

ZHONGHUA SECONDARY SCHOOL

PRELIMINARY EXAMINATION 2019 SECONDARY 4E, 5N

Candidate's Name	Class	Register Number

ADDITIONAL MATHEMATICS

4047/01

PAPER 1

17 Sep 2019 2 hours

Candidates answer on the question paper.

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number in the spaces at the top of this page.. Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Answer all questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the

The use of an approved scientific calculator is expected, where appropriate. You are reminded of the need for clear presentation in your answers.

The number of marks is given in brackets [] at the end of each question or part question.
The total number of marks for this paper is 80.

This question paper consists of 16 printed pages (including this cover page)

Mathematical Formulae

I. ALGEBRA

Quadratic Equation

For the equation $ax^2 + bx + c = 0$,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Binomial Theorem

$$(a+b)^{n} = a^{n} + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^{2} + \dots + \binom{n}{r}a^{n-r}b^{r} + \dots + b^{n},$$
where n is a positive integer and $\binom{n}{r} = \frac{n!}{(n-r)!} \frac{n!}{r!} = \frac{n(n-1)\dots(n-r+1)}{r!}$

2. TRIGONOMETRY

Identities

$$\sin^2 A + \cos^2 A = 1.$$

$$\sec^2 A = 1 + \tan^2 A.$$

$$\csc^2 A = 1 + \cot^2 A.$$

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\sin 2A = 2 \sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A = 2 \cos^2 A - 1 = 1 - 2 \sin^2 A$$

$$\tan 2A = \frac{2 \tan A}{1 - \tan^2 A}$$

Formulae for $\triangle ABC$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$
$$\Delta = \frac{1}{2} ab \sin C$$

1 The diagram shows a straight line passing through P(0,b) and Q(a,-2b)

Given that the gradient of PQ is $-\frac{3}{7}$ and that the distance $PQ = 3\sqrt{58}$, find the value of a and of b.

[5]

- 2 The equation of a curve is $f(x) = |3\cos 2x| 2$
 - (i) State the minimum and maximum values of f(x).

[2]

(ii) Sketch the graph of $f(x) = |3\cos 2x| - 2$ for $0^{\circ} \le x \le 180^{\circ}$.

[3]

-

,

- 3 The expression $ax^3 4x^2 + bx + 6$ is exactly divisible by $x^2 x 2$.
 - (i) Find the value of a and of b.

[4]

(ii) Using these values of a and of b, solve the equation $ax^3 - 4x^2 + bx + 6 = 0$. [2]

In the diagram, TE and TC are tangents to the circle at A and B respectively. BD is parallel to TE.

(i) Prove that AB = AD.

4

[3]

(ii) Prove that triangle TAB is similar to triangle ABD.

[3]

- 5 The function f is defined by $f(x) = \frac{5-x^2}{x^2+3}$, x > 0
 - (i) Explain, with working, whether f is an increasing or decreasing function. [4]

(ii) A point P moves along the curve y = f(x) in such a way that the y-coordinate of P is increasing at a rate of 0.2 units per second. Find the rate of change of the x-coordinate of P when x = 4.

[2]

At m minutes after an oven is switched on, its temperature, $T^{\circ}C$, is given by		
$T=200-175e^{-km}$. The oven reached a temperature of 150°C after 16 minutes 15		
secon	ds.	
(i)	State the initial temperature of the oven.	[1]
(ii)	Estimate the temperature after 10 minutes.	[3]
(iii)	"If the oven is switched on for a very long time, it will never exceed a certain	
	explanation.	[2]
	•	
	,	
	T = 2 secon (i) (ii)	 T = 200 - 175e^{-km}. The oven reached a temperature of 150°C after 16 minutes 15 seconds. (i) State the initial temperature of the oven. (ii) Estimate the temperature after 10 minutes. (iii) "If the oven is switched on for a very long time, it will never exceed a certain temperature." Do you agree with the statement? Justify your answer with clear

7 (i) Express $-2x^2 + 3x + 2$ in the form $a(x+b)^2 + c$ where a, b and c are constants.

[2]

[4]

(ii) Use your answer from part (i) to explain why the curves with equations $y = -2x^2 + 3x + 2$ and $(x + 5)^2 + (y - 9)^2 = 30$ will not intersect.

-	
1	

- 8 (i) Form a quadratic equation for which the sum of roots is 4 and the sum of the squares of the roots is 20.
- [3]

- (ii) Given that the equation $(2m+3)x^2 (8m+8)x + 8m + 3 = 0$, find the value of m, for which
 - (a) one root is the negative of the other,

[2]

(b) one root is the reciprocal of the other.

[2]

- 9 Without using a calculator,
 - (i) show that $sin105^{\circ} = \frac{1+\sqrt{3}}{2\sqrt{2}}$, [2]

(ii) hence, express $1 + \cot^2 105^\circ$ in the form $a + b\sqrt{3}$, where a and b are integers.

The figure shows a piece of iron bar of length 8 metres, bent to form a pentagonal window frame *PORST*.

PT = QR = y metres, RS = ST = 2x metres and angle PTS =angle $QRS = 150^{\circ}$.

(i) Show that
$$y = 4 - 3x$$
.

(ii) Express the area,
$$A$$
, enclosed by the frame, in terms of x .

10 (iii) Given that x can vary, find the exact value of x for which the area enclosed by the frame is a maximum,

[2]

14

11 (i) Prove the identity $\frac{tanA-cotA}{tanA+cotA}+1=2sin^2A$

[3] .

(ii) Hence, solve the equation $\frac{tanA-cotA}{tanA+cotA} + 1 = 5sinAcosA$ for $0^{\circ} < A < 360^{\circ}$ [5]

12	A particle starts from rest, travels in a straight line so that t is the time in seconds after
	passing a fixed point O. Its velocity, $v m/s$, is given by $v = 6t - 2t^2$. The particle
	comes to instantaneous rest at A.

(i) Find the acceleration of the particle at A.

[3]

(ii) Find the maximum velocity of the particle.

[2]

12 (iii) Find the total distance travelled by the particle during the first 5 seconds.

[5]

End of Paper

ZHONGHUA SECONDARY SCHOOL

PRELIMINARY EXAMINATION 2019 SECONDARY 4E, 5N

Candidate's Name	Class	Register Number
Solutions		

ADDITIONAL MATHEMATICS

4047/01

PAPER 1

17 Sep 2019 2 hours

Candidates answer on the question paper.

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number in the spaces at the top of this page.. Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid.

Answer all questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an approved scientific calculator is expected, where appropriate. You are reminded of the need for clear presentation in your answers.

The number of marks is given in brackets [] at the end of each question or part question.
The total number of marks for this paper is 80.

This question paper consists of 16 printed pages (including this cover page)

1 The diagram shows a straight line passing through P(0,b) and Q(a,-2b)

Given that the gradient of PQ is $-\frac{3}{7}$ and that the distance $PQ = 3\sqrt{58}$, find the value of α and of b.

Grad
$$PQ = \frac{b - (-2b)}{0 - a} = -\frac{3}{7}$$
 M1
$$\frac{3b}{-a} = -\frac{3}{7}$$

[5]

$$a = 7b$$

$$PQ = 3\sqrt{58}$$

$$\sqrt{(0-a)^2 + (b+2b)^2} = 3\sqrt{58}$$

$$a^2 + 9b^2 = 9(58)$$

$$(7b)^2 + 9b^2 = 9(58)$$

$$58b^2 = 522$$

$$b^2 = 9$$
M1

$$b = 3$$
 ($b > 0$ as shown in diagram) A1
 $\therefore a = 21$ A1

- 2 The equation of a curve is $f(x) = |3\cos 2x| 2$
 - (i) State the minimum and maximum values of f(x).

$$Min of f(x) = 1$$
 B1

[2]

$$Max \ of \ f(x) = -2$$
 B1

(ii) Sketch the graph of $f(x) = |3\cos 2x| - 2$ for $0^{\circ} \le x \le 180^{\circ}$. [3]

One complete cycle B1

Starts and ends at f(x)=1 B1

Correct curvature B1

- 3 The expression $ax^3 4x^2 + bx + 6$ is exactly divisible by $x^2 x 2$.
 - (i) Find the value of a and of b.

Let
$$f(x) = ax^3 - 4x^2 + bx + 6$$

$$x^2 - x - 2 = (x - 2)(x + 1)$$

$$f(2) = 8a - 16 + 2b + 6 = 0$$

$$f(-1) = -a - 4 - b + 6 = 0$$

$$4a + b = 5$$

$$a+b=2$$

$$3a = 3$$
$$a = 1$$

$$b = 1$$

Αl

(ii) Using these values of a and of b, solve the equation $ax^3 - 4x^2 + bx + 6 = 0$.

 $x^3 - 4x^2 + x + 6 = 0$ By inspection, (x - 3) is the linear factor of f(x)

$$(x^2 - x - 2)(x - 3) = 0$$

$$(x-2)(x+1)(x-3)=0$$

$$x = -1, 2, 3$$

$$y = x^3 - 4x^2 + x + 6 = (x - 2)(x + 1)(x - 3)$$

In the diagram, TE and TC are tangents to the circle at A and B respectively. BD is parallel to TE.

(i) Prove that
$$AB = AD$$
. [3]
Let $\angle ABD = \theta$
 $\angle TAB = \theta$ (alternate angles, $BD \parallel TE$) B1
 $\angle ADB = \angle TAB = \theta$ (tangent – chord theorem) B1
Since $\angle ADB = \angle ABD = \theta$,

therefore, $\triangle ABD$ is an isosceles triangle with AB = AD

ві

- 5 The function f is defined by $f(x) = \frac{5-x^2}{x^2+3}$, x > 0
 - (i) Explain, with working, whether f is an increasing or decreasing function.

$$f'(x) = \frac{\left(x^2+3\right)(-2x)-\left(5-x^2\right)(2x)}{(x^2+3)^2}$$

[4]

[2]

M1

$$=\frac{-2x^3-6x-10x+2x^3}{(x^2+3)^2}$$

$$=\frac{-16x}{(x^2+3)^2}$$

Since x > 0, -16x < 0 and $(x^2 + 3)^2 > 0$, f'(x) < 0 and thus f(x) is a decreasing function for x > 0.

$$f(x) = \frac{5 - x^2}{x^2 + 3}$$

(ii) A point P moves along the curve y = f(x) in such a way that the y-coordinate of P is increasing at a rate of 0.2 units per second. Find the rate of change of the x-coordinate of P when x = 4.

$$\frac{dy}{dt} = +0.2$$

$$\frac{dy}{dt} = \frac{dy}{dx} \times \frac{dx}{dt}$$

$$0.2 = \frac{-16(4)}{(4^2 + 3)^2} \times \frac{dx}{dt}$$

$$\frac{dx}{dt} = -1.1281 = -1.13 units per sec$$
 A1

- At m minutes after an oven is switched on, its temperature, T° C, is given by $T = 200 175e^{-km}$. The oven reached a temperature of 150°C after 16 minutes 15 seconds.
 - (i) State the initial temperature of the oven. [1]

When
$$m = 0, T = 200 - 175e^{-0}$$

= 25°C B1

(ii) Estimate the temperature after 10 minutes.

$$150 = 200 - 175e^{-k(16.25)}$$

$$175e^{-k(16.25)} = 50$$

$$e^{-k(16.25)} = \frac{2}{7}$$

$$-16.25k = \ln{\frac{2}{7}}$$
M1

[3]

[2]

B2

$$k = \frac{\ln\frac{2}{7}}{-16.25} \text{ or } 0.077093$$
 AI

When m = 10mins, $T = 200 - 175e^{-k(10)}$ = 119.04°C = 119°C (3 sig fig) A1

(iii) "If the oven is switched on for a very long time, it will never exceed a certain temperature." Do you agree with the statement? Justify your answer with clear explanation.

$$T = 200 - 175e^{-km}$$
$$T = 200 - \frac{175}{e^{km}}$$

Yes, I agree with the statement.

Since k > 0, m > 0, and when m becomes large, $\frac{175}{e^{km}}$ becomes a very small positive value. Therefore, T will never exceed 200°C.

7 (i) Express $-2x^2 + 3x + 2$ in the form $a(x+b)^2 + c$ where a, b and c are constants.

$$-2x^{2} + 3x + 2 = -2\left[x^{2} - \frac{3}{2}x - 1\right]$$

$$= -2\left[\left(x - \frac{3}{4}\right)^{2} - \frac{9}{16} - 1\right] \qquad \left(x - \frac{3}{4}\right)^{2} \text{ seen} \quad \text{B1}$$

$$= -2\left[\left(x - \frac{3}{4}\right)^{2} - \frac{25}{16}\right]$$

$$= -2\left(x - \frac{3}{4}\right)^{2} + \frac{25}{8} \quad \text{B1}$$

[2]

(ii) Use your answer from part (i) to explain why the curves with equations $y = -2x^2 + 3x + 2$ and $(x + 5)^2 + (y - 9)^2 = 30$ will not intersect. [4]

$$y = -2x^2 + 3x + 2 = -2\left(x - \frac{3}{4}\right)^2 + \frac{25}{8}$$
 has a maximum value at $y = \frac{25}{8}$ or 3.125

 $(x+5)^2 + (y-9)^2 = 30$ is a circle with center (-5,9) and radius $\sqrt{30}$. M1 for either centre or radius

The minimum value of
$$y = 9 - \sqrt{30} = 3.522$$
 B1

Since maximum of $y = -2x^2 + 3x + 2$ < minimum of $(x + 5)^2 + (y - 9)^2 = 30$, the 2 curves will not intersect.

Form a quadratic equation for which the sum of roots is 4 and the sum of the squares of the roots is 20. [3]

$$\alpha + \beta = 4$$

$$\alpha^2 + \beta^2 = 20$$

$$\Rightarrow (\alpha + \beta)^2 - 2\alpha\beta = 20$$
M1

$$(4)^2 - 2\alpha\beta = 20$$

$$\alpha\beta = -2$$
M1

 \therefore the quadratic equation is $x^2 - 4x - 2 = 0$ A1

Given that the equation $(2m+3)x^2 - (8m+8)x + 8m + 3 = 0$, find the value of m, for which

(a) one root is the negative of the other, [2]

Let the roots be α and $-\alpha$.

Sum of roots:
$$\alpha + (-\alpha) = \frac{8m+8}{2m+3}$$
 attempt to form eqn M1
$$\frac{8m+8}{2m+3} = 0$$

$$8m+8 = 0$$

m = -1A1

(b) one root is the reciprocal of the other. [2]

Let the roots be α and $\frac{1}{\alpha}$. Product of roots: $\alpha \times \frac{1}{\alpha} = \frac{8m+3}{2m+3}$ attempt to form eqn

roduct of roots:
$$\alpha \times \frac{2}{\alpha} = \frac{2m+3}{2m+3}$$
 attempt to form eqn M1
$$8m+3 = 2m+3$$

6m = 0

m = 0A1

Without using a calculator, 9

(i) show that
$$sin105^{\circ} = \frac{1+\sqrt{3}}{2\sqrt{2}}$$
, [2]

$$\sin 105^{\circ} = \sin(45^{\circ} + 60^{\circ})$$
 M1

 $= \sin 45^{\circ} \cos 60^{\circ} + \cos 45^{\circ} \sin 60^{\circ}$

$$= \left(\frac{1}{\sqrt{2}}\right) \left(\frac{1}{2}\right) + \left(\frac{1}{\sqrt{2}}\right) \left(\frac{\sqrt{3}}{2}\right)$$

$$= \frac{1 + \sqrt{3}}{2\sqrt{2}}$$
AI

AG

(ii) hence, express
$$1 + \cot^2 105^\circ$$
 in the form $a + b\sqrt{3}$, where a and b are integers. [5]

$$1 + cot^2 105^\circ = cosec^2 105^\circ$$

$$\cot^{2} 105^{\circ} = \csc^{2} 105^{\circ}$$

$$= \frac{1}{\sin^{2} 105^{\circ}}$$

$$= \left(\frac{2\sqrt{2}}{1+\sqrt{3}}\right)^{2}$$

$$= \frac{8}{4+2\sqrt{3}}$$
For correctly squaring $1+\sqrt{3}$ M1
$$= \frac{4}{2+\sqrt{3}} \times \frac{2-\sqrt{3}}{2-\sqrt{3}}$$

$$= 8-4\sqrt{3}$$
For rationalising M1
A1

MI

$$= \frac{4}{2 + \sqrt{3}} \times \frac{2 - \sqrt{3}}{2 - \sqrt{3}}$$
 For rationalising MI

$$=8-4\sqrt{3}$$
 A1

10

The figure shows a piece of iron bar of length 8 metres, bent to form a pentagonal window frame PQRST.

PT = QR = y metres, RS = ST = 2x metres and angle PTS =angle $QRS = 150^{\circ}$.

(i) Show that
$$y = 4 - 3x$$
. [3]

PQRT is a rectangle

⇒
$$4STR = 4SRT = 150^{\circ} - 90^{\circ} = 60^{\circ}$$
 M1
∴ $4TSR = 180^{\circ} - 2(60^{\circ}) = 60^{\circ}$

Since TSR is an equilateral triangle,

$$TR = 2x$$

$$\Rightarrow PQ = 2x$$
 M1

$$3(2x) + 2y = 8$$
 B1

$$2y = 8 - 6x$$

$$y = 4 - 3x$$
 AG

(ii) Express the area,
$$A$$
, enclosed by the frame, in terms of x . [3]

$$A = 2x(y) + \frac{1}{2}(2x)(2x)\sin 60^{\circ}$$
 For M(absin c) o.e. B1

encrosed by the frame, in terms of
$$x$$
.

$$A = 2x(y) + \frac{1}{2}(2x)(2x)\sin 60^{\circ}$$
For $\%$ (absin e) e.e. B1
$$= 2x(4 - 3x) + 2x^{2}\left(\frac{\sqrt{3}}{2}\right)$$
For substituting y BI
$$= 8x - 6x^{2} + \sqrt{3}x^{2}$$
A1

$$= 8x - 6x^2 + \sqrt{3}x^2$$
 A1

10 (iii) Given that x can vary, find the exact value of x for which the area enclosed by the frame is a maximum.

$$A = 8x - 6x^2 + \sqrt{3}x^2$$

$$\frac{dA}{dx} = 8 - 12x + 2\sqrt{3}x$$
M1

[2]

For max area,
$$\frac{dA}{dx} = 0$$

 $8 - 12x + 2\sqrt{3}x = 0$
 $12x - 2\sqrt{3}x = 8$
 $x = \frac{8}{12 - 2\sqrt{3}}$
 $= \frac{4}{6 - \sqrt{3}}$

11 (i) Prove the identity
$$\frac{tanA-cotA}{tanA+cotA} + 1 = 2sin^2A$$
 [3]

$$LHS = \frac{tanA - cotA}{tanA + cotA} + 1$$

$$= \frac{\left(\frac{\sin A}{\cos A} - \frac{\cos A}{\sin A}\right)}{\left(\frac{\sin A}{\cos A} + \frac{\cos A}{\sin A}\right)} + 1$$
For convening tan A or cot A
B1

$$=\frac{\sin^2 A - \cos^2 A}{\sin^2 A + \cos^2 A} + 1$$
 M1

$$= (sin^2A - cos^2A) + (sin^2A + cos^2A)$$
 For $sin^2A + cos^2A = 1$ and B leading to final answer.
$$= 2sin^2A$$

$$= RHS$$
 For $sin^2A + cos^2A = 1$ and B leading to final answer.

(ii) Hence, solve the equation
$$\frac{tanA-cotA}{tanA+cotA} + 1 = 5sinAcosA$$
 for $0^{\circ} < A < 360^{\circ}$ [5]

From (i), subs
$$\frac{tanA-cotA}{tanA+cotA}+1=2sin^2A$$

$$2\sin^2 A = 5\sin A\cos A$$
 B1

$$\sin A(2\sin A - 5\cos A) = 0$$
 M1

$$\sin A = 0$$
 or $2\sin A = 5\cos A$

$$A = 180^{\circ}(rejected) \qquad or \qquad \tan A = \frac{5}{2}$$

$$basic\ angle, \alpha = tan^{-1}\frac{5}{2}$$

basic angle,
$$\alpha = \tan^{-1} \frac{3}{2}$$

= 68.2° M1

$$A = 68.2^{\circ}, 248.2^{\circ}$$

Ans:
$$A = 68.2^{\circ}$$
, 248.2° For 180° (rejected) A1

- 12 A particle starts from rest, travels in a straight line so that t is the time in seconds after passing a fixed point O. Its velocity, v m/s, is given by $v = 6t 2t^2$. The particle comes to instantaneous rest at A.
 - (i) Find the acceleration of the particle at A.

at A,
$$v = 0$$

$$\Rightarrow 2t(3-t) = 0$$

$$t = 0 or t = 3$$
For $v = 0$ M1

[3]

[2]

$$a = \frac{dv}{dt}$$

$$a = 6 - 4t$$
M1

- at A, acceleration = 6 4(3) = -6 m/s A1
- (ii) Find the maximum velocity of the particle.

For max velocity,
$$\frac{dv}{dt} = 0$$

$$6 - 4t = 0$$

$$t = \frac{3}{2}$$
M1

$$\therefore \max velocity = 6\left(\frac{3}{2}\right) - 2\left(\frac{3}{2}\right)^2 = 4\frac{1}{2} m/s$$
 A1

12 (iii) Find the total distance travelled by the particle during the first 5 seconds. [5]

$$s = \int v \, dt$$

$$= \int 6t - 2t^2 \, dt$$

$$= 3t^2 - \frac{2}{3}t^3 + c$$
M1

when
$$t = 0, s = 0 \Rightarrow c = 0$$

$$\therefore s = 3t^2 - \frac{2}{3}t^3$$
B1

when
$$t = 3$$
, $s = 3(3)^2 - \frac{2}{3}(3)^3 = 9$ A1

when
$$t = 5$$
, $s = 3(5)^2 - \frac{2}{3}(5)^3 = -8\frac{1}{3}$ Al

Total distance =
$$9 + 9 + 8\frac{1}{3} = 26\frac{1}{3} m$$
 A1

End of Paper

ZHONGHUA SECONDARY SCHOOL

PRELIMINARY EXAMINATION 2019 SECONDARY 4E/5N

Candidate's Name	Class	Register Number

ADDITIONAL MATHEMATICS

4047/02

PAPER 2

20 September 2019 2 hours 30 minutes

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number in the spaces at the top of this page. Write in dark blue or black pen. You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid.

Answer all the questions,

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question. The use of an approved scientific calculator is expected, where appropriate. You are reminded of the need for clear presentation in your answers.

At the end of the presentation, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. The total number of marks for this paper is 100.

This question paper consists of 21 printed pages (including this cover page)

Mathematical Formulae

1. ALGEBRA

Quadratic Equation

For the equation $ax^2 + bx + c = 0$,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Binomial Theorem

$$(a+b)^n=a^n+\binom{n}{1}a^{n-1}b+\binom{n}{2}a^{n-2}b^2+\cdots+\binom{n}{r}a^{n-r}b^r+\cdots+b^n\,,$$
 where n is a positive integer and $\binom{n}{r}=\frac{n!}{(n-r)!}\frac{n!}{r!}=\frac{n(n-1)\dots(n-r+1)}{r!}$

2. TRIGONOMETRY

Identities

$$\sin^2 A + \cos^2 A = 1.$$

$$\sec^2 A = 1 + \tan^2 A.$$

$$\csc^2 A = 1 + \cot^2 A.$$

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\sin 2A = 2 \sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A = 2 \cos^2 A - 1 = 1 - 2 \sin^2 A$$

$$\tan 2A = \frac{2 \tan A}{1 - \tan^2 A}$$

Formulae for $\triangle ABC$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$
$$\Delta = \frac{1}{2} ab \sin C$$

Answer all the questions

- The equation of a curve is $y = -x^2 + (k-2)x + 2k$, where k is a constant.
 - (i) Find the set of values of k for which the line y=2kx+2k+1 lies entirely above the curve. [3]

(ii) State the values of k for which the line y = 2kx + 2k + 1 is a tangent to the curve.

[Turn over

Explain why there is only one value of k for which y cannot be positive and state this value. [4]

[Turn over

2 (i) Find the first 3 terms in the expansion of $\left(2-\frac{x}{4}\right)^n$ in ascending powers of x, where n is a positive integer greater than 2. Give the terms in their simplest forms. [2]

(ii) In the expansion of $(4+x)^2 \left(2-\frac{x}{4}\right)^n$, there is no term in x^2 . Find the value of n.

[Turn over

6

3 (i) Express $\frac{4x^3 + 21x^2 - 4x - 6}{(x^2 + 2)(2x - 1)}$ as $a + \frac{bx^2 + cx + d}{(x^2 + 2)(2x - 1)}$

where a, b, c and d are integers.

[2]

(ii) Differentiate $In(x^2+2)$ with respect to x.

[2]

Using the results from (i) and (ii) and expressing $\frac{bx^2 + cx + d}{(x^2 + 2)(2x - 1)}$ as partial fractions,

(iii)
$$\int \frac{4x^3 + 2Ix^2 - 4x - 6}{(x^2 + 2)(2x - 1)} dx.$$
 [8]

4	(a)	Variables x and y are related by the equation $px^2 + qy = x$, where p and q are constants. Y is plotted against X to obtain a straight line graph. (i) If $X = x$, state Y in terms of x and/or y.			[1]		
		(ii) Explain clearly how p	and q can be obtain	ed from th	e straight line graph drawn.	[2]	
	(b)	after t weeks is given by	$P = P_o e^{kt}$, where P_o	and k are	number of snails in a colony constants.		
		The table below gives som	e values of P and t	.			
		t (weeks) 4 P 30	8 12	16	20		
		(i) On the grid on page 9,	45 66 draw a suitable stra	99	147 raph to illustrate this data.	[3]	
		TTo a constitution of the section of			•		
		Use your graph to estimate (ii) the number of snails i		the study b	egan,	[2]	
		(iii) the value of k .				[2]	~>
							*3
	[Tarn ov			er a	>		

		taritimi.		(Halenel-H-	7-14-7		-,-,-,-,-,-,-	
		1						
Industrial Contract	Michall	1::::::::::::::::::::::::::::::::::::::				PATA		
		hitchick	11-1-1-1-1					
<u> </u>	<u> • </u>	1-	+		THE			
				diridt.		1-		
12世纪中共14世22年,21年				tri tili				
				H:+++	P-7-7-	H-137, 77-14		
	<u> </u>	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	++++++	`` -i- - -+ - - -	H-PHTT:			
			HHHH	Hillians.	11.41.41.51		++,+;-;-;-;-;-;-;-;-;-;-;-;-;-;-;-;-;-;-	1-
化中国中国中国中国		l:'1:::::::::::::::::::::::::::::::::::						
	性:详样			11: 355			7777	TH-1
		i satistiti titi						
		1	 + + + - -	+	<u> </u>			
					Subboton		进步进步	1000000
b密码用描字符	BTH44			1) = = = = = = = = = = = = = = = = = = =				
	ran ta							
124-034		HHH-H-F	中许中中九					
					H -241			
世界世界中央, 1955					医阳井片			
						444		
				T;'-::TF:			72 744	
				114:55:7	H- H- H- H- H		77:7145	
					11.144.1.1			
				Hritiile:			+:11:THE	PITHAM N
					·		!!:+ !:+!4*	1+1+1+1-1-1-1
					Underdie			
				TELTER			12:11	
	1-		44-14-14					33 14 14 15
184464				4-4-4				
	H-}		THE 94					
			17 P. H				######	
			-!- +- +	-1-1			::::::::::	
						5544-7546-	+1: -2+6	1
					-,,(41-10)			
				+!.=!+:!			1-1-1-1-1-1-1	1111111
			#####				1444	
	77.7.7.				<u> </u>	<u> </u>	++++++	
	73:-1:11FL		##			######	tdabidati	
		<u> </u>	111111111111					
	lio::b\bi	: <u>!!</u>					平平用	
[\$49.74.444.144.144.144.144.144.144.144.144.			404444					
	+::+-	1			7	***		
								110444
					7 3 5 4 5 5		共二十二	-irith::\
			4:444					
		+						中世出
				tilti.Ht	::::::::::::::::::::::::::::::::::::::			7
	74:14:14:14:14:14:14:14:14:14:14:14:14:14						-PHHH	HAHEA
FUTTER STATE OF		非出出社	***********	triutil	t Hilli		+12+14	
	انطينت		<u> </u>	<u> </u>	++++	111111	<u>-1-1-1-1-1-1-1</u>	
81-61-4-1-4-1-4			拼状溢出				<u> </u>	
			######	777			与为华世引	· <u> </u>
	#39###	1713741141		74744	KITTE I		#::::::::::::::::::::::::::::::::::::::	
				开口口				
		11/10/17/17/17					<u> </u>	

10

5 (a) Given that $\frac{\log_x y}{\log_y x} + \log_x y - 6 = 0$, express y in terms of x. [4]

(b) Solve the equation $9^{x+1} - 3^{x+1} = 2$.

[3]

6 (i) On the same diagram, sketch the curve $y = x^{\frac{3}{2}}$ and $y = 8x^{-\frac{1}{2}}$. [2]

(ii) Find the coordinates of the point of intersection of the two curves.

[Turn over

- 7 A circle, C_1 , has the equation $x^2 + y^2 4x + 6y = 12$.
 - (i) Find the coordinates of the centre and the radius of C_i .

[3]

The equation of the tangent to C_1 at the point P is 4y-3x+43=0.

Hence, using (i), find

(ii) the coordinates of the point P on C_1 .

[5]

7 A second circle, C_2 , passes through the points (19, 8) and (-9, 12) and has a radius of 20 units.

(iii) Find the two possible centres of circle, C_2 .

[6]

[Turn over

,

8

The diagram shows two triangles, ABC and DCB. It is given that BC = 12 cm, DC = 3 cm, angle CAB =angle $DCB = 90^{\circ}$ and angle $ABC = \theta^{\circ}$, where θ varies. A perpendicular is dropped from D to meet AB at E.

(i) Show that the perimeter of triangle DEB, P can be expressed as

 $\sqrt{153} + 9\sin\theta + 15\cos\theta$.

[4]

8 (ii) Express P in the form $\sqrt{153} + R\cos(\theta - \alpha)$, where R > 0 and α is an acute angle. [3]

(iii) Find the value of θ for which P = 27.

[3]

9 (a) Show that $.\frac{1+\sin 4A - \cos 4A}{1+\sin 4A + \cos 4A} = \tan 2A$

[3]

- (b) The temperature, T, in degrees Celsius, of a metal plate undergoing a chemical process after x seconds, is given by $T = -\frac{25}{9}x^2 + 50x + \frac{55}{3}$.
 - Determine when the metal plate starts cooling.

[3]

- 10 A cubic curve has the stationary points at (1, -7) and $\left(-\frac{7}{3}, \alpha\right)$, where α is a constant.
 - (i) Explain why $\frac{dy}{dx} = k(x-1)(3x+7)$, where k is a constant.

[3]

10 (ii) Given that the curve passes through the point (-1, 17), determine its equation.

[6]

10 (iii) Determine the nature of the two stationary points.

[3]

11

The diagram shows part of the curve $y=5-e^{1-2x}$ passing through the point P where x = k, where k is a constant. The tangent to the curve at P meets the line y = 5 at Q(1, 5)

and x-axis at $R\left(-\frac{3}{2},0\right)$. A vertical line is drawn at Q.

(i) Find the value of k.

[4]

11 (ii) Find the total area of the shaded region.

[5]

End of paper

ZHONGHUA SECONDARY SCHOOL

PRELIMINARY EXAMINATION 2019 SECONDARY 4E/5N

Candidate's Name	Class	Register Number
MARKING SCHEME		

ADDITIONAL MATHEMATICS

4047/02

PAPER 2

20 September 2019 2 hours 30 minutes

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number in the spaces at the top of this page. Write in dark blue or black pen. You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question. The use of an approved scientific calculator is expected, where appropriate. You are reminded of the need for clear presentation in your answers.

At the end of the presentation, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. The total number of marks for this paper is 100.

This question paper consists of 20 printed pages (including this cover page)

Answer all the questions

- The equation of a curve is $y = -x^2 + (k-2)x + 2k$, where k is a constant.
 - (i) Find the set of values of k for which the line y = 2kx + 2k + 1 lies entirely above the curve. [3]

For
$$2kx+2k+1 > -x^2 + (k-2)x+2k$$

 $x^2 + (k+2)x+1 < 0$ M1
Discriminant < 0
 $x^2 + (k+2)x+1 < 0$
 $(k+2)^2 - 4(1)(1) < 0$ M1
 $(k+2-2)(k+2+2) < 0$
 $k(k+4) < 0$
 $-4 < k < 0$ A1

(ii) State the values of k for which the line y = 2kx + 2k + 1 is a tangent to the curve. [1]

$$k = -4$$
 or $k = 0$ Al

l (iii) Explain why there is only one value of k for which y cannot be positive and state [4]

Discriminant =
$$(k-2)^2 - 4(-1)(2k)$$

= $k^2 - 4k + 4 + 8k$
= $k^2 + 4k + 4$
= $(k+2)^2$ B1

When k = -2, Discriminant = 0 y = 0 is a tangent to the curve. Since coefficient of x^2 is negative, the maximum value of y = 0.

For any other values of k, $(k+2)^2 > 0$ Discriminant > 0 _ B1 · The curve intersects the x- axis at two points, Maximumi value of y > 0y can be positive.

Ans: k = -2

2 (i) Find the first 3 terms in the expansion of $\left(2-\frac{x}{4}\right)^n$ in ascending powers of x,

where n is a positive integer greater than 2. Give the terms in their simplest forms. [2]

$$\left(2 - \frac{x}{4}\right)^{n} = 2^{n} + \binom{n}{1} (2)^{n-1} \left(-\frac{x}{4}\right) + \binom{n}{2} (2)^{n-2} \left(-\frac{x}{4}\right)^{2} + \dots$$

$$= 2^{n} - \frac{n \times 2^{n} x}{8} + \frac{n(n-1)}{2} \times 2^{n-2} \times \frac{x^{2}}{16} + \dots$$

$$= 2^{n} - \frac{n \times 2^{n} x}{8} + \frac{n(n-1)}{128} \times 2^{n} \times x^{2} + \dots$$

B1 for any 2 terms correct

B2 for all 3 terms correct

(ii) In the expansion of $(4+x)^2(2-\frac{x}{4})^n$, there is no term in x^2 .

Find the value of n.

[5]

$$(16+8x+x^2)$$
 $\left(2^n-\frac{n\times 2^nx}{8}+\frac{n(n-1)}{128}\times 2^n\times x^2+...\right)$

expansion of $(4+x)^2$ B1

Term in x^2 ,

$$=16\times\frac{n(n-1)}{128}\times2^n\times x^2+8x\left(-\frac{n\times2^nx}{8}\right)+x^2\times2^n$$
 M1-adding of 3 product

coefficient of $x^2 = \frac{n(n-1)}{8} \times 2^n - n \times 2^n + 2^n = 0$

$$2^{n}\left(\frac{n(n-1)}{8}-n+1\right)=0 \quad M1 \text{ (Factorisation)}$$

$$2^{n} \neq 0$$
, $n(n-1)-8n+8=0$

$$n^2 - 9n + 8 = 0$$
 B1

$$(n-1)(n-8)=0$$

$$n=1$$
 (rejected) or $n=8$ A

3 (i) Express
$$\frac{4x^{1}+21x^{2}-4x-6}{(x^{2}+2)(2x-1)}$$
 as $a+\frac{bx^{2}+cx+d}{(x^{2}+2)(2x-1)}$

where a, b, c and d are integers.

$$2x^{3}-x^{2}+4x-2 / \frac{2}{4x^{3}+21x^{2}-4x-6} - \frac{(4x^{3}-2x^{2}+8x-4)}{23x^{2}-12x-2}$$

$$\frac{4x^3 + 21x^2 - 4x - 6}{\left(x^2 + 2\right)\left(2x - 1\right)} = 2 + \frac{23x^2 - 12x - 2}{\left(x^2 + 2\right)\left(2x - 1\right)}$$
 M1, A1

(ii) Differentiate
$$\ln(x^2+2)$$
 with respect to x.

$$\frac{d}{dx}\ln(x^2+2)$$

$$= \frac{2x}{x^2+2} \quad \frac{1}{x^2+2} \text{ seen Bi, Al}$$

[Turn over

[2]

[2]

Using the results from (i) and (ii) and expressing $\frac{bx^2 + cx + d}{(x^2 + 2)(2x - 1)}$ as partial fractions,

find

(iii)
$$\int \frac{4x^3 + 21x^2 - 4x - 6}{(x^2 + 2)(2x - 1)} dx.$$
 [8]

$$\int \frac{4x^3 + 21x^2 - 4x - 6}{(x^2 + 2)(2x - 1)} dx = \int 2 + \frac{23x^2 - 12x - 2}{(x^2 + 2)(2x - 1)} dx$$
Let
$$\frac{23x^2 - 12x - 2}{(x^2 + 2)(2x - 1)} = \frac{A}{2x - 1} + \frac{Bx + C}{(x^2 + 2)} \quad M1$$

$$23x^2 - 12x - 2 = A(x^2 + 2) + (2x - 1)(Bx + C) \quad M1$$
Let
$$x = \frac{1}{2},$$

$$\frac{23}{4} - \frac{12}{2} - 2 = A\left(\frac{1}{4} + 2\right)$$

$$4 \quad 2 \qquad (4 \quad)$$
$$-\frac{9}{4} = A\left(\frac{9}{4}\right)$$

$$A=-1$$
 A1

Comparing the coefficient of x^2 and constant,

$$23 = A + 2B$$

$$B = 12 A1$$

$$-2 = 2A - C$$

$$C = 0 A1$$

$$\int \frac{4x^3 + 21x^2 - 4x - 6}{(x^2 + 2)(2x - 1)} dx = 2x + \int -\frac{1}{2x - 1} + \frac{12x}{(x^2 + 2)} dx$$

$$= 2x - \frac{\ln(2x - 1)}{2} + 6\int \frac{2x}{(x^2 + 2)} dx$$

$$= 2x - \frac{\ln(2x - 1)}{2} + 6\ln(x^2 + 2) + c A1$$

$$B1 B1$$

|Turn over

- Variables x and y are related by the equation $px^2 + qy = x$, where p and q are constants. Y is plotted against X to obtain a straight line graph.
 - (i) If X = x, state Y in terms of x and/or y.

[1]

- (ii) Explain clearly how p and q can be obtained from the straight line graph drawn. [2]
- (i) $qy = -px^2 + x$ $\frac{y}{x} = -\frac{p}{q}x + \frac{1}{q}$ $Y = \frac{y}{x}$ A1
- (ii) Y-intercept $=\frac{1}{q}$ B1 gradient of graph $=-\frac{p}{q}$ B1
- (b) The number of snails in a colony is being studied. The number of snails in a colony after t weeks is given by $P = P_o e^{kt}$, where P_o and k are constants

 The table below gives some values of P and t.

(weeks)	4	8	12	16	20
P	30	45	66	99	147

(i) On the grid on page 9, draw a suitable straight line graph to illustrate this data. [3] $\ln P = \ln P_o + kt$ M1 Plot $\ln P$ against t. Straight line graph drawn B2

t	4	8	12	16	20
ln P	3.40	3.81	4.19	4.60	4.99

Use your graph to estimate

(ii) the number of snails in the colony when the study began,

[2]

From graph, $\ln P_o = 3$ M1

$$P_o = e^3 = 20$$
 Number of snails = 20 A1

(iii) the value of k.

[2]

Gradient =
$$\frac{4.60-3.40}{16-4}$$
 M1
 $k = \text{gradient} = 0.1$ A1

	. Stabilitati nasiri attaki istori
	·王公子() 计注:" 法法 " 注: " 注: " 注: " 注: " 注: " 注: " 注
	ATOMINE STATE
· +	
The state of the control of the control of the particular of the control of the c	
	"HAN midding till arbitati, ditator "I
	N
PRESENTED TO THE PROPERTY OF T	
下海,不可以升至,并是并分别有法国的活出。 计 经 计图上的 计通过	
ACCURATION OF THE PARTY OF THE SECOND PROPERTY OF THE SECOND PROPERT	
PF94. TRAFF 34.752.4916 (1727); FF3 & F512.5314.	
	· · · · · · · · · · · · · · · · · · ·
	787-87 H 177- 52-33-63-63-63-63-63-63-63-63-63-63-63-63-
	777X XI TT
Struct of the southing the post of the property of the contract of	
(新光生 用土土 光社区 一大战争 医海绵 医红斑 医红斑 医红斑 医	
FAPER AND MEDICAL CONTRACTOR OF THE STATE OF	
- 1995年 - 1995年 - 1996年 - 199	
一个并分别是一部是一部上上一张士士,此位一个在一个工作。	
图形器 Paltrent Bible 全部引起进程的主题的 是进口的数据	
NAPATHATA TO BE AND A STATE OF THE STATE OF	
· 本4.4	
1-2-7-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	44.44.44.44.44.44.44.44.44.44.44.44.44.
	<u> </u>

Given that
$$\frac{\log_x y}{\log_y x} + \log_x y - 6 = 0$$
, express y in terms of x . [4]
$$\frac{\log_x y}{\log_y x} + \log_x y - 6 = 0$$

$$\log_x y \div \frac{\log_x x}{\log_x y} + \log_x y - 6 = 0 \quad \text{M1 change of base}$$

$$(\log_x y)^2 + \log_x y - 6 = 0$$

$$(\log_x y + 3)(\log_x y - 2) = 0 \quad \text{Any method to solve quadratic eqn M1}$$

$$\log_x y = -3 \quad \text{or} \quad \log_x y = 2$$

$$y = x^{-3} \quad \text{or} \quad y = x^2 \quad \text{A1, A1}$$

(b) Solve the equation
$$9^{x+1} - 3^{x+1} = 2$$
.
Let $u = 3^x$

$$9u^2 - 3u - 2 = 0 \quad \text{either } 3^{2x} \times 9 = 9u^2 \text{ seen or } 3^{x+1} = 3u \text{ seen B1}$$

$$(3u+1)(3u-2) = 0$$

$$u = -\frac{1}{3} \text{ or } u = \frac{2}{3} \quad \text{M1}$$

$$3^x = -\frac{1}{3} \text{ (rejected)} \quad \text{or } 3^x = \frac{2}{3}$$

$$x \cdot 1g \cdot 3 = 1g \cdot \frac{2}{3}$$

$$x = \frac{1g \cdot \frac{2}{3}}{1g \cdot 3} = -0.369 \text{ (to 3 sf)} \quad \text{A1}$$

[Turn over

6 (i) On the same diagram, sketch the curve $y = x^{\frac{3}{2}}$ and $y = 8x^{-\frac{3}{2}}$.

(ii) Find the coordinates of the point of intersection of the two curves. [3] For points of intersection,

$$x^{\frac{3}{2}} = 8x^{-\frac{3}{2}}$$

$$x^{\frac{3}{2}} = \frac{8}{x^{\frac{3}{2}}}$$

$$x^{3} = 8 \qquad M1$$

$$x = 2 \qquad A1$$

$$y = 2^{\frac{3}{2}}$$

Point of intersection = (2, 2.83) A1

[Turn over

[2]

- 7 A circle, C_1 , has the equation $x^2 + y^2 4x + 6y = 12$.
 - (i) Find the coordinates of the centre and the radius of C_1 . [3] centre = (2, -3)

centre =
$$(2, -3)$$

 $r = \sqrt{2^2 + (-3)^2 - (-12)}$ M1
= $\sqrt{25}$
= 5 A1

The equation of the tangent to C_1 at the point P is 4y-3x+43=0.

Hence, using (i), find

(ii) the coordinates of the point P on C_1 .

Gradient of normal at $P = -\frac{4}{3}$ M1

$$C = (2, -3)$$

Equation of the normal at P is $y+3=-\frac{4}{3}(x-2)$

$$y = -\frac{4}{3}x - \frac{1}{3} - ---(1)$$
 B1
For *P*, substitute (1) into $4y - 3x + 43 = 0$

$$4\left(-\frac{4}{3}x - \frac{1}{3}\right) - 3x + 43 = 0 \qquad M$$

$$-\frac{25}{3}x = -\frac{125}{3}$$

$$x = 5 \qquad A1$$

$$y = -\frac{4}{3}x5 - \frac{1}{3} = -7$$

$$P = (5, -7) \qquad A1$$

$$-\frac{25}{3}x = -\frac{125}{3}$$

$$x=5$$
 A

$$y = -\frac{4}{3} \times 5 - \frac{1}{3} = -7$$

$$P = (5, -7) \qquad A$$

[Turn over

[5]

- A second circle, C_2 , passes through the points (19, 8) and (-9, 12) and has a radius of 20 units.
 - (iii) Find the two possible centres of circle, C_2 .

[6]

For perpendicular bisector of (19, 8) and (-9, 12)
gradient of perpendicular bisector =
$$-1 \div \left(\frac{12-8}{-28}\right)$$
 Miles = 7

$$mid point = (5,10)$$

Equation of perpendicular bisector is

$$y-10=7(x-5)$$

 $y=7x-25$ B

Let centre =
$$(x, 7x-25)$$

x = 3 or x = 7

radius =20

$$\sqrt{(x+9)^2 + (7x-37)^2} = 20 \quad \text{form an eqn in one unknown} \quad M1$$

$$(x+9)^2 + (7x-37)^2 = 400$$

$$x^2 + 18x + 81 + 49x^2 - 2(7x)(37) + 1369 = 400$$

$$50x^2 - 500x + 1050 = 0$$

$$x^2 - 10x + 21 = 0$$

$$(x-3)(x-7) = 0 \quad \text{any method seen to solve quadratic eqn} \quad M1$$

Centre = (3, -4) or centre = (7, 24) A1, A1

8

The diagram shows two triangles, ABC and DCB. It is given that BC = 12 cm, DC = 3 cm, angle $CAB = \text{angle }DCB = 90^{\circ}$ and angle $ABC = \theta^{\circ}$, where θ varies.

A perpendicular is dropped from D to meet AB at E.

$$\sin\theta = \frac{AC}{12} \qquad \cos\theta = \frac{AB}{12}$$

 $AC = 12\sin\theta$ or $AB = 12\cos\theta$ B1 for correct AC or AB

Let the perpendicular from C to DE intersects at F.

angle $FCB = \theta$ (alternate angles)

angle
$$CDF = 180^{\circ} - (90^{\circ} - \theta) - 90^{\circ}$$

$$\cos\theta = \frac{DF}{3}$$

 $DF = 3\cos\theta$

$$\sin\theta = \frac{CF}{3}$$

 $CF = 3\sin\theta$ B1 for correct DF or CF

Perimeter of triangle DFB, P = DE + EB + DB

=
$$3\cos\theta + 12\sin\theta + 12\cos\theta - 3\sin\theta + \sqrt{3^2 + 12^2}$$

(B1) or (B1) (B1)
= $\sqrt{153} + 9\sin\theta + 15\cos\theta$

[Turn over

[4]

8 (ii) Express P in the form $\sqrt{153} + R\cos(\theta - \alpha)$, where R > 0 and α is an acute angle. [3]

$$P = \sqrt{153} + 9\sin\theta + 15\cos\theta$$

$$= \sqrt{153} + 15\cos\theta + 9\sin\theta$$

$$= \sqrt{153} + R\cos(\theta - \alpha)$$

$$R = \sqrt{15^2 + 9^2} = \sqrt{306} \qquad \text{A1}$$

$$\alpha = \tan^{-1}\frac{9}{15} \qquad \text{M1}$$

$$= 30.964^*$$

$$P = \sqrt{153} + \sqrt{306}\cos(\theta - 31.0^*) \qquad \text{A1}$$

(iii) Find the value of θ for which P = 27.

$$\sqrt{153} + \sqrt{306}\cos(\theta - 30.964^{\circ}) = 27$$

$$\sqrt{306}\cos(\theta - 30.964^{\circ}) = \frac{27 - \sqrt{153}}{\sqrt{306}} \qquad M1$$

$$\theta - 30.964^{\circ} = 33.240^{\circ} \qquad M1$$

$$\theta = 64.2^{\circ} \qquad A1$$

[Turn over

(a) Show that
$$\frac{1+\sin 4A - \cos 4A}{1+\sin 4A + \cos 4A} = \tan 2A$$

$$LHS = \frac{1+\sin 4A - \cos 4A}{1+\sin 4A - \cos 4A}$$

$$= \frac{1+2\sin 2A \cos 2A - (1-2\sin^2 2A)}{1+2\sin 2A \cos 2A + (2\cos^2 2A - 1)}$$
 use of double angle identity B1
$$= \frac{2\sin 2A \cos 2A + 2\sin^2 2A}{2\sin 2A \cos 2A + 2\cos^2 2A}$$

$$= \frac{2\sin 2A (\cos 2A + \sin 2A)}{2\cos 2A (\sin 2A + \cos 2A)}$$

$$= \frac{\sin 2A}{\cos 2A}$$

$$= \tan 2A$$

$$= \tan 2A$$

(b) The temperature, T, in degrees Celsius, of a metal plate undergoing a chemical process after x seconds, is given by $T = -\frac{25}{9}x^2 + 50x + \frac{55}{3}$.

Determine when the metal plate starts cooling.

$$\frac{dT}{dx} = -\frac{50}{9}x + 50$$
 M1 correct differentiation
For cooling to start,

$$\frac{dT}{dx} < 0 \qquad B1$$

$$-\frac{50}{9}x + 50 < 0$$

$$x > 9 \qquad A1$$

[Turn over

A cubic curve has the stationary points at (1, -7) and $\left(-\frac{7}{3}, \alpha\right)$, where α is a

(i) Explain why
$$\frac{dy}{dx} = k(x-1)(3x+7)$$
, where k is a constant.

Explain why
$$\frac{1}{dx} = k(x-1)(3x+7)$$
, where k is a constant.

Since stationary points occur at
$$x = 1$$
 or $x = -\frac{7}{3}$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \quad \text{when } x = 1 \text{ or } x = -\frac{7}{3}$$

$$x - 1 = 0$$
 or $3x + 7 = 0$
 $(x - 1)(3x + 7) = 0$ either award B1

Since the curve is cubic,
$$\frac{dy}{dx}$$
 is quadratic,

Since the curve is cubic,
$$\frac{dy}{dx}$$
 is quadratic,

Thus a cubic curve has at most 2 stationary points.

B1

$$\frac{\mathrm{d}y}{\mathrm{d}x} = k(x-1)(3x+7), k \text{ is a constant}$$

[Turn over

10 (ii) Given that the curve passes through the point (-1, 17), determine its equation.

$$y = \int k(3x^2 + 4x - 7) dx$$
 M1
 $= k(x^3 + 2x^2 - 7x) + c$ B1 correct integration
substitute $x = 1$, $y = -7$
 $-7 = -4k + c$ (1) B1
substitute $x = -1$, $y = 17$
 $17 = 8k + c$ (2) B1
(2) - (1), $24 = 12k$
 $k = 2$, $c = 1$ either ans for k or c A1
Equation is $y = 2x^3 + 4x^2 - 14x + 1$ A1

[Turn over

[6]

10 (iii) Determine the nature of the two stationary points.

$$\frac{d^2y}{dx^2} = \frac{d}{dx}2(x-1)(3x+7)$$
= 2(x-1)(3)+2(3x+7)
= 12x+8 M1

$$\frac{d^2y}{dx^2} = 20 > 0$$
, (1, -7) is a minimum point. B

when
$$x = -\frac{7}{3}$$

$$\frac{d^2y}{dx^2} = -20 < 0, \quad \left(-\frac{7}{3}, \alpha\right) \text{ is a maximum point B1}$$

Turn over

11

The diagram shows part of the curve $y=5-e^{1-2x}$ passing through the point P where x=k, where k is a constant. The tangent to the curve at P meets the line y=5 at Q(1, 5)

and x-axis at $R\left(-\frac{3}{2},0\right)$. A vertical line is drawn at Q. (i) Find the value of k.

[4]

gradient of tangent at
$$P = \frac{5}{2.5}$$

= 2 B

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -(-2)e^{1-2x} \quad \text{B1}$$

when
$$x = k$$
, $\frac{dy}{dx} = 2$,
 $2 = 2e^{1-2k}$

$$0x$$

$$2 = 2e^{1-2k}$$

$$1 = e^{1-2k}$$
$$1 - 2k = 0$$

$$k=\frac{1}{2}$$

11 (ii) Find the total area of the shaded region.

Total area =
$$\frac{1}{2} \times 5 \times \left(1 - \left(-\frac{3}{2}\right)\right) - \int_0^1 5 - e^{1-2x} dx$$
 M1
= $\frac{1}{2} \times 5 \times \frac{5}{2} - \left[5x - \frac{e^{1-2x}}{-2}\right]_0^1$ A1, A1
= $\frac{25}{4} - \left(5 + \frac{1}{2}e^{-1} - \left(\frac{1}{2}e\right)\right)$ M1 correct evaluation of definite integral
= $\frac{5}{4} - \frac{1}{2e} + \left(\frac{1}{2}e\right)$
= 2.43 (to 3 sf) A1

End of paper