sulfate (soluble salt, Al is soluble in excess sodium hydroxide)

B Calcium nitrate

C Iron(II) sulfate

D Ammonium nitrate

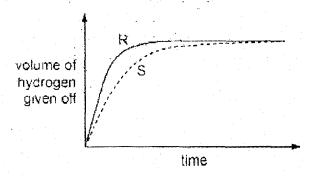
18 The formula for hydrated copper(II) nitrate is Cu(NO₃)₂.xH₂O. It contains 36.5% water of crystallisation by mass.

What is the value of x?

formula for a compound of X?

<u>A</u> 4

B 5


c 6

19 Element X is found in Group IV of the Periodic table. Which of the following could not be a

- A XO
 - B XO₂
 - **C** XO₃²⁻
 - D X04
- 20 Which of the following statements best explains why 99.99% copper is used in manufacturing high quality electrical wires for audio equipment?
 - A Copper is a good conductor of electricity.
 - B Copper is a very reactive metal.
 - C 99.99% copper is less ductile and cannot be stretched easily.
 - D Copper is of high purity and is able to conduct electric current.

- 21 Which of the following statements about Group VII is false?
 - Α Colours of elements become darker down the Group.
 - Melting points of elements increase C down the Group.
- Densities of elements increase down the Group.
- Number of valence electrons of D elements increases down the Group
- Methane gas reacts extremely slowly with air at room temperature. If a piece of warm platinum is held in a methane-air mixture, methane ignites. Which of the following statements correctly describes the reaction with platinum?
 - ı The activation energy is low.
 - H The energy change is greater.
 - The energy of the reactants is lower than expected. Ш
 - The rate of reaction is faster. IV
 - I and II
 - ABC I and IV
 - I. II and IV
 - I, II, III and IV
- 23 A student investigates the rate of reaction between magnesium and excess sulfuric acid. The volume of hydrogen given off in the reaction is measured over time.

The graph shows the results of two experiments, R and S.

Which change in conditions would cause the difference between R and S?

- Catalyst is added into S.
- B The acid is more concentrated in R than in S.
- The magnesium is less finely powdered in R than in S.
- D The temperature in R is lower than in S.

- 24 Which statement is correct for the element of proton number 19?
 - Α It is a gas that dissolves in water.
 - В It is a hard metal that is not very reactive with water.
 - C It is a non-metal that burns quickly in air.
 - It is a soft metal that is highly reactive with water.
- 25 Statement 1: Alloying iron with other materials to form stainless steel prevents iron from rusting by excluding oxygen.

Statement 2: Painting, oiling and electroplating are all methods of preventing iron from rusting.

Which is correct?

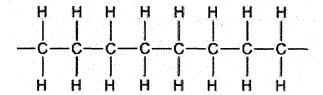
- Both statements are correct and statement 2 explains statement 1.
- Both statements are correct but statement 2 does not explain statement 1. В
- Statement 1 is correct but statement 2 is incorrect. C
- Statement 2 is correct but statement 1 is incorrect
- 26 The reactions shown may occur in the air during a thunder-storm.

$$N_2 + O_2 \rightarrow 2NO$$

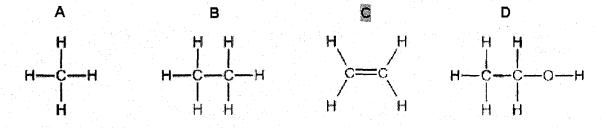
$$2NO + O_2 \rightarrow 2NO_2$$

$$NO + O_3 \rightarrow NO_2 + O_2$$

Which row shows what happens to the reactant molecules in each of these reactions?

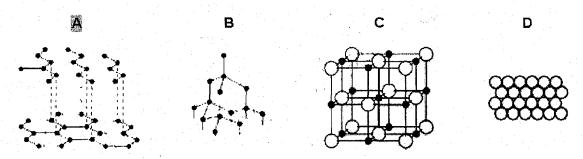

	N ₂	NO	O₃
Α	oxidised	oxidised	oxidised
В	oxid i séd.	oxidised	reduced
C	reduced	reduced	oxidised
D	reduced	reduced	reduced

Iron is extracted from hematite in a blast furnace.


Which reaction contributes most of the heat in the blast furnace as it increases the temperature to over 1500°C?

- calcium carbonate → calcium oxide + carbon dioxide Α
- В calcium oxide + silicon dioxide → calcium silicate
- _ C D carbon + oxygen → carbon dioxide
- carbon dioxide + carbon → carbon monoxide

28 The diagram shows part of the molecule of a polymer.

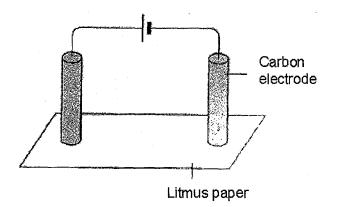


Which diagram shows the monomer from which this polymer could be manufactured?

29 Slate has a layered structure and is slippery.

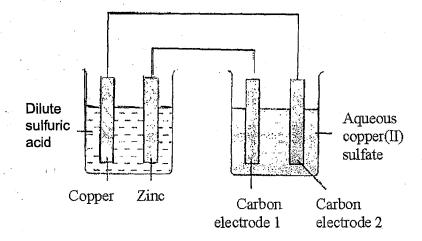
Which diagram shows a structure that closely resembles slate?

30 In separate experiments conducted, a gaseous halogen was bubbled into an aqueous solution of a halide salt.


The following results were observed.

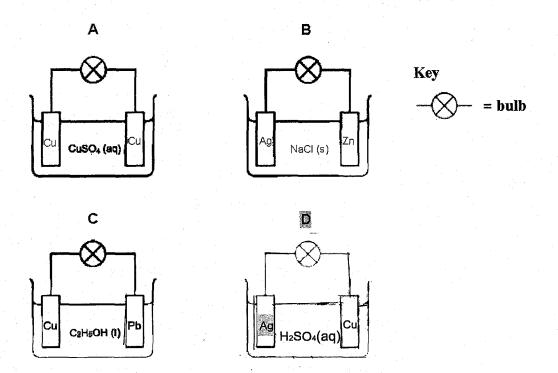
	Hal	ides
Halogen	Υ-	Z-
X_2	No observable reaction	Displaced as Z ₂
Y_2	No observable reaction	Displaced as Z ₂
Z ₂	No observable reaction	No observable reaction

What is the arrangement of halogens \mathbf{X} , \mathbf{Y} and \mathbf{Z} in Group VII in order of decreasing reactivity?


- **D** Y, Z, X
- 31 Two carbon electrodes are placed on a piece of red litmus paper soaked in concentrated sodium chloride solution as shown:

What are the observations of the litmus paper at the respective electrodes?

	Cathode		Anode
Α	Litmus paper is bleached.	•	Litmus paper turns blue.
8	Litmus paper tums blue,		Litmus paper is bleadfied.
C	Litmus paper tums blue.		Litmus paper remains red.
D	Litmus paper remains red.		Litmus paper remains red.


32 Two simple cells were set up as shown:

Two substances were discharged at the carbon electrodes. What were these two substances?

	Electrode 1	Electrode 2
Α	Copper metal	Hydrogen gas
В	Hydrogen gas	Copper metal
C	Copper metal	Oxygen gas
D	Oxygen gas	Copper metal

In which circuit does the bulb light?

- 34 What are the main gases that escape from the top of the blast furnace in the manufacture of iron by the blast furnace?
 - Nitrogen, steam and oxygen
 - В
 - Oxygen, carbon dioxide and steam Nitrogen, carbon monoxide and carbon dioxide
 - C D Carbon monoxide, carbon dioxide and nitrogen monoxide
- 35 A molten compound is electrolysed. Two atoms of X are deposited at the negative electrode at the same time as three atoms of Y are deposited at the positive electrode.

These results show that:

X is a ...1...; Y is a ... 2...;

the formula of the compound is ... 3... .

How are gaps 1, 2 and 3 correctly completed?

	1	2	3
A	Metal	Non-metal	X_3Y_2
В	Metal	Non-metal	X ₂ Y ₃
C	Non-metal	Metal	X ₃ Y ₂
D	Non-metal	metal	X ₂ Y ₃

36		eacts with acids to form salts. Which of the formal salts in the following salts. Which of the following salts in the following salts.	the foll	owing solutions would give the slowest
	A B C D	0.0500 mol sulfuric acid in 500 cm ³ of v 0.0250 mol sulfuric acid in 100 cm ³ of v 0.0500 mol hydrochloric acid in 200 cm 0.0250 mol hydrochloric acid in 75 cm ³	water. 1 ³ of w	ater. ter.
37		$_{ m 1}$ compound will react with steam, in the $ m H_{2}CH_{2}OH$?	prese	ence of catalyst, to produce the alcohol
	A	©H₃©H©H₃ CH₃CH₂CH₂CH₃	B D	CH₃CHCHCH₃ CH₃CH₂COOH
38	Which	type of reaction does this equation sho	w?	
		$C_3H_8 + F_2 \rightarrow$	C ₃ H ₇ F	+ HF
	A B C	Hydration Neutralisation Addition Substitution		
		saturated hydrocarbon with six carbon a ydrocarbon is reacted with excess brom		
	What	is the formula of the resulting hydrocarb	on?	
	A	C ₆ H ₈ Br ₈	B D	$C_6H_{10}Br_3$ C_6H_{14}
	A hydi	rocarbon is found to contain about 80%	of carb	oon by mass. What is the hydrocarbon?
	A	Methane Proparie	B D	Ethene Hexene

The Periodic Table of Elements

	nionista		energe To		Harana	W.com	suddetes		uunaa	uunni	uuna m	,		upunour	 E		en men		1 00		unian.	man	eneres gei	~~1		*******		******
	M;	2	helica	*	<u></u>	2	8	ଛ	*	¥	iğ.	\$	36	Ż	Sypto	22	T	*	Xex	3	8	8	rador	ı		octeeral/c	ennens.	
B				000000000000000000000000000000000000000	ග	u_	fundine	දා	Pon Spor	Ö	chicrine	35,5	ĸ	ක්	promine	8	ĸ	ye	compo	12	8	Æ	astativa	***	-	-		
5				***************************************	œ	0	uackino.	Ç	Ç	Ø	safer .	8	×	ß	Selenium	2	8	₽		23	\$	2	polonium	ì	ç	3	Ivermoken.	į
>				***************************************	r~	2	in Column	ā	ņ	Ω.	SDLOQUEOUS	~	ಜ	\$	arsenic	R	T)	B	antimony	2	S	ā	Semish.	8	***************************************			***************************************
2					(0	O	Sages	2	***	כט	6	R	8	8	Companium	R	R	යි	S	2	8	£	page page page page page page page page	33	* 4: 4:3;	ũ.	Removim	1
***					w	<u> </u>	8	den: den:	<u>***</u>	~~	ahminium	73	75	3	gewum.	22	9	£	th Sul	<u>.</u>	 50		thin.	25	**********	Meterini		,
				•					Lunca				8	5	Sign.	88	\$	පි	cadmium	72	8	£	marchy,	201	2,1	ප	copernicium	1
													8	පි	addes	8	Ž.	2	P. S.	108	2	2	e e	197	****	8	roentgenium)
													28	Z	W. Arte	83	46	2	mypeped	8	28	ā	platinum	195	4.0	8	darmstadflum	*
3													27	ප	Cobalt	8	455	£	modem	\$	4	****	(Military)	28	\$		melmeism	1
	*	*****	hydrogen										92	ů	5	B	2	Z	Turkenium	\$	55	ő	Cemina	8	188	2	hassium	
		ansenen.	***************************************		į								28		mandanese	.18	\$	ည	lect relikm	***************************************	ĸ	£		8	707	б	Christian	1
					mher	3	į	1988					24	Ö	chronium	S	42	2	mod boom m	8	7.4	>	- Section 1	3	8	ß	seaborgium)
NOTE OF THE PROPERTY OF THE PR	***************************************			Key	arview (stanic) member	mir sym		rejative atomic mass					Z	>	war of time	'n		2	moder	g	23	l-	Cantahin	181	185	පි	debrium	1
######################################					- Cupus	i f	3	reati					8	=		80	48	Z	Zimonium	Ö	R	T	Pratriem	32	70,	ž	Pullherfordium	
**************************************	manifest and the second				*mm	***************************************			ud.					i &	Cinjunction of the Control of the Co	\$	36	>	W.W.X	88	57 - 71	Santhanoids			89 - 103	scincis.		
					8	å	3 [ļo		1 5	n i	7	· K	3	7	\$	38	Ċ,) (i	88	8	8	Š	130	88	2		
****	*				C	> ==	i i		**		9	12		2 ×	**	8	32	Š		8	\$	3 8	3		6	t	transium.	riade.

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Chemistry 6092/02

Marking Scheme for Paper 2

Can Possible answers	
(ii) B and F [1] (iii) L [1] (iii) It is a metalloid/shows properti (Provide one property of a metalloid shows broken 4(C_H) + 4(F_F) = 4 × 412 + 4 × F_F - [7] Enthapy change = bond break -bond metalloid multiple = 1904 = 4 × 412 + 4 × 484 + 4 + 4 + 4 + 4 × 412 + 4 × 412 + 4 × 484 + 4 + 4 × 632 / 4 = 158 kJ/mol The stude because the F-F bond energy is much le easily broken.	
 (iii) It is a metalloid/shows propertition on the property of a metalloid/shows property of a metalloid/shows propertition in the standard accepted) – [1] Bonds broken 4(C_H) + 4(F_F) = 4 × 412 + 4 × F_F = [
(iii) It is a metalloid/shows properti (Provide one property of a mel accepted) – [1] Bonds broken 4(C_H) + 4(F_E) = 4 × 412 + 4 × F_F - [' Bonds formed 4(C_E) + 4(H_E) = 4 × 484 + 4 × 562 - ['] [Enthapy change = bond break - bond in a + 562 - ['] -1904 = ['4 × 412 + 4(F_E)] - ['4 × 484 + 4] 4(F_F) = -1904 - 4 × 412 + ['4 × 484 + 4] F_F = 632 / 4 = 158 kJ/mol. The stude because the F_F bond energy is much le easily broken.	
(Provide one property of a met accepted) – [1] Bonds broken 4(C_H) + 4(F_F) = 4 × 412 + 4 × F_F - [7] Bonds formed 4(C_F) + 4(H_F) = 4 × 484 + 4 × 562 - [7] [Enthapy change = bond break - bonds of the stude of the stude of the f_F = 1904 - 4 × 412 + [4 × 484 + 4] F_F = 632 / 4 = 158 kJ/mol	oth metal and non metal. [1]
	al and one of a non metal e.g. conducts electricity but low density, dull colour
### A condition of the standard form and the second break - bond trake form and the second break - bond trake form and the second break - bond trake form and the second form and the sec	
Bonds formed 4(C_F) + 4(H_F) = 4 × 484 + 4 × 562 - [1] [Enthapy change = bond break - bond make] -1904 = [4 × 412 + 4(F_F)] = [4 × 484 + 4 × 562] [4] 4(F_F) = -1904 - 4 × 412 + [4 × 484 + 4 × 562] = 632 F_F = 632 / 4 = 158 kJ/mol The student is correct [1] because the F_F bond energy is much less than the C-H or other covalent bond easily broken.	
4(C_F) + 4(H-F) = 4 × 484 + 4 × 562 – [1] [Enthapy change = bond break - bond make] -1904 = [4 × 412 + 4(F-F)](-)4 × 484 + 4 × 562] [1] 4(F-F) = -1904 - 4 × 412 + [4 × 484 + 4 × 562] = 632 F-F = 632 / 4 = 158 kJmol. The student is correct. [1] because the F-F bond energy is much less than the C-H or other covalent bond easily broken.	
[Enthapy change = bond break - bond make] -1904 = [4 × 412 + 4(F-F)] - [4 × 484 + 4 × 562] - [4] 4(F-F) = -1904 - 4 × 412 + [4 × 484 + 4 × 562] = 632 F-F = 632 / 4 = 158 kJ/mol The student is correct [1] because the F-F bond energy is much less than the C-H or other covalent bond easily broken.	
$-1904 = [4 \times 412 + 4(F-F)] - [4 \times 484 + 4 \times 562] - [4]$ $4(F-F) = -1904 - 4 \times 412 + [4 \times 484 + 4 \times 562] = 632$ $F-F = 632 / 4 = 158 \text{ kJ/mol}$ The student is correct [1] because the F-F bond energy is much less than the C-H or other covalent bond easily broken.	
$4(F-F) = -1904 - 4 \times 412 + [4 \times 484 + 4 \times 562] = 632$ $F-F = 632 / 4 = \frac{158 \text{ kJ/mol}}{158 \text{ kJ/mol}}$ The student is correct [1] because the F-F band energy is much less than the C-H or other covalent bond easily broken.	
$4(F-F) = -1904 - 4 \times 412 + [4 \times 484 + 4 \times 562] = 632$ $F-F = 632 / 4 = 158 \text{ kJ/mol}$ The student is correct [1] because the F-F bond energy is much less than the C-H or other covalent bond easily broken.	
F-F = 632 / 4 = 158 kJ/mol. The student is correct [1] because the F-F bond energy is much less than the C-H or other covalent bond easily broken.	= 632
F-F = 632 / 4 = 158 kJ/mol. The student is correct [fl] because the F-F bond energy is much less than the C-H or other covalent bond easily broken.	
because the F-F bond energy is much less than the C-H or other covalent bond easily broken.	inect (1)
easily broken.	n the C⊣H or other covalent bonds, therefore the F⊣F bond is weak /

A1 (c)	Chemical eqn	Ξ
	$2K(s) + 2H_2O(l) \rightarrow 2KOH(aq) + H_2(g)$	·
	lonic eqn	
	$2K(s) + 2H_2O(l) \rightarrow 2K^+(aq) + 2OH^-(aq) + H_2(g)$ [1]	
A2 (a)	Hydrogen	[1]
(q)	Finely divided Iron. [1]	Ξ
	It speeds up the reaction / increase the rate of reaction. [1]	
(0)	It will be fed back into the reactor / recycled / returned to the reaction. [1]	2
	It helps to reduce the cost of the process / less waste of raw materials used. [1]	
(p)	A higher temperature will give a lower yield [1]	2
	A higher pressure will give a higher yield [1]	
(e)	(i) $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$	Ξ
	Reversible arrow and state symbols are required.	-
	(ii) It is a redox reaction.	区
	The oxidation number of N decreases from 0 in N2 to -3 in NH3. Hence nitrogen gas has been reduced. [1]	
	The oxidation number of H increases from 0 in H ₂ to +1 in NH ₃ . Hence hydrogen gas has been oxidised. [1]	
A3 (a)	<u>Insoluble</u> substance / precipitate formed [1]	[2]
. •	Hence, light cannot travel through / stops light / block light [1]	
(Q)	Precipitate formed is not dense enough / thick enough / does not block all light / settled to the bottom of the tube.	[1]

(c) (j)	•	
	It is the <u>steepest graph</u> , indicating fastest rate of reaction / finishes in the <u>shortest time</u>	
(c) (ii)	Time = 42s	Ξ
	Rate = 1/42	
	$= 0.024 \text{ s}^{-1}[1, \text{ with units}]$	
	NO FRACTIONS ALLOWED IN CALCUEATION	
(c) (iii)	As temperature increases, particles gain heat with more kinetic energy and will move faster at a higher temperature and	<u></u>
	collide more frequently. [1]	
	More particles possess energy greater or equal than the activation energy. [1]	-
	Therefore, there is a higher frequency of effective collision, increasing the rate of reaction [1]	-
(p)	A more reactive metal will form a more stable metal carbonate [1]	[2]
	which takes a longer time to decompose to produce carbon dioxide gas [1]	
	where white precipitate is formed in the limewater.	
	Note: Metal carbonate → Metal oxide + carbon dioxide gas	
A4 (a)	Mole of $CO_2 = 1.79 / (12+16+16)$	Ε
	= 0.04068 mol (rleave to attleast 4 sf in working)	
	Mass of C = 0.04068 mol x 12	
	= 0.488 g (3sf)	
(g)	1.20 - 0.488 - 0.0812 = 0.631g	Ξ
	[Ecf allow from part (a)]	

MYE	
Express	
Sec 4	
\$ 2018	
GES	

	O: H: 0		N
	0.488/12:0.0812/1:0.631/16-[1]		
	0.0407 : 0.0812 : 0.0394		
	12		
	Empirical formula is: CH2O - [1]		
	[Ecf allowed from part (b) and part (a)]		
	Since Empirical formula is: CH2O		Ξ
	[Ecf allowed]		
	Mr of empirical formula is 30.		
T	For alcohol 1,		
	120 / 30 = 4		
J	Hence, molecular formula will be C₄H ₈ O₄. [1]		
	Therefore, alcohol G is alcohol 1. – above proven.		
	For alcohol 2, not possible.		
	SA CONTRACTOR OF THE CONTRACTO		
	Alcohol 1 has the simplest ratio that is the same as the empirical formula. [1]		
	Add aqueous bromine to alcohol 1, it decolouries OR turned from reddish brown to colourless.		Ξ
	From alcohol 2, ag bromine remains reddish brown.		
	エ・		[2]
	H-O-O-O-H H H H H H H H H H H H H H H H H H H H	·	

		-
	1m - correct structure for propene and water	
	1m – correct structure for propanol	
	[accept -O-H group to be at second carbon atom]	
A5 (a)	Moles of salicylic acid =	[2]
	100 g/ 138 = 0.7246 mol [1] (working round off to 4sf)	
	mass of aspirin = 0.7246 mol x 180 = 130.4 g	
	= 130 g (3sf) [1]	
A5 (b)(i)	250 / 400 * 100 = 62.5 % [1]	[2]
	- Reversible reaction / Some products are lost through other reactions / reactants are contaminated / contains	
	impurities. [1]	
A5 (b)(ii)	Catalyst provides an alternative pathway of lesser energy, hence less energy / temperature is required, reducing the cost	Ξ
	of production.	
A5 (c)	It is an endothermic reaction [1]	[7]
	It absorbs heat energy from the surroundings / temperature mixture as the ammonium nitrate dissolves. [1]	
A6 (a)	It allows the ions to be mobile / move / act as mobile charge carriers.	Ξ
(a)	$2Br(1) \rightarrow 2e + Br_2(g)$	Ξ
	(Happens at anode, hence oxidation happens)	
(c)(c)	Lead (II) ions / Ions would gain electrons	Ξ
E	Increase [1] in mass / size / layer formed [1]	2

	<u>0</u> 800000000000000000000000000000000000	
	Silvery [1] substance [1]	
	R. Solid. Because it is molten state.	
	Lead metal conducts electricity [1]	Ξ
B7 (a) (i)	Raw materials are renewable / Does not use crude oil	Ξ
(a) (ii)	Alcohol does not need to be distilled [1] as alcohol produced is pure [1]	[2]
(p) (q)	The healthier oil is sunflower oil. [1]	[2]
	It has less saturated fat than olive oil and corn oil [1] / it has the highest value of polyunsaturated fat compared with all the	
	ower olis. [1] OR	
	Rapeseed oil is healthiest [1] because it has the lowest value of saturated fat compared with the other oils. [1] / it has	
	more polyunsaturated fat than both olive and corn oil [1]	
(II) (q)	No, hydrogen adds to the unsaturated fat and reduces the number of carbon carbon double bonds. [1]	Z
	Hence there will be less polyunsaturated fat [1]	
(iii) (q)	Heat of combustion decreases as the number of carbon atom increases. [1]	[2]
	More bonds are broken during the combustion of longer chain alkanes, hence less energy is released. [1]	
(vi) (d)	Melting point increases as the number of carbon atoms increase.	[1]
B8 (a)	The mixture would have a lower melting point. [1] this allow the oxide to melt at a lower temperature and make the process	[2]
	more economical. [1] / Save money from electrical energy that is reduced. [1]	
(q)	Anode: $2O^2$ (I) $\to O_2$ (g) + 4e	[2]

MYE
Express
Sec 4
2018
GESS

(d) The overall equation is 2A ₁ O ₂ > 4A + 3O ₂ No. of moles of oxygen produced = 15 x 24 dm ³ [1] (e) The presence of oxygen gas_reads with the carbon anode to form oxides of carbon [1].		Cathode: Al³+(I) + 3e- → Al (I)	
Graphite cathode The overall equation is $2Al_2O_3 \Rightarrow 4Al + 3O_2$ No. of moles of Al = $540 / 27$ $= 20 \text{ mol}$ No. of moles of oxygen produced $= 20 / 4 \times 3 = 15 \text{ mol } [1]$ Volume of oxygen produced = $15 \times 24 \text{ dm}^3$ The presence of oxygen gas reacts with th Or Or	(3)	Electron flow (÷)	[2]
The overall equation is $2AI_2O_3 \Rightarrow 4AI + 3O_2$ No. of moles of $AI = 540 / 27$ $= 20 \text{ mol}$ No. of moles of oxygen produced $= 20 / 4 \times 3 = 15 \text{ mol } 171$ Volume of oxygen produced = 15 x 24 dm ³ 171 The presence of oxygen gas reacts with thooling of the carbon electrode and reduce		Carbo	
The overall equation is $2Al_2O_3 \Rightarrow 4Al + 3O_2$ No. of moles of Al = 540 / 27 $= 20 \text{ mol}$ No. of moles of oxygen produced $= 20 / 4 \times 3 = 15 \text{ mol } [11]$ Volume of oxygen produced = 15 x 24 dm³ Volume of oxygen produced = 15 x 24 dm³ The presence of oxygen gas reacts with the The presence of oxygen gas reacts with the Or			
2Al ₂ O ₃ → 4Al + 3O ₂ No. of moles of Al = 540 / 27 = 20 mol No. of moles of oxygen produced = 20 / 4 x 3 = 15 mol [1] Volume of oxygen produced = 15 x 24 dm³ The presence of oxygen gas reacts with th Or Oxidises the carbon electrode and reduce	(p)	The overall equation is	[2]
No. of moles of AI = 540 / 27 = 20 mol No. of moles of oxygen produced = 20 / 4 x 3 = 15 mol [1] Volume of oxygen produced = 15 x 24 dm³ The presence of oxygen gas reacts with thought or or oxidises the carbon electrode and reduce		2Al ₂ O ₃ → 4Al + 3O ₂	
= 20 mol No. of moles of oxygen produced = 20 / 4 x 3 = 15 mol [1] Volume of oxygen produced = 15 x 24 dm³ The presence of oxygen gas reacts with th Or Oxidises the carbon electrode and reduce		No. of moles of AI = 540 / 27	
No. of moles of oxygen produced = 20 / 4 x 3 = 15 mol [1] Volume of oxygen produced = 15 x 24 dm³ [1] The presence of oxygen gas reacts with thought one of the carbon electrode and reduce oxidises the carbon electrode and reduce		= 20 mol	
= 20 / 4 x 3 = 15 mol [1] Volume of oxygen produced = 15 x 24 dm³ The presence of oxygen gas reacts with the Orlean Carbon electrode and reduce		No. of moles of oxygen produced	
Volume of oxygen produced = 15 x 24 dm³ [1] The presence of oxygen gas reacts with the Or Or Oxidises the carbon electrode and reduce.		$= 20/4 \times 3 = 15 \text{ mol } [11]$	
= 360 dm ³ [1] The presence of oxygen gas reacts with the Or		Volume of oxygen produced = $15 \times 24 \text{ dm}^3$	
The presence of oxygen gas <u>reacts with the sence of oxygen gas reacts with the oxygen gas reacts with the oxygen gas reacts with the carbon electrode and reduce oxidises the carbon electrode and reduce</u>		= 360 dm ³ [1]	
The presence of oxygen gas reacts with the Or Oxidises the carbon electrode and reduce			
The presence of oxygen gas reacts with the Oxidises the carbon electrode and reduce			
Or Oxidises the carbon electrode and reduce the mass. [1]	(e)	The presence of oxygen gas reacts with the carbon anode to form oxides of carbon [1].	Ξ
Oxidises the carbon electrode and reduce the mass. [1]		jo	
		Oxidises the carbon electrode and reduce the mass. [1]	

MYE	
Express	
Sec 4	
2018	
GESS	

				2
				<u>.</u>
•				
	Conner (anode)			
ohleet	aqueous copper (1) Sulfate			
1 > - I tehother				
1 4 corroct torm	4 m. sorroot torminals and label of anode and cathode			
	וויומוס מוות ומחפו כו מווסמפ מוות כמנווסמס		-	
•				
1m - correct label of materials	l of materials			
Copper and copp	(Copper and copper sulfate solution)	•		
Larger surface area	Larger surface area [1] for collision to occur, hence higher rate of reaction [1].			2
				-
B9 (a) (i)				
2ZnS + 3O ₂ → 2ZnO + 2SO ₂	10 + 2SO ₂		-	Ξ
				<u>ත</u>
heat produced by o	heat produced by carbon/ coke (burning in) oxygen/ air;			
•				
$C + O \rightarrow CO$, pro	$C + O_2 \rightarrow CO_2$ produces heat' exothermic.			
2) (2) (3)				
- C				
· · · · · · · · · · · · · · · · · · ·				
2C + O ↑ 2CO B	2C + O ₂ → 2CO produces heat/ exothermic			
20 - 20 - 02				
$ZnO + CO \rightarrow Zn + CO_2$;	.002;			
OR				. :

MYE
Express
ব
Sec
S
∞
-
20
ഗ
ζÓ
Щ

	$ZnO + C \rightarrow Zn + CO$;	
	OR	
	$2ZnO + C \rightarrow 2Zn + CO_2$	
(b) (ii)	Temperature (inside the furnace) is above 907 °C	Ξ.
	OR	
	Temperature (inside the furnace) is above the boiling point (of zinc)	
	OR	
	1000°C is above the boiling point (of zinc)	
(p) (iii)	Condensation	Ξ
(3)	Zinc is more reactive than iron / Zinc is higher in the reactivity series than iron / Zinc reacts more readily with oxygen	[2]
	than iron. [1]	
	Zinc loses electrons more easily and it is able to react with the air and water [1]	
OR R	Fractional distillation [1] and cracking [1]	[2]
B9 (a)		
(p) (q)	Addition polymerization	Ξ
	[R: Additional polymerization]	
(E)	CH ₂	Ξ
(iii)	I I I I I I I I I I I I I I I I I I I	2
	CH3 H CH2 H	

ш
» MYE
(press
c 4 E
18 Se
S 20.
ES

. 		
	[1] chain of 4 carbon atoms with single bonds and continuation bonds;	
	[1] correctly positioned CH ₃ side chains;	
(၁)	any 2 from	[2]
	- similiar chemical properties	
	- same functional group	
	- trend each consecutive member differ by CH ₂	
(p)	I- 0- I- 0- I- 0- 1- 0-	[2]
	H-0-0-0-I	
1 		
	1-chloropropane	
	Cleither at first or second carbon atom.	