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Mathematlcal Formulae

1. ALGEBRA

Quadratic Equation
For the cquation ax® 4+ bx+¢=0,

2a
Binomial Theorem
» el n #1=1 n n-1p2 n n-ryr ”
(a+b)" =a"+| |a" b+ B et b et b,
1 2 r
where n is a positive integer and " L A=)~ r+1)
renisa ve integer an = =
po g r} (e rl

2, TRIGONOMETRY

Identities
sin® A+cos? A=1.
sec* A=1+tan® 4,
cosec*A =1+cot® 4.
sin(4 + B) = sin 4 cos B + cos A sin B
cos{d + B) = cos Acos B F sin dsin B
tan(A:EB): tan At tan B
lxtan Atan B
sin24 = 2sin 4 cos 4
cos 24 = cos* A -sin? A =2cos? A-1=1-2sin* 4
2tan 4
1~ tan® 4

Formulae for AABC

sind sinB sinC
a*=b* +c* - 2bccos 4

=~l-absinC
2



1

- 3
The diagram shows a straight line passing through P(0,5) and Q{a, -2b)

Y.

X
\Q(a, —2b)

Given that the gradient of PQ is —2 and that the distance PQ = 3v58, find the value
of @ and of b. [5]
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2 Theequationofacurveis f(x) = |3cos2x| -2
Q)] State the minimum and maximum values of f(x). 21

(i)  Sketch the graph of f(x) = [3cos2x] -2 for 0° < x < 180°. [31

A 4
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3 Theexpression ax® —4x% +bx-+6 isexactly divisible by %% —x — 2.
(i)  Find the value of ¢ and of b. [4]

(i)  Using these values of @ and of b, solve the equation ax3 — 4x2 + bx + 6 = 0. (2]



In the diagram, TE and TC are tangents to the circle at A and B respectively.
BD is parallel to TE.
()  Provethat AB = AD. [3]

(it)  Prove that triangle TAB is similar to triangle ABD. [3]



—rd
5 The function f is defined by f(x) =iz—:3, x>0

(i Explain, with working, whether f is an increasing or decreasing function. [4]

() Apoint P moves along the curve ¥ = f(x) in such a way that the y-coordinate of
P is increasing at a rate of 0.2 units per second. Find the rate of change of the
x-coordinate of P when x = 4. 2]



3

6 At m minutes after an oven is switched on, its temperature, T°C, is given by

T = 200 ~ 175¢ ™. The oven reached a temperature of 150°C after 16 minutes 15
seconds.

(i)  State the initial temperature of the oven.

(i)  Estimate the temperature after 10 minutes.

(iii) “Ifthe oven is switched on for a very long time, it will never exceed a certain

temperature.” Do you agree with the statement? Justify your answer with clear
explanation.

1

B3]

2]
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9

(0 Express —2x2+3x+2 inthe form a(x + b)? + ¢ where @, b and ¢ are
constants. 2]

(i) Use your answer from part (i) to explain why the curves with equations
y=-2x*+3x+2 and (x + 5) + (y — 9)2 = 30 will not intersect, 43
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8 (i) Form a quadratic equation for which the sum of roots is 4 and the sum of the
squares of the roots is 20. 131

(if)  Given that the equation (2m + 3)x* — (Bm + 8)x + 8m + 3 = 0, find the value
of m, for which
(a) one root is the negative of the other, [2]

(b) oneroot is the reciprocal of the other. [23
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9 Without using a calculator,

" . 143
() show that sin105°=— i 2]

() hence, express 1 +cot?105° inthe form a -+ bv3, where @ and b are integers, [5]
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10

S
2x 2x

T is0° 150°(YR

P Ho
The figure shows a piece of iron bar of length 8 metres, bent to form a pentagonal window
frame PQRST.
PT = (R = y melres, RS = ST = 2x metres and angle PTS =angle QRS = 150°.

()  Showthat y =4—3x. {31

(i)  Express the area, 4, enclosed by the frame, in terms of x. [3]
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10 (i) Giventhat x can vary, find the exact value of x for which the area enclosed by
the frame is 2 maximum, 23
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tanA-cotA

11 (i) Prove the identity T TCOtA

+1 = 2sin?4 31

tanA—cotA

+1 = 5sinAcosA for 0° < A < 360° 151
tanA+cotA

(i1) Hence, solve the equation
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12 A particle starts from rest, travels in a straight line so that ¢ is the time in seconds after
passing a fixed point O. Iis velocity, vm/s, is given by v = 6t — 2¢2, The particle
comes to instantaneous rest at A.

(i) Find the acceleration of the particle at A,

(i) Find the maximum velocity of the particle.

E}

2]
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12 (ili)  Find the total distance travelled by the particle during the first § seconds. {5)

End of Paper
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3
The diagram shows a straight line passing through P(0,b) and Q(a,~—2b)

Y.

X
\Q(a, —2b)

Given that the gradient of PQ is »; and that the distance PQ = 3v/58, find the value
of a and of b.

GragpQ =253 = 2
3b 3
-a 7
a=7b
PQ = 358

JO=a)* + (b +2b)% = 3v58
a® +9b% = 9(58)
(76 + 9b% = 9(58)
58bh2 = 522
b*=9
b =3 (b > 0 as shown in diagram)
sa =21

£5]

M1

Ml

Mi

Al
Al
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The equation of a curve is f(x) = |3cos2x] -2

®

)

State the minimum and maximum values of f(x).

Minof f(x) =1
Maxof f(x) =—2

Sketch the graph of f(x) = [3cos2x| — 2 for 0° < x < 180°.

One complete cycle
Starts and ends at f(x)=1

Correct curvature

(2]

Bl
Bl

(31

Bl
Bl
Bl
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3 Theexpression ax® —4x? + bx + 6 is exactly divisible by x? —x — 2.
(t)  Find the value of @ and of b. 4
Let f(x)= ax®*—4x2+bx+6
X2 —x—2=(x-2)x+1)

f()=8a—16+2b+6=0 Ml
fl-1)=-a—4-b+6=0 Mi

4a+b=5

a+b=2

3a=3

a=1 Al
b=1 Al
(i)  Using these values of @ and of b, solve the equation ax® — 4x* + bx +6 = 0. 2]

¥ —4x*+x+6=0
By inspection, (x — 3) is the linear factor of f(x)

2 —x=2)(x~3)=0 4 Bl
(x=2)(x+1Dx-3)=0
x=-1,2,3 Al

it
i
i
i

|

1
, i

v

{3.0) .

(-1.0)

S R
U | e L o

b

y=x$_4x2+x+5;(x~2)(x+1)(x;3)




In the diagram, TE and TC are tangents to the circle at 4 and B respectively.
BD is parallel to TE.

6] Prove that AB = AD.

Let 8 ABD =68
4TAB = @ (alternate angies, BD || TE)
4ADB = ATAR = 8 (tangent — chord theorem)
Since 4 ADB = 8ABD = 8,
therefore, AABD is an isosceles triangle with AB = AD

(i)  Prove that triangle TAB is similar to triangle ABD.
In triangles TAB and ABD,
4ATAB = 3ABD = 8 (alternate angles, BD || TE)
ATBA = 4ADB = @ (tangent — chord theorem)
4ATB = ABAD (angle sum of triangles)

Since all 3 pairs of corresponding angles are equal, triangle TB is similar to triangle ABD.

{31

B1
Bl

81

(3]

Bl
Bl

Bl
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= , . 5-x?
53 The function f isdefinedby f(x) ==, x>0
x2+3
(i) Explain, with working, whether f is an increasing or decreasing function, [4]

(x2+3)(—2x)—(5-x2)(2x)
(x?2+3)2

[y =

_ —=2x® —6x—10x + 2x
7+ 3y

_ —16x
T (x? + 3)?

Since x > 0,—16x < 0 and (x2+3)>>0, f'(x) <0 andthus f(x) isa decreasing
function for x > 0.

&

/L(o, 1467)

; 5 —x2
T — _
: f f& x2+3

(i) A point P moves along the curve y = f(x) insuch a way that the y-coordinate of
P is increasing at a rate of 0.2 units per second. Find the rate of change of the

x-coordinate of P when x = 4. 2]
dy
pre +0.2
dy dy < dx
dt dx’ dt
-16(4) dx
2 = s X —
02 (42 +33  dt Ml
rrie —1.1281 = —1.13units per sec Al
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8

At m minutes after an oven is switched on, its temperature, 7°C, is given by
T = 200 ~ 175¢™%™, The oven reached a temperature of 150°C after 16 minutes 15
seconds.
(i)  State the initial temperature of the oven.
Whenm =0,T = 200 — 175¢°
=25°C

(if)  Estimate the temperature after 10 minutes.
150 = 200 ~ 175¢~*(1625)
175¢~(1625) = 50

2
~k(1625) _ 2
¢ 7

2
"‘16251{ = ln—7-
ln%
= m or 0.077093

When m = 10mins, T = 200 — 175¢7%00
= 119.04°C = 119°C (3 5ig fig)

ifi) “If the oven is switched on for a very long time, it will never exceed a certain
ery long
temperature.” Do you agree with the statement? Justify your answer with clear
explanation.

T = 200 — 175¢"
175
T =200 ~ ok
Yes, I agree with the statement.

Since k > 0,m > 0, and when m becomes large, % becomes a very small positive

value, Therefore, T will never exceed 200°C.

)

B1

(3]

Ml

Al

Al

2

B2
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)

(i)

9

Express —2x%+3x+2 intheform a(x+ b)? + ¢ where a, b and c are

constants.

3
2P 43X 42 =2 xz—ix—-l]
2

= —2f(e-2 -3 1 (x=2)" seen
-affe-3) -

31?25
=-2(x-3) +5

Use your answer from part (i) to explain why the curves with equations
y=-2x%+3x+2 and {x+35)%+ (y —9)? = 30 will not intersect.

2!

2 - 32 | 28 . 5
y=-2x +3x+2——2(x—~;) +5 has a maximum value at y =~ or 3.125

K}

(x+ 5)% + (¥ — 9)% = 30 isa circle with center (—5,9) and radius v/30.
for either centre or radius

The minimum value of y = 9 — +/30 = 3.522

Since

maximum of ¥ = —2x% + 3% + 2 < minimumof (x +5)* + (¥ —9N?* =30,
the 2 curves will not intersect.

" (~5.0%,3.5%) |-

L :

)

Bl

Bl

(41

B1

Ml

Bl

B1
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(i)  Form a quadratic equation for which the sum of roots is 4 and the sum of the
squares of the roots is 20.
a+f=4
a®+ f% =20
= (a+f)? —2a8 =20
(4)* - 28 =20
aff = ~2

~ the quadratic equationis x> —4x—2=0

(i)  Given that the equation (2m + 3)x* — (8m + 8)x + 8m + 3 = 0, find the value
of m, for which

{a) onerootis the negative of the other,

Lettheroots be & and —a.

Sum of roots:  + (~a) = ors 5
um ol roots: «a a)= 2mas attempt to form eqn
8m+8
2m+3
8m+8=0
m=-1
(b) oneroot is the reciprocal of the other.
Let the roots be a and i .
;. 8m+3
Product of roots: @ X == attempt to form cqn
&«  2m-+3
8m+3=2m+3
6m =0
m=20

B3]

Ml

M1

Al

[21

M1

Al

2

M1

Al
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1L

Without using a calculator,

®

G}

; o 113
show that sin105 =S

sin 105° = sin(45° + 60°)

= 5in 45° cos 60° -+ cos 45° sin 60°

-HE+RE)
_1+ V3
22

hence, express 1+ cot?105° in the form a -+ by/3, where a and b are integers.

1 + cot? 105° = cosec? 105°

1

= stz 105°
_ ( 2V2 )
1443
8

a3

X

2-v3
2—43

For correctly squaring 1 + v3

For rationalising

2

Ml

Al

AG

1
M1

M1

Mi

Ml

Al
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10

“Q

The figure shows a piece of iron bar of length 8 metres, bent to form a pentagonal window
frame PQRST.

PT = QR = y metres, RS = ST = 2x metres and angle PTS =angle GRS = 150°.

(i) Showthat y=4-3x, 3]
PQRT is a rectangle
= 4STR = ASRT = 150° —90° = 60° Ml

~ ATSR = 180° — 2(60°) = 60°
Since TSR is an equilateral triangle,

TR = 2x

= PQ =2x Ml
32x)+2y=8 Bl

2y =8~ 6x
y=4-3x AG
(ii)  Express the area, A, enclosed by the frame, in terms of x. {31

1
A=2x(y) + 3 (2x)}(2x) sin 60° ForUGsbsing) oe, Bl
3

= 2x(4 ~ 3x) + 2x? (g) Forsubstimtingy Bl

= 8x — 6x% +/3x2 Al



10 (i) Giventhat x can vary, find the exact value of x for which the area enclosed by

the frame is a maximum. 2}

A =8x—6x% ++/3x2

dA
— B — -+ Mi
8 —12x + 2V3x

For max area, %:0
8—12x+2V3x =0

12x — 2V3x = 8
8
X TR ————
1222{3‘
= Al
6 -3

. (0.937.3.749)

_ A = 8x — 6x% +3x2
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. .. ..  tanA—cotA )
11 () Prove the identity i—-ﬂ;ﬁ-&-l:kmz/& 31

tanA — cotA

LHS = tanA + cota

+1

(sinA cosA)

__\cos4 _ sina

= [sina cosA)
(cosA + sind

sin®A4 — cos®A

For conventing lan A orcol A
+ s Bl

it M1
sin2A + cos?A
= (sin®A — cos?A) + (sinA + cos?A) For sinfd+cos?A=1 end Dl
leading to final answer.
= 25inA
= RHS
tanA—cotA
.. . tand-cotd . . o S
(iiy Hence, solve the equation pr— +1 = 5sinAcosA for 0° < A < 360 [5}
. tanA-cotA .,
From (i), subs TanATeotA +1 =2sin*A
2sin®A = 5sinAcos A Bl
sinA{2sinA ~5cosA) =0 Ml
sind=0 or 2sinA =5cosA
5
A = 180°(rejected) or tanA= 3
5
basic angle,a = tan'l—z-
= 68.2° Ml
A =68.2° 248.2°
Ans: A =682° 248.2° For 180~ {rejected) Al
For 68.2% 248.2" Al

(£3.199, 1.724) / (245,198, 1.724)

R/ AN

%0 3
a1

<

(180.0) r

a
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12 A particle starts from rest, travels in a straight line so that ¢ is the time in seconds after
passing a fixed point O. Its velocity, vm/s, isgivenby v = 6t — 2t2. The particle

comes to instantaneous rest at A.

(i) Find the acceleration of the particle at 4. (3]
atd, v=0
=)2£(3—t)==0 For v=0 M1

t=0 or t=3

_dv
=
a=6—4t M1
at A, acceleration = 6 — 4(3) = —~6m/s Al
(i) Find the maximum velocity of the particle. 2}

. dy
For max velocity, — =10

dt
6—4t=0 M1
r= 3
T2
3 31
~ max velocity = 6 (E) -2 (5) =45 m/s Al

71 N\ p=6t-22
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12 (iii)  Find the total distance travelled by the particle during the first 5 seconds.

s=[vdt

=f6t—zﬁdt

2
=3ﬁ~§ﬁ+c

whent=0,s=0 = ¢=0

2
w e 2 _ L3
s s =3t 3c
2
when t=3, s= 3(3)2—5(3)3 =9

2 1
when t =5, 5=3(5)? —5(5)3 = -8§

Total distance =9+4+9+48

1
=26—3-m

W =

End of Paper

(3]

Ml

Bl

Al

Al

Al
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Mathematical Formulae
1. ALGEBRA "

Quadratic Equation
For the equation ax* +bx+c =0,

Binomial Theorem

(wwy=w+@}“u{3mﬁﬁw+v}wy+wwg
r

nl ._n(n-l)...(n—r-fl)
- A

h
where # is a positive integer and [r) =

2. TRIGONOMETRY

Identities
sin? A+cos*4=1.
sec’ A=1+tan? A,
cosec’A=1+cot® 4.
sin(4 & B) = sin 4 cos B % cos 4 sin B
cos{4 = B) = cos 4 cos B F sin Asin B
* B
tan(Ai B) _ tan A *tan
1¥ tan A tan B
sin 24 = 2sin 4 cos A
cos 24 = cos’ A —sin? A =2cos* A~1=1-2sin> 4
tn 24 = 2104
1—tan® 4
Formulae for AABC
a b c

sind sinB sinC
a® =b* + ¢ - 2bccos 4

A=—absinC

Ny -
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Answer all the questions

The cquation of a curve is = —x? +{k—2)x+2k , where £ is a constant.

(i)  Find the set of values of k for which the line p =2kx+2k +1 lics entirely above the

curve,

(i)  State the values of k for which the line y =2k +2k +1 is a tangent to the curve, m

[Turn over



1

4

(i)  Explain why there is only one value of k for which y cannot be pésitivc and state
this value. [4]

[Turn over



(i)  Find the first 3 terms in the expansion of (2—%) in ascending powers of x,

where # is a positive integer greater than 2. Give the terms in their simplest forms. 2]

(i) In the expansion of (4+x)1 (2 —i:-} , there is no term in x.

Find the value of ».

{5

[Turn over



4x° +21x* ~4x~6 L b rex+d

R 3yt B s T
(

where g, b, ¢ and d are integers. 21

() Differentiate In(x*+ 2) with respect to x. [2]

{Turn over



Using the results from (i) and (ii) and expressing

(i) J4x +21x% ~4x—6
(+* +2)(2x-1)

bxt +ex+d

(¥ +2)(2x-1

)

as partial fractions,

[Turn over

(81
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@

®

Variables x and y are related by the equation  px®+qy =x, where p and g are
constants. Y is ploited against X to obtain a straight line graph.
() IfX=x, state Yinterms of x and/or y. m

(ii) Explain clearly how p and ¢ can be cbtained from the straight line graph drawn. [2]

The number of snails in a colony is being studied. The number of snails in a colony

after f weeks is givenby P=Pe™, where P, and k are constants.

The table below gives some values of P and 2.

f (weeks) 4 8 12 16 20
P

30 45 66 99 147

(i) On the grid on page 9, draw a snitable straight line graph to illustrate this data. ~ [3]

Use your graph to estimate
(ii) the number of snails in the colony when the study began, 2]
(iii) the value of %. 2]

[Turn over



fanadn

[Turn over



10

log, y
lo;

Y

(a) Giventhat

+ log,y — 6= 0, express y in terms of x. (4]

(b)  Solve the equation 9 -3 =2 . 3]

[Turn over
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LR

3
®  Onthe same diagram, sketch the curve y=x2 and y=8x

(i)  Find the coordinates of the point of intersection of the two curves.

[Turn over

2]

B3]
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Acircle, C,, has the equation x*+3y*—4x+6y=12.

()  Find the coordinates of the centre and the radius of C,.

The equation of the tangent to C, at the point P is 4y —3x+43=0.

Hence, using (i), find

(i)  the coordinates of the point 2 on C,.

(3]

(5]

[Turn ovey
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7 Asecond circle, C,, passes through the points (19, 8) and (—9, 12) and has a

radiuvs of 20 units.

(i) Find the two possible centres of circle, G,. [6}

{Turn over
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D
3cm
C
12 cm
W N 6°
A E B

The diagram shows two triangles, ABC and DCB. 1t is given that BC = 12 ¢m,
DC =3 cm, angle CAB = angle DCB = 90° and angle ABC = 8°, where 8 varies.
A perpendicular is dropped from D to meet AB at £,

(i) Show that the perimeter of triangle DEB, P can be expressed as

153 +9sin@+15c0s4. . (4]

[Turn over
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(ii) Express P inthe form 153 +Roos(8~a), where R> 0 and @ is an acute angle. [3]

(iii) Find the value of § for which £=27. 3]

[Turn over
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l+sind4—cos44 _

9 (a) Showthat ,—— =
I+sindd+cos44

tan24 3]

(b)  The temperature, T, in degrees Celsius, of a metal plate undergoing a chemical
o 25 , 55
process after x seconds, is givenby T'= e + 50x+~3— .

Determine when the metal plate starts cooling. 3]

[Turn over
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10 A cubic curve has the stationary points at (1, —=7) and (—-;, a), where ¢ isa
constant.

(i) Explain why % =k{x~1)(3x+7), where ks a constant, 3}

[Turn over
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10 (i) Given that the curve passes through the point (-1, 17), determine its equation, [6

[Turn over



10

19

(itiy Determine the nature of the two stationary points,

[Turn over

B3]
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20

=5

p=5-ek

x

The diagram shows part of the curve  p=5-¢' passing through the point P where
x=k, where k is a constant. The tangent to the curve at P meets the linc y =5 at Q(1, 5)

- and x-axis at R(—-%,OJ . A vertical ling is drawn at Q.

(i)  Find the value of £.

{Turn over

4
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21

(i) Find the total area of the shaded region.

End of paper

[Turn over

B
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Answer all the questions
The equation of a curve is y=~x" +(k~2)x+ 2k, where & is a constant.
@

Find the set of values of k for which the line y = 2/ + 2k +1 lies entirely above the
curve.

For 2lc+2k+1> —x*+(k-2)x+2k

Z+(k+2)x+1 <0
Discriminant < 0
x+(k+2)x+1 <0
(k+2)" -4 <0
(k+2-2)(k+2+2) <0
k(k+4) <0

7
"\/I' o

—4<k<0

M1

Ml

Al

(i)  State the valves of k for which the line y=2&x+2k+1 is a tangent to the curve.

[11
k= —4o0r k=0

Al

[Turn over



(ifiy Explain why there is only one value of k for which y cannot be positive and state

this value.

Diseriminant= (k-2)" ~4(-1)(2k)
= kK —dk+4+8k
=k +ak+4
= (k+2) B1

When k= -2, Discriminant =0

y=01is atangent to the curve.

Since coefficient of x? is negative, the maximum value of y=0. —
~y cannot be positive. 7Bl

For any other values of k, (k+ 2)2 >0 -

Discriminant > 0
The curve intersects the x- axis at two points,
Maximumi value of y > 0
y can be positive.

Ansik=-2

{Turn over

4



w

(i)  Find the first 3 terms in the expansion of [2 —%) in ascending powers of x,

where # is a positive integer greater than 2. Give the terms in their simplest forms. (2]

(oo () Cler (] -

—nxz”x+n(n~1)x2"_z xﬁ

= 2" +e
8 2 16

= g2 x+-"(—"—-l-)-x2”xx’+....
8 128

B1 for any 2 terms correct
B2 for all 3 terms correct

(ii) In the expansion of (4~t-,~c)2 (2 -i—) , there is no term in 2.

Find the value of 1. [5]

(16+8x+ x’){?." '—f—&x—-yf—({:—llx 2% x x +)
8 128

expansion of (4 +x)’ Bl
Term in x%,

= 16x11—%;—1-1x 27 x x* +8x(—11182——x)+ x'x2" Ml-adding of 3 product

-1
coefficient of x* = n(ns X2 —nx2"+2" =0

. n(n—l)mn+1
8

2 = ¢ M1 (Factorisation)

2" 0, n(n—l)~8n+8=0
n-9n+8=0 B1

(n-1)(n-8)=0

n=1{rejected) orn=8 Al

[Turn over
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o 2
()  Express 4x' 4+ 21x" —~4x-6

bx +ex+d

(x* +2)(2x-1) ® (£ +2)(2x-1)

where a, b, ¢ and 4 are integers,

2

/
2x’—x’+4x-—2/ 4x* 4 21x ~4x -6
~(4x"~2x" +8x~4)
23x1~12x-2

4 +210% ~dx~6  _ 5 23x* ~12x-2

(x* +2)(2x-1) ¥ (x*+2)(2x-1)

(i)  Differentiate In{x*+2) with respect tox.

% In (x’ + 2)

2x

£+2 42

seen BI, Al

M1, Al

{Turn over
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2
3 Using the results from (i) and (ii) and expressing —(l:—.x;j%til')- as partial fractions,
x*+ X

find
4%  +21x" —4x -6
i J. (x2 +2)(2x-—1) 13]

4 +21x = 4x -6
(¥ +2)(2x-1)

B -12x-2 A4 Bx+C
(¥ +2)(2x-1) 2x-1 (*+2)

23° ~12x-2= A(x* +2)+(2x-1)(Bx+C) Ml

23x% ~12x-2
T Ty
J‘ (x’+2)(2x—1)

Letx:l,
2
§—£~2—A(1+2)
4 2 4
9_ (9
T4 [Z]
A=-1 Al
Comparing the coefficient of x* and constant,
23=A+28
B=12 Al
~2=24-C
C=0 Al

45’ +21x* -4x-6 1 12x
e Qx = 23 F | e e
j (¥ +2)(2x-1) I2x-—1 (#+2)
- 2 1n(2;—1)+6j' 2

(x’+2)
= 2B gn(adjre Al
BI BI

JTurn over
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(@)

(b)

8

Variables x and y are related by the equation px” +qy=x, where p and g are
oty pandg

constants. Y is plotted against X to obtain a straight line graph.
(i) IfX=x, state Y interms of x and/or y.

|
(i1) Explain clearly how p and ¢ can be obtained from the straight fine graph drawn. [2}

() gqy=—px’+x

(i) Y-intercept =1 Bl
g

gradient of graph = — Bl

o

The number of snails in a colony is being studied, The number of snails in a colony
after t weeks is given by P = P¢”, where P, and k are constants
The table below gives some values of P and s
t(weeks) [4 8 12 16 20
P |30 45 66 99 147
(i) On the grid on page 9, draw a suitable straight line graph to illustrate this data.  {3]
InP=Ink +kt Mi
Plot In 2 against /. Straight line graph drawn B2
t 4 8 12 16 20
InP 3.40 3.81 4.19 4.60 4.99
Use your graph to estimate
(i) the number of snails in the colony when the study began, [21

From graph, InP=3 Ml

P=¢% =20 Numberofsnails=20 Al
(iif} the valucof k.
. 4.60-3.40
Gradient = ————— M1
' 16-4
k= gradient=0. 1 Al

2
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10

5 (a) Giventhat log.y + log.y — 6 =0, express y in terms of x.
log, x " (4]
_log,y + log,y — 6=0
log, x
log, x
log,y + <4 log,y ~ 6=0 M1 change of base
log, v

(log, p)’ + log,y ~ 6=0
(log,y+3)(log,y~2)=0 Any method to solve quadratic eqn M1

log.y=~3 or log,y=2
y=x7 or y=x* Al Al

3]

(b) Solve the equation 9*' -3 =2 .

Let u=3*
9u* ~3u~2=0 either 3*x9=9u" seenor 3 =3u seen Bl

(3u+1)(3u-2)=0
u=-~—l or u=g Ml
3 3

ax

3 =—%(rcjectcd) or 3=

Wit

2
lg3=lg=
xlg3=lg3
xm—3=-0369 (to3s) Al
g3

[Turn over
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3

6 () Onithe same diagram, sketch the curve y=x? and y=8x *. [2]
b4
X
(i) Find the coordinates of the point of intersection of the two curves. {31

For points of intersection,
3

X =8
3
3 8
xl E —
x2?
’= 8 Ml
x=2 Al
3
y=2

Point of intersection = (2, 2.83) Al

[Turn over



12
Acircle, C,, has the equation x° +y* —4x+6y=12.

(i)  Find the coordinates of the centre and the radius of C,.

centre =(2, ~3)

reJ2H(3Y -(-12) Ml

‘The equation of the tangent to C, at the point P is 4y —3x+43=0.

Hence, using (i), find
(ii) the coordinates of the point P on C,.

Gradient of normal at 7 = —i;- Ml
C=(2,-3)
Equation of the normal at P is  y+3= —»%(x ~2)

4 1
[P p— |
yE-gEog 8)

For P, substitute (1) into 4y—3x+43=0
4[_ix-l)—3x+43=0 M1
33

Bl

B1

(51

[Turn over
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A second circle, C,, passes through the points (19, 8) and (9, 12) and has a
radius of 20 units.
(iii) Find the two possible centres of circle, C,. 6

For perpendicular bisector of (19, 8) and (-9, 12)

gradient of perpendicular bisector = —H(EZ——S:E] Ml

=7
mid point = (5,10)

Equation of perpendicular bisector is
y-10=7{x~5)
y=Tx-25 B1

Let centre = (x, 7x—25)
radius =20

\’(x+9)2 +(7x-37)' =20  form an eqn in one unknown Ml

(x+9) +(7x-37) =400
2 +18x+81+49x* - 2(7x)(37) +1369 = 400
50x* —500x+1050=0
¥ -10x+21=0
(x-3)(x~7)=0 anymethod seen to solve quadratic eqgn M1

x=3o0r x=7
Centre=(3, —4) or centre = (7, 24} Al, Al

{Turn over
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D
3cm
C
12 cm
| ) 8°
4 3 B

The diagram shows two triangles, ABC and DCB. It is given that BC =12 cm,
DC =3 cm, angle CAB = angle DCB = 90° and angle ABC = §°, where 6 varies.
A perpendicular is dropped from D to meet 48 at £.

sin9='4—c cos(?zfE
2 12

AC=12s5in8 or AB=12cos8 Bl forcorrect AC or 4B
Let the perpendicular from C to DE intersects at £,
angle FCB = & (altemate angles)
angle CDF =180" ~ (50"~ 8)~90"
= 8

cosd =—Q€
3

DF =3cos8

sin9=~(£
3

CF =3sin@ B1 for correct DF or CF
Perimeter of triangle DFB, P= DE+ EB+ DB
=3cosf+12sind+12cos6-3sinf+ 3* +12°
(B} or [¢:3)) (B1)
= 153 +95in8+15c0s8

(4

[Turn over
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(i) Express P in the form /153 + Rcos (O—a), where R > 0 and « is an acute angle. [3]

P = J153+9sin@+15cos8
= /153 +15c0s60+9sin8
= 153+ Reos(d~a)

R=J15+92 =306 Al

o= tan"—g— M1
15

= 30964
P= +fI53+ 306cos(9—31.o'} Al

(iii) Find the value of 8 for which P =27,

/153 ++/306 cos (8 -30.9647)=27

306 cos(0-30.9647) = 27‘3_ \(/)1653

6-30.964" = 33240
g =642

M1

M1
Al

[Turn over
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16

() Show that 1+sindd—-cos4d _

. - =tan2A
1+sindA+cosd4A

LHS = l+sfn4A—cos4A
1+sin44+cos4A4
1+ 25}n 2dcos24 _(1—2?“2 24)  Lse of double angle identity B1
1+2sin24cos24+(2cos" 24-1)
2sin2Acos24+2sin’ 24
2sin2A4cos24+2c0s’ 24
2sin2A{cos24+sin24)
2c0s2A(sin2A4+cos24)
sin24
cos24
= tan24

Bl

M1 Factorisation

(b) The temperature, T, in degrees Celsius, of a metal plate undergoing a chemical

process after x seconds, is givenby T = —%xl +50x+ 33

Determine when the metal plate starts cooling.

% = -—%Q x+50 M1 comect differentiation

For cooling to start,

o

0 Bl
-%Ox+ 50 <0
x>9 Al

(Turn over
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10 A cubic curve has the stationary points at {1, —7) and (—-% a), where o isa
constant.

(i) Explain why %‘;— =k(x-1)(3x+7), where k is a constant. 3]

. . . 7
Since stationary points ocourat x=1o0r x= -3

gX=O whenx=1lor x= I B1
dx 3

x-1=0 or 3x+7=0'§_
(x-1)@x +7)=0 | either award Bl

. . . dy . . -
Since the curve is cubic, ™ is quadratic, |
Thus a cubic curve has at most 2 stationary pointsJ B1

%: k(x~1){3x+7), kis a constant

[Turn over



10 (i) Given that the curve passes through the point (1, 17), determine its equation.

(61
y=[k(3x* + 4x-7)dx Ml
= lc(x’ +2x —7x)+c B1 correct integration
substitute x =}, y =~7
T=—dk4c M Bl
substitme x=~1, y=17
17 = 8k+c @ Bl

@) (1, 24=12%
k=2, c¢=1 |citheransforkore Al
Equationis y= 2x* +4x*~14x+1 Al

[Turn over



10 (iii) Determine the nature of the two stationary points,

¥
f‘l:%z(x~l)(3x+7)

dxl
= 2{x~1}(3)+2(3x+7)
= 12x+8§ Ml
whenx =1,

dty _ . .. .
- 20 >0, (1, —7) is a minimom point.

when x= —Z
3

2
g..—_ 20 <0, (-%, a] is a maximum point Bl

Bl

[Turn over
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x

The diagram shows part of the curve y=>5-e"* passing through the point £ where
x =k, where ks a constant. The tangent to the curve at P meets the line y =5 at O(3, 5)

and x-axis at R (—%,0) . A vertical line is drawn at Q.
(i) Findthe value of &

gradient of tangent at P = 53

2
=2 Bl
dy 2%
= (=2 B1
dx (-2)¢

5

whenx=k%, —(—l—‘zzl,
dx

2= 2 Mi
1= cl-zlr

1-2k=0

k=—;~ Al

[Turn over
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11 (i) Find the total area of the shaded region. [5]

1 3 1 2%
Total area= —x5x l~(—— - JIS—c dx M1
2 2 o

L-2x

U
= Lk o |5x-5—| Al al
2 2 2 4
25 1. | . oo
= i 5+Ee - -2-c M1 correct evaluation of definite integral
5 1 1
= e e | —€
4 e [2 J
= 2.43 (to 3 sf) Al

3

¢

End of paper
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