1 Express
$$\frac{8x^2 - 2x + 19}{(1-x)(4+x^2)}$$
 in partial fractions. [5]

- 2 (i) On the same axes sketch the curves $y = -\sqrt{x}$ and $y = -\sqrt{32} x^3$. [2]
 - (ii) Find the *x*-coordinates of the points of intersection of the two curves. [2]
- 3 (a) Given that $\theta = \sin^{-1}\left(-\frac{\sqrt{3}}{2}\right)$, express θ in terms of π . Hence, find the exact value of $\sin 2\theta + \tan \theta$. [4]
 - (b) y O π p $y = a \tan(bx)$

The figure shows part of the graph of $y = a \tan(bx)$ and a point $P\left(\frac{3\pi}{2}, -2\right)$ marked. Find the value of each of the constants *a* and *b*. [2]

4 The equation of a curve is $y = e^x + 2e^{-x}$.

- (i) Find the coordinates of the stationary point of the curve, leaving your answer in exact form. [4]
- (ii) Determine the nature of this point. [2]

(iv) The graph
$$y = \left| 4 - \frac{x}{2} \right| - 1$$
 is reflected in the *y*-axis.
Write down the equation of the new graph. [1]

6 (a) Find the maximum and minimum values of
$$(1 - \cos A)^2 - 5$$
 and
the corresponding value(s) of A where each occurs for $0^\circ \le A \le 360^\circ$. [4]

7 (a) (i) Show that
$$\frac{d}{dx}\left(\frac{\ln x}{4x}\right) = \frac{1 - \ln x}{4x^2}$$
. [3]

(ii) Integrate
$$\frac{\ln x}{x^2}$$
 with respect to x. [4]

(b) Given that
$$\int_{1}^{5} f(x) dx = 8$$
, find $\int_{1}^{2} f(x) dx - \int_{5}^{2} [f(x) + 3x] dx$. [3]

8 (a) A curve C is such that $\frac{dy}{dx} = 8 \cos 2x$ and $P\left(\frac{\pi}{3}, 2\sqrt{3} - 3\right)$ is a point on C.

- (i) The normal to the curve at *P* crosses the *x*-axis at *Q*.Find the coordinates of *Q*. [3]
- (ii) Find the equation of C. [3]

(b) Given that
$$y = \sin 4x$$
, show that $\frac{d^2y}{dx^2} \times \frac{dy}{dx} = -32 \sin 8x$. [4]

9 (a) Find the range of values of k for which 2x(2x + k) + 6 = 0 has no real roots.[4]

(b) If p and q are roots of the equation
$$x^2 + 2x - 1 = 0$$
 and $p > q$,
express $\frac{q}{p^2}$ in the form $a + b\sqrt{2}$, where a and b are integers. [5]

A hexagon *ABCDEF* has a fixed perimeter of 210 cm. *BCD* and *AFE* are 2 equilateral triangles and *ABDE* is a rectangle. The length of *BC* is represented as x cm.

(i) Express AB in terms of x .	[1]
------------------------------------	-----

(ii) Show that the area of the hexagon, *H* is given by $H = \begin{pmatrix} \sqrt{3} & 2 \\ 2 & 4 \end{pmatrix} u^2 + 107u$

$$H = \left(\frac{\sqrt{3}}{2} - 2\right)x^2 + 105x.$$
 [2]

[4]

(iii) Find the value of x for which H is a maximum.

4047/1/Sec 4 Prelims 2018

11

The diagram shows triangle *PQR* in which the point *P* is (8, -8) and angle *PQR* is 90°. The gradient of *PR* is $-\frac{13}{8}$ and the equation of *QR* produced is y = 2x + 1. The line *PR* makes an angle θ with *QR* produced.

- (i) Find the coordinates of Q. [4]
- (ii) Find the value of θ . [3]

Answers

1	1 -	$\frac{5}{-x} - \frac{3x+1}{4+x^2}$
2(i)		$y = -\sqrt{32}x^3$
		$y = -\sqrt{x}$
2(ii)	<i>x</i> =	$0 \text{ or } \frac{1}{2}$
3(a)	θ =	$=-\frac{\pi}{3}$ $2\sin\theta\cos\theta + \tan\theta = -\frac{3}{2}\sqrt{3}$
3(b)	<i>a</i> =	$=2; b=\frac{1}{2}$
4(i)	(ln	$\sqrt{2}$, $2\sqrt{2}$) (ii) Minimum point
5(i)		y↑ ∕
		$ \begin{array}{c} 3 \\ 6 \\ 6 \\ (8, -1) \end{array} \begin{array}{c} x \\ (8, -1) \end{array} $
5(ii)		$y \ge -1$ (iii) $x = -6$ or 22
5(iv)		$y = \left 4 + \frac{x}{2}\right - 1$
6(a)		Max value = -1 when $A = 180^{\circ}$ Min value = -5 when $A = 0^{\circ},360^{\circ}$
6(b)(i	i)	$90^{\circ} < A < 180^{\circ}$ or $\frac{\pi}{2} < A < \pi$
6(b)(i	ii)	$\cos(A+B) = -\frac{22}{13\sqrt{5}}$ $\cos C = \frac{22}{13\sqrt{5}}$
7(a)(i	i)	$\int \frac{\ln x}{x^2} dx = -\frac{1}{x} - \frac{\ln x}{x} + c \qquad \text{(b) } 39\frac{1}{2}$
8(a)(i)	$Q(12-8\sqrt{3}+\frac{\pi}{3},0)$ or (-0.809,0)
8(ii)		$y = 4\sin 2x - 3$
9(a)		$-\sqrt{24} < k < \sqrt{24}$
9(b)		$p = -1 + \sqrt{2}$, $q = -1 - \sqrt{2}$ $\frac{q}{p^2} = -7 - 5\sqrt{2}$
10(i)		AB = 105 - 2x
10(iii)	x = 46.3 Maximum H
11(i)		$Q(-2, -3)$ (ii) $\theta = 121.8^{\circ}$

4047/1/Sec 4 Prelims 2018

Qn	Working	Marks
1	$8x^2 - 2x + 19 \qquad A \qquad Bx + C$	B1 correct PF
	$\left \frac{(1-x)(4+x^2)}{(1-x)(4+x^2)}\right = \frac{1-x}{1-x} + \frac{1}{4+x^2}$	2.61
	$8x^{2}-2x+19 = A(4+x^{2}) + (Bx+C)(1-x)$	MI
	Sub $x = 1, 8 - 2 + 19 = 5A$ $A = 5$	A2 For all 3correct
	Sub $x = 0, 19 = 4(5) + C$ $C = -1$	A1 For 2 correct
	Compare coeff of x^2 , $8 = A - B$ $B = -3$	
	$8x^2 - 2x + 19$ 5 $3x + 1$	
	$\left \frac{(1-x)(4+x^2)}{(1-x)(4+x^2)}\right = \frac{1-x}{1-x} - \frac{1}{4+x^2}$	$\sqrt{A1}$ Only if B1
		awarded
	Total	5 marks
2(i)	$\setminus y \uparrow$	G1
	$y = -\sqrt{32}x^3$	
	x	GI
	$y = -\sqrt{x}$	
	$x^{\frac{1}{2}} - \sqrt{22}x^{3}$	
2(ii)	$r = 32r^{6}$	M1
	$x(1-32x^5) = 0$	
	$x = 0 \text{ or } \frac{1}{2}$	A 1
	Total	AI 4 marks
3(a)	$\theta = -\frac{\pi}{2}$	B1
- ()	3 $(\sqrt{3})$ (1) (1)	B1 value of $\cos \theta$
	$2\sin\theta\cos\theta + \tan\theta = 2\left(-\frac{\sqrt{3}}{2}\right)\left(\frac{1}{2}\right) + \left(-\sqrt{3}\right)$	B1 value of tan θ
	$=-\frac{3}{2}\sqrt{3}$	B1
3(b)	<i>a</i> = 2	B1
	Period = $2\pi = \frac{\pi}{2}$ $b = \frac{1}{2}$	B1
	<u>b 2</u> Total	6 marks
4(i)	$dy = 2^x - 2e^{-x} = 0$	$M1^{dy} - 0$
	$\frac{dx}{dx} = c - 2c = 0$	$\frac{1}{dx} = 0$
	$e^{2x} = 2$	Bl Differentiate
	$x = \ln \sqrt{2}$	A1 value of x
	$y = e^{i\pi\sqrt{2}} + 2e^{-i\pi\sqrt{2}}$	
	$=\sqrt{2} + \frac{2}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = 2\sqrt{2}$ Point is $(\ln \sqrt{2}, 2\sqrt{2})$	B1 <i>o.e.</i>
4(ii)	$\frac{d^2y}{dx^2} = e^x + 2e^{-x}$	M1 Knowing test
	$\int \frac{dx^2}{1 \sqrt{2}} \frac{d^2y}{2} + \frac{2}{2} = 0$	Correct concl
	$x = \ln \sqrt{2}, \frac{1}{dx^2} = 2 + \frac{1}{\sqrt{2}} > 0$	based on test
	Minimum point	VAI
	Total	6 marks
	I I I I I I	v mai ks

Qn	Working	Marks
5(i)	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \hline \\ \end{array} \\ \hline \\ \end{array} \\ \hline \\ 6 \\ \end{array} \\ \hline \\ 6 \\ \end{array} \\ \hline \\ (8, -1) \end{array} \\ \end{array}$	G1 vertex G1 x ints G1 y int
5(ii)	$y \ge -1$	B1
5(iii)	$\begin{vmatrix} 4 - \frac{x}{2} \\ - 1 = 6 \\ \begin{vmatrix} 4 - \frac{x}{2} \\ - \frac{x}{2} \end{vmatrix} = 7$ $4 - \frac{x}{2} = 7 \text{ or } 4 - \frac{x}{2} = -7$ x = -6 or 22	M1 or by counting A1
5(iv)	$y = \left 4 + \frac{x}{2}\right - 1$	B1
	Total	7 marks
6(a)	$(1 - \cos A)^2 - 5$ Max value = $(1 - (-1))^2 - 5 = -1$ When $\cos A = -1$, $A = 180^\circ$ Min value = $(1 - 1)^2 - 5 = -5$ When $\cos A = 1$, $A = 0^\circ, 360^\circ$	B1 B1 B1 B1
6(b)(i)	$90^\circ < A < 180^\circ$ or $\frac{\pi}{2} < A < \pi$	B1
6(b)(ii)	$\cos (A + \overline{B}) = \cos A \cos B - \sin A \sin B$ $= -\frac{1}{\sqrt{5}} \left(\frac{12}{13}\right) - \frac{2}{\sqrt{5}} \left(\frac{5}{13}\right)$ $= -\frac{22}{13\sqrt{5}}$ $\cos C = \cos (180^{\circ} - (A + B))$ $= -\cos (A + B)$ $= \frac{22}{13\sqrt{5}}$	B1 value of cos B B1 value of sin A B1 √B1 e
	Total	9marks

Qn	Working	Marks
7(a)(i)	$\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{\mathrm{ln}x}{4x}\right) = \frac{4x\left(\frac{1}{x}\right) - 4\mathrm{ln}x}{(4x)^2}$ $= \frac{4 - 4\mathrm{ln}x}{1 - \mathrm{ln}x}$	M1 quotient rule M1 diff ln x B1 working seen
7(a)(ii)	$= \frac{1}{4x^2} \frac{\ln x}{4x^2} \text{ (shown)}$ $\int \frac{1 - \ln x}{4x^2} dx = \frac{\ln x}{4x} + c_1$ $= \frac{1}{4} \int \frac{\ln x}{x^2} dx = \int \frac{1}{4} x^{-2} dx - \frac{\ln x}{4x} + c_1$ $= \frac{x^{-1}}{-4} - \frac{\ln x}{4x} + c_1$ $\int \frac{\ln x}{x^2} dx = = -\frac{1}{x} - \frac{\ln x}{x} + c$	B1 use integ ⁿ as reverse of diff Ignore if +c is missing B1 rearrange terms B1 $\int x^{-2} dx$ B1 must have +c
7(b)	$\int_{1}^{2} f(x) dx + \int_{2}^{5} [f(x) + 3x] dx$ = $\int_{1}^{2} f(x) dx + \int_{2}^{5} f(x) dx + \int_{2}^{5} 3x dx$ = $8 + \left[\frac{3x^{2}}{2}\right]_{2}^{5}$ = $8 + \left[\frac{3}{2}(25) - \frac{3}{2}(4)\right]$	M1 switch limits and –ve becomes +ve B1 correct integral A1
	$= \frac{1}{2} = 39\frac{1}{2}$	
	$= \frac{1}{2} = 39\frac{1}{2}$ Total	10 marks
8(a)(i)	$\frac{1}{2} = \frac{39}{2}$ Total When $x = \frac{\pi}{3}, \frac{dy}{dx} = 8\cos\frac{2\pi}{3} = -4$ $\frac{0 - (2\sqrt{3} - 3)}{x - \frac{\pi}{3}} = \frac{1}{4}$ $Q(12 - 8\sqrt{3} + \frac{\pi}{3}, 0) \text{ or } (-0.809, 0)$	10 marks B1 M1 A1
8(a)(i) 8(ii)	$\frac{1}{2} = \frac{39}{2}$ Total When $x = \frac{\pi}{3}, \frac{dy}{dx} = 8\cos\frac{2\pi}{3} = -4$ $\frac{0 - (2\sqrt{3} - 3)}{x - \frac{\pi}{3}} = \frac{1}{4}$ $Q(12 - 8\sqrt{3} + \frac{\pi}{3}, 0) \text{ or } (-0.809, 0)$ $y = 4\sin 2x + c$ Sub $(\frac{\pi}{3}, 2\sqrt{3} - 3)$ $2\sqrt{3} - 3 = 4\sin\frac{2\pi}{3} + c$ $2\sqrt{3} - 3 = 4(\frac{\sqrt{3}}{2}) + c$ $y = 4\sin 2x - 3$	10 marksB1M1A1B1 ignore if +c missingM1 A1
8(a)(i) 8(ii) 8(iii)	$\frac{1}{2} = \frac{1}{2} = 39\frac{1}{2}$ Total When $x = \frac{\pi}{3}, \frac{dy}{dx} = 8\cos\frac{2\pi}{3} = -4$ $\frac{0 - (2\sqrt{3} - 3)}{x - \frac{\pi}{3}} = \frac{1}{4}$ $Q(12 - 8\sqrt{3} + \frac{\pi}{3}, 0) \text{ or } (-0.809, 0)$ $y = 4\sin 2x + c$ Sub $(\frac{\pi}{3}, 2\sqrt{3} - 3)$ $2\sqrt{3} - 3 = 4\sin\frac{2\pi}{3} + c$ $2\sqrt{3} - 3 = 4(\frac{\sqrt{3}}{2}) + c$ $y = 4\sin 2x - 3$ $\frac{dy}{dx} = 4\cos 4x$ $\frac{d^2y}{dx^2} = -16\sin 4x$ $\frac{d^2y}{dx^2} \times \frac{dy}{dx} = (-16\sin 4x) (4\cos 4x)$ $= -32(2\sin 4x\cos 4x)$ $= -32\sin 8x$	10 marksB1M1A1B1 ignore if +c missingM1A1B1 $\frac{d}{dx}$ sin x = cos xB1 $\frac{d}{dx}$ cos x= -cos xB1 use of chain rule B1 2sin4xcos4x seen
8(a)(i) 8(ii) 8(iii)	$\frac{1}{2} = \frac{1}{2} = 39\frac{1}{2}$ Total When $x = \frac{\pi}{3}, \frac{dy}{dx} = 8\cos\frac{2\pi}{3} = -4$ $\frac{0 - (2\sqrt{3} - 3)}{x - \frac{\pi}{3}} = \frac{1}{4}$ $Q(12 - 8\sqrt{3} + \frac{\pi}{3}, 0) \text{ or } (-0.809, 0)$ $y = 4\sin 2x + c$ Sub $(\frac{\pi}{3}, 2\sqrt{3} - 3)$ $2\sqrt{3} - 3 = 4\sin\frac{2\pi}{3} + c$ $2\sqrt{3} - 3 = 4(\frac{\sqrt{3}}{2}) + c$ $y = 4\sin 2x - 3$ $\frac{dy}{dx} = 4\cos 4x$ $\frac{d^2y}{dx^2} = -16\sin 4x$ $\frac{d^2y}{dx^2} \times \frac{dy}{dx} = (-16\sin 4x) (4\cos 4x)$ $= -32(2\sin 4x\cos 4x)$ $= -32\sin 8x$ Total	10 marksB1M1A1B1 ignore if +c missingM1A1B1 $\frac{d}{dx}$ sin x = cos xB1 $\frac{d}{dx}$ cos x= -cos xB1 use of chain ruleB1 2sin4xcos4x seen
8(a)(i) 8(ii) 8(iii)	$\frac{1}{2} = \frac{1}{2} = 39\frac{1}{2}$ Total When $x = \frac{\pi}{3}, \frac{dy}{dx} = 8\cos\frac{2\pi}{3} = -4$ $\frac{0 - (2\sqrt{3} - 3)}{x - \frac{\pi}{3}} = \frac{1}{4}$ $Q(12 - 8\sqrt{3} + \frac{\pi}{3}, 0) \text{ or } (-0.809, 0)$ $y = 4\sin 2x + c$ Sub $(\frac{\pi}{3}, 2\sqrt{3} - 3)$ $2\sqrt{3} - 3 = 4\sin\frac{2\pi}{3} + c$ $2\sqrt{3} - 3 = 4(\frac{\sqrt{3}}{2}) + c$ $y = 4\sin 2x - 3$ $\frac{dy}{dx} = 4\cos 4x$ $\frac{d^2y}{dx^2} = -16\sin 4x$ $\frac{d^2y}{dx^2} \times \frac{dy}{dx} = (-16\sin 4x) (4\cos 4x)$ $= -32(2\sin 4x\cos 4x)$ $= -32(2\sin 4x\cos 4x)$ $= -32\sin 8x$ Total	10 marksB1M1A1B1 ignore if +c missingM1 A1B1 $\frac{d}{dx}$ sin x = cos xB1 $\frac{d}{dx}$ cos x= -cos xB1 use of chain rule B1 2sin4xcos4x seen10 marks
8(a)(i) 8(ii) 8(iii)	$\frac{1}{2} = \frac{1}{2} = 39\frac{1}{2}$ Total When $x = \frac{\pi}{3}, \frac{dy}{dx} = 8\cos\frac{2\pi}{3} = -4$ $\frac{0-(2\sqrt{3}-3)}{x-\frac{\pi}{3}} = \frac{1}{4}$ $Q(12 - 8\sqrt{3} + \frac{\pi}{3}, 0) \text{ or } (-0.809, 0)$ $y = 4\sin 2x + c$ Sub $(\frac{\pi}{3}, 2\sqrt{3} - 3)$ $2\sqrt{3} - 3 = 4\sin\frac{2\pi}{3} + c$ $2\sqrt{3} - 3 = 4(\frac{\sqrt{3}}{2}) + c$ $y = 4\sin 2x - 3$ $\frac{dy}{dx} = 4\cos 4x$ $\frac{d^2y}{dx^2} = -16\sin 4x$ $\frac{d^2y}{dx^2} \times \frac{dy}{dx} = (-16\sin 4x) (4\cos 4x)$ $= -32(2\sin 4x\cos 4x)$ $= -32(2\sin 4x\cos 4x)$ $= -32\sin 8x$ Total	10 marksB1M1A1B1 ignore if +c missingM1A1B1 $\frac{d}{dx}$ sin x = cos xB1 $\frac{d}{dx}$ cos x= -cos xB1 use of chain rule B1 2sin4xcos4x seen10 marks

Qn	Working	Marks
9(a)	2x(2x+k)+6=0	
	$4x^2 + 2kx + 6 = 0$	
	Discriminant < 0	B1 For $D < 0$
	$(2k)^2 - 4(4)(6) < 0$	M1 correct sub
	$k^2 - 24 < 0$ $(k - \sqrt{24})(k + \sqrt{24}) < 0$	M1 Solve ineq
	$-\sqrt{24} < k < \sqrt{24}$	A1 (M0 if $k < \pm \sqrt{24}$)
9(h)	$r^2 + 2r - 1 = 0$	
)(0)	x + 2x + 1 = 0 $-2 + \sqrt{2^2 - 4(1)(-1)}$	M1
	$x = \frac{2 \pm \sqrt{2}}{2}$	
	$p = -1 + \sqrt{2}$, $q = -1 - \sqrt{2}$	A1 $p > q$
	$q - 1 - \sqrt{2}$	1 1
	$\frac{1}{p^2} = \frac{1}{(-1+\sqrt{2})^2}$	
	$-1 - \sqrt{2} - 3 + 2\sqrt{2}$	
	$=\frac{1}{3-2\sqrt{2}} \times \frac{3+2\sqrt{2}}{3+2\sqrt{2}}$	M1 rationalise
	$-3-2(2)-3\sqrt{2}-2\sqrt{2}$	
	$=\frac{(7+1)}{9-4(2)}$	M1 simplify
	$=-7-5\sqrt{2}$	
		Al
1.0.40	Total	9 marks
10(i)	4x + 2(AB) = 210	D1
10(11)	AB = 105 - 2x	BI
10(11)	$H = 2\left(\frac{1}{2}\right)x^2\sin 60 + (105 - 2x)x$	B1 Area of Δ
	$-\frac{\sqrt{3}}{\sqrt{3}}$, $\frac{105}{\sqrt{3}}$, $\frac{2}{\sqrt{3}}$	BI sub & working
	$=\frac{1}{2}x^{2} + 105x - 2x^{2}$	
	$=\left(\frac{\sqrt{3}}{2}-2\right)x^{2}+105x \text{ (shown)}$	
10(iii)	$\frac{\mathrm{d}H}{\mathrm{d}x} = 2\left(\frac{\sqrt{3}}{2} - 2\right)x + 105$	B1
	$\frac{dH}{dt} = 0$	M1
	dx r = 46.3	A1
	d^2H \overline{D} $d \to 0$ M H	
	$\frac{1}{dx^2} = \sqrt{3} - 4 < 0 \text{Maximum } H$	B1 test & concl
	Total	7marks
11(i)	Eqn of PO: $y - (-8) = -\frac{1}{2}(x - 8)$	B1 correct mPQ
	$1 \qquad \qquad$	
	$y = -\frac{1}{2}x - 4$ (1)	B1 form eqn
	QR: y = 2x + 1(2)	
	Solving simultaneously	M1
	$Q\left(-2,-3\right)$	Al
11(11)	$\tan \alpha = 2$	MI use grads to
	$\alpha = 63.43^{\circ}$	Find angles
	$\tan \beta = \frac{13}{8}$ $\qquad \qquad $	
	$\beta = 58.39^{\circ}$ $\alpha \beta$	
	$\theta = 63.43^{\circ} + 58.39^{\circ}(\text{ext} \angle \text{ of } \Delta)$	M1 manipulate ∠s
	$= 121.8^{\circ}$	Al
	Tatal	7 marks
1	Iotai	

TANJONG KATONG SECONDARY SCHOOL Preliminary Examination 2018

Secondary 4

CANDIDATE NAME		
CLASS	INDEX NUMBER	

ADDITIONAL MATHEMATICS

Paper 2

Tuesday 28 August 2018 2 hours 30 minutes

4047/02

Additional Materials: Writing Paper Graph Paper

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number on the work you hand in. Write in dark blue or black pen. You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer **all** the questions.

Write your answers on the writing paper provided.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal in the case of angles in degree, unless a different level of accuracy is specified in the question.

The use of a scientific calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 100.

Mathematical Formulae

1. ALGEBRA

Quadratic Equation

For the equation $ax^2 + bx + c = 0$,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Binomial Theorem

$$(a+b)^{n} = a^{n} + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^{2} + \ldots + \binom{n}{r}a^{n-r}b^{r} + \ldots + b^{n},$$

where *n* is a positive integer and $\binom{n}{r} = \frac{n!}{(n-r)!r!} = \frac{n(n-1)....(n-r+1)}{r!}$

2. TRIGONOMETRY

Identities

$$\sin^2 A + \cos^2 A = 1$$
$$\sec^2 A = 1 + \tan^2 A$$
$$\csc^2 A = 1 + \cot^2 A$$
$$\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$$
$$\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B$$
$$\tan (A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$
$$\sin 2A = 2 \sin A \cos A$$
$$\cos 2A = \cos^2 A - \sin^2 A = 2 \cos^2 A - 1 = 1 - 2 \sin^2 A$$
$$\tan 2A = \frac{2 \tan A}{1 - \tan^2 A}$$

Formulae for *AABC*

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$
$$\Delta = \frac{1}{2}bc \sin A$$

Answer all questions.

2

3

4

1 The amount of energy, *E* erg, generated in an earthquake is given by the equation $E = 10^{a+bM}$, where *a* and *b* are constants and *M* is the magnitude of the earthquake.

The table below shows some corresponding values of M and E.

	М	1	2	3	4	5
	E (erg)	2.0×10^{13}	6.3×10^{14}	2.0×10^{16}	6.3×10^{17}	2.0×10^{19}
(i)	Plot lg E a	against <i>M</i> .				
(ii)	Using you	ır graph, find a	an estimate for	the value of <i>a</i>	and of b .	
(iii)	Using you earthquak	ar answers from the of magnitude	n (ii) , find the e 7.	amount of ene	ergy generated	, in erg, by an
(i)	Write dov	vn the expansi	on of $(3 - x)^3$ i	n ascending p	owers of <i>x</i> .	
(ii)	Expand (3	$(3+2x)^8$, in asc	ending powers	s of x , up to the	e term in x^3 .	
(iii)	Write dov	vn the expansi	on of $(3 - x)^3$ ($(3+2x)^8$ in asc	cending power	The result of x , up to x^2
(iv) (v)	By letting giving you Show you Explain cl $2^3 \times 5^8$.	x = 0.01 and y ur answer corr or workings clearly why the	your expansion ect to 3 signifi early. expansion in (n in (iii), find t cant figures. (iii) is not suita	he value of 2.9 able for finding	$99^3 \times 3.02^8$, g the value of
(i)	By writing	g 3 θ as (2 θ + θ	θ), show that s	$\sin(3\theta) = 3 \sin(3\theta)$	n θ – 4 sin ³ θ .	
(ii)	Solve sin	$(3\theta) = 3\sin\theta$	$\theta \cos \theta$ for $0^{\circ} <$	$\theta < 360^{\circ}.$		
The (i)	equation Write dov	$x^2 + bx + c = 0$ vn, in terms of	has roots α ar b and/or c, the	and β , where $b > b^{-1}$ e value of $\alpha + b^{-1}$	> 0. β and of αβ.	
/••	Find a que	adratic equatio	n with roots a	α^2 and β^2 , in to	erms of <i>a</i> and	b.
(11)	I ma a qui	adratic equation				
(11) (iii)	Find the r distinct ro	elation betwee	n <i>b</i> and <i>c</i> for v	which the equa	tion found in	(ii) has two

5 In the diagram, A, B, C and D are points on the circle centre O. AP and BP are tangents to the circle at A and B respectively. DQ and CQ are tangents to the circle at D and C respectively. POQ is a straight line.

- (i) Prove that angle $COD = 2 \times \text{angle } CDQ$. [3]
- (ii) Make a similar deduction about angle *AOB*. [1]
- (iii) Prove that $2 \times \text{angle } OAD = \text{angle } CDQ + \text{angle } BAP.$ [4]

6	(i) Differentiate $y = 2e^{3x} (1 - 2x)$ with respect to x.	[3]
	(ii) Find the range of values of x for which y is decreasing.	[1]
	(iii) Given that x is decreasing at a rate of 5 units per second, find the rate of change of y at the instant when $x = -1.5$.	[3]

7 (i) By using an appropriate substitution, express $2^{3a+1} - 2^{2a+2} + 2^a$ as a cubic function. [3]

- (ii) Solve the equation $2^{3a+1} 2^{2a+2} + 2^a = 0.$ [5]
- (iii) Find the range of values of k for which $2^{3a+1} 2^{2a+2} + k(2^a) = 0$ has at least one real solution. [3]

8 The diagram shows the graphs of y = f(x) and y = f'(x).

The function $f(x) = ax^3 + bx^2 + 24x + 16$ has stationary points at x = p and x = 4.

- (i) Find an expression for f'(x), in terms of *a* and *b*. [1]
- (ii) Find the value of a and of b. [3]
- (iii) Find the value of p. State the range of values of k, where k > 0 and y = f(x) - k has only one real root. [3]
- (iv) Find the minimum value of the gradient of f(x). [2]

(i) Find the gradient function of the curve.	[1]
(ii) Find the equation of the tangent at <i>B</i> .	
Hence, state the coordinates of A.	[3]
(iii) Find the area of the shaded region.	[6]

10	0 A particle, P, travels along a straight line so that, t seconds after passing a fixed point its velocity, v m/s is given by $v = (12e^{kt} + 18)$, where k is a constant.			
	(i) Find the initial velocity of the particle.	[1]		
	Two seconds later, its velocity is 40 m/s. (ii) Show that $k = 0.3031$, correct to 4 significant figures.	[3]		
	(iii) Sketch the graph of $v = 12e^{kt} + 18$, for $0 \le t \le 4$.	[3]		
	(iv) Explain why the distance travelled by <i>P</i> during the 4 seconds does not exceed 180 metres.	[2]		
	(v) Find the maximum acceleration of <i>P</i> during the interval $0 \le t \le 4$.	[2]		
11	A circle, C_1 , with centre A, has equation $x^2 + y^2 - 8x - 4y - 5 = 0$.			
	(i) Find the coordinates of A and the radius of C_1 .	[3]		
	(ii) Show that (1, 6) lies on the circle.	[1]		
	(iii) Find the equation of the tangent to the circle at $(1, 6)$.	[3]		
	The equation of the tangent to the circle at $(1, 6)$ cuts the <i>x</i> -axis at <i>B</i> . (iv) Find the coordinates of <i>B</i> .	[2]		
	Another circle, C_2 , has centre at <i>B</i> and radius <i>r</i> . (v) Find the exact value of <i>r</i> given that circle C_2 touches circle C_1 .	[3]		

End of Paper

Answers: (i) a = 11.7 to 11.9, b = 1.49 to 1.51 (iii) $E = 2.0 \times 10^{22}$ Erg 1 (i) $27 - 9x + 3x^2 - x^3$ (ii) $6561 + 34992x + 81648x^2 + 108864x^3 + \dots$ 2 (iii) $177\ 147 + 885\ 735x + 1\ 909\ 251x^2 + \dots$ (iv) 186 000 (v) For $2^3 \times 5^8$, need to use x = 1Since 1 is large in comparison to 0.01, the value is inaccurate because a significantly large value is removed after the 3rd term. (ii) 104.5°, 255.5°, 180° 3 (i) $\alpha + \beta = -b, \ \alpha \ \beta = c$ (ii) $x^2 - (b^2 - 2c)x + c^2 = 0$ (iii) $b^2 - 4c > 0$ (iv) $b = 5, \ c = 2$ 4 o.e o.e. (i) $\frac{dy}{dx} = 2e^{3x}(1-6x)$ (ii) $x > \frac{1}{6}$ (iii) -1.11 units/sec 6 (i) $2x^3 - 4x^2 + x$ (o.e.) 7 (ii) a = 0.7771 or -1.77 (iii) $k \le 2$ (i) $f'(x) = 3ax^2 + 2bx + 24$ 8 (ii) a = 2, b = -15(iii) p = 1, k > 27(iv) -13.5 (i) $\frac{dy}{dx} = -2(x-2)^3$ (iii) 38.4 units² 9 (ii) Eq AB: y = 16x + 8, A is (2, 40) **▲** v (m/s) 10 (i) 30 m/s (iii) (4, 58.3) (iv) area of trapezium $< 0.5(30 + 60) \times 4 = 180$ 30 60 30 $\blacktriangleright t(s)$ \therefore distance travelled < 180 m (v) max $a = 12.23 \text{ m/s}^2$ 11 (i) A is (4, 2), Radius = 5 units (iii) 4y - 3x = 21 (o.e.)

(iv)
$$(-7, 0)$$
 (v) $r = 5\sqrt{5} - 5$

Qn	Key Steps		Marks / Remarks	
1(i)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	B1	TOV	
		B1	Line passes through pts	
(ii)	lg E = a + bM a = vertical intercept = 11.8 b = gradient (their rise/run) = 1.5	B1 M1 A1	11.7 to 11.9 working for gradient 1.49 to 1.51	
(iii)	lg $E = 11.8 + 1.5(7) = 22.3$ $E = 2.0 \times 10^{22}$ Erg	M1 A1	1.34×10^{22} to 2.95×10^{22}	7
2(i)	$(3-x)^3 = 27 - 27x + 9x^2 - x^3$	B1		
(ii)	$(3+2x)^{8} = 3^{8} + {\binom{8}{1}}(3)^{7}(2x) + {\binom{8}{2}}(3)^{6}(2x)^{2} + {\binom{8}{3}}(3)^{5}(2x)^{3} = 6\ 561 + 34\ 992x + 81\ 648x^{2} + 108\ 864x^{3} + \dots$	В3	1m for each term (2nd to 4th) -1m if 1st term missing B0 is all not evaluated	
(iii)	$(3 - x)^3 (3 + 2x)^8$ = their (i) × their (ii) = 177 147 + 767 637x + 2 854 035x ² +	M1 A1	choosing correct pairs	
(iv)	$2.99^{3} \times 3.02^{8}$ = 177 147 + 767 637(0.01) + 2 854 035(0.01)^{2} = 185108.7735 = 185 000	B1 B1	Subn must be seen reject 184 956	
(v)	For $2^3 \times 5^8$, need to use $x = 1$	B1	x = 1 seen	
	Since 1 is large in comparison to 0.01, the value is inaccurate because a significantly large value is removed after the 3rd term	B1	o.e. "big" or "large" seen	10

3(i)	$\sin (\theta + 2\theta)$ $= \sin \theta \cos 2\theta + \cos \theta \sin 2\theta$ $= \sin \theta (1 - 2\sin^2 \theta) + \cos \theta (2\sin \theta \cos \theta)$ $= \sin \theta (1 - 2\sin^2 \theta) + 2\sin \theta \cos^2 \theta$ $= \sin \theta (1 - 2\sin^2 \theta) + 2\sin \theta (1 - \sin^2 \theta)$ $= 2\sin \theta (1 - 2\sin^2 \theta)$	B1 B1	Use compound angle Any double angle seen	
	$= \sin \theta \cos 2\theta + \cos \theta \sin 2\theta$ $= \sin \theta (1 - 2 \sin^2 \theta) + \cos \theta (2 \sin \theta \cos \theta)$ $= \sin \theta (1 - 2 \sin^2 \theta) + 2 \sin \theta \cos^2 \theta$ $= \sin \theta (1 - 2 \sin^2 \theta) + 2 \sin \theta (1 - \sin^2 \theta)$ $= 2 \sin \theta - 4 \sin^2 \theta$	B1 B1	Use compound angle Any double angle seen	
	$= \sin \theta (1 - 2 \sin^2 \theta) + \cos \theta (2 \sin \theta \cos \theta)$ $= \sin \theta (1 - 2 \sin^2 \theta) + 2 \sin \theta \cos^2 \theta$ $= \sin \theta (1 - 2 \sin^2 \theta) + 2 \sin \theta (1 - \sin^2 \theta)$ $= 2 \sin \theta - 4 \sin^2 \theta$	B1	Any double angle seen	
	$= \sin \theta (1 - 2 \sin^2 \theta) + 2 \sin \theta \cos^2 \theta$ $= \sin \theta (1 - 2 \sin^2 \theta) + 2 \sin \theta (1 - \sin^2 \theta)$ $= 2 \sin \theta - 4 \sin^2 \theta$		5 0	
	$= \sin \theta \left(1 - 2 \sin^2 \theta \right) + 2 \sin \theta \left(1 - \sin^2 \theta \right)$ $= 2 \sin \theta \left(4 \sin^2 \theta \right)$			
		B1	Use identity	
	$-3 \sin \theta - 4 \sin^2 \theta$		AG	
(ii)	$\sin(3\theta) = 3\sin\theta\cos\theta$			
(11)	$3\sin\theta - 4\sin^3\theta = 3\sin\theta\cos\theta$			
	$\sin \theta (3 - 4 \sin^2 \theta - 3 \cos \theta) = 0$			
	$\sin \theta = 0 \qquad \qquad \therefore \ \theta = 180^{\circ}$	B1	$\theta = 180^{\circ}$ seen	
	or			
	$3-4\sin^2\theta-3\cos\theta=0$	Ml	Solve a quadratic	
	$3 - 4(1 - \cos^2 \theta) - 3 \cos \theta = 0$	BI	Use identity	
	$4\cos^2\theta - 3\cos\theta - 1 = 0$			
	$(4\cos\theta + 1)(\cos\theta - 1) = 0$			
	$\cos \theta = -\frac{1}{4}$ or $\cos \theta = 1$ (NA)			
	Hence, $\theta = 104.5^{\circ}, 255.5^{\circ}$	B2	−1m for extra answer	8
4(i)	$\alpha + \beta = -b$ $\alpha \beta = c$	B1	Both correct	
(ii)	$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$		-	
	$=b^{2}-2c$	Bl	Correct sum	
	$\alpha^2 \beta^2 = c^2$	BI D1	Correct product	
	Eqn: $x^2 - (b^2 - 2c)x + c^2 = 0$ \checkmark	DI	Equation seen	
(iii)	For 2 distinct roots			-
(111)	$(b^2 - 2c)^2 - 4c^2 > 0$	B1	Correct D	
	$b^{2}(b^{2}-4c) > 0$		ok if $[-(b^2 - 2c)]^2$ or $(b^2 - 2c)^2$	
	Since $b^2 > 0$, hence $b^2 - 4c > 0$	B1	0.6	
		DI	0.0.	
(iv)	b=5, c=2	B1	o.e.	
				1

Qn	Key Steps		Marks / Remarks	
5(i)	Let $\angle CDO = a$			
0(1)	$\angle ODO = 00^{\circ}$ (tan \perp rad)	D1	with rangen	
	$20DQ = 90^{\circ}$ (tail ± 1 ad)		with reason	
	$\therefore 20DC - 90 - u$	BI	•.4	
	$\therefore \angle COD = 180^{\circ} - 2(90^{\circ} - a) (\angle \text{sum}, \triangle COD)$	BI	with reason	
()		D1		
(11)	$\angle AOB = 2 \times \angle BAP$	BI		
(;;;)	From (i) and (ii)			
(111)	From (1) and (11), $2(\sqrt{CDD} + \sqrt{DD})$	D1		
	$2(\angle CDQ + \angle BAP) = \angle COD + \angle AOB$	ы	attempt to use (1) and (1)	
	$\angle CDQ + \angle BAP = \frac{1}{2} (\angle COD + \angle AOB)$			
	$= \angle AOP + \angle DOQ (\perp \text{ prop of chord})$	B1B1	1m for reason	
	$= 180^{\circ} - \angle AOD$			
		DI		
	$= 2 \angle OAD$	BI		0
				ð
6(1)	$y = 2e^{3x}(1-2x)$	DI		
	$\frac{dy}{dt} = 2e^{3x}(-2) + 6e^{3x}(1-2r)$	BI	Product Rule	
	$\frac{dx}{dx} = \frac{2e^{-(-2)^2+6e^{-(1-2x)}}}{dx}$	BI	Diff exponential in	
	$=2e^{3x}(1-6x)$	B1	Simplify, ok if not factorised	
(ii)	dy			
	For decreasing function, $\frac{d}{dr} < 0$			
	1 - 6r < 0			
	1			
	$x > \frac{1}{\epsilon}$	B1		
	6 ×			
(;;;)	dy			
	Given that $\frac{dy}{dt} = -5$ units/s	B1	with negative seen	
	dx			
	$\frac{dy}{dx} = \frac{dy}{dx} \times \frac{dx}{dx}$	B1	with subs seen	
	dt dx dt	וע		
	$=2e^{3x}(1-6x)(-5)$			
	$=2e^{3(-1.5)}(1+6\times 1.5)(-5)$			
	= -1.11 units/sec	B1		
				7
				, <i>'</i>
1		L		I

Qn	Key Steps		Marks / Remarks	
7(i)	$2^{3a+1} - 2^{2a+2} + 2^a \qquad \text{Let } 2^a = x$	B1	Use of: $2^{\overline{p+q}} = 2^p \times 2^q$	
	$= 2 \times 2^{3a} - 4 \times 2^{2a} + 2^a$	B1	Use of: $(2^p)^q = 2^{pq}$	
	$=2x^3-4x^2+x$	B1		
(ii)	$2r^3$ $4r^2 + r = 0$			
(11)	$2x^{2} - 4x + x = 0$ $x(2x^{2} - 4x + 1) = 0$			
	$x = 0, \qquad \therefore 2^a = 0 \text{ (rej)}$	B1	x = 0 seen	
	or $2x^2 - 4x + 1 = 0$			
	$r = \frac{-4 \pm \sqrt{16 - 4 \times 2 \times 1}}{16 - 4 \times 2 \times 1}$	M1	Solving quad with working seen	
	4	A 1		
	= 1.707 or 0.2929	AI	Both <i>x</i>	
	$2^a = 1.707$ or 0.2929			
	lg1.707 lg0.2929	2.61		
	$a = \frac{1}{\lg 2}$ or $\frac{1}{\lg 2}$	MI	Using log (any base)	
	= 0.7771 or -1.77	A1	Both <i>a</i>	
(iii)	$2^{3a+1} - 2^{2a+2} + (k)2^a = 0$ has at least one root			
	$\therefore 2x^2 - 4x + k = 0$ has at least one root	MI D1	Using quad part of eqn	
	$\therefore 16 - 4 \times 2 \times k \ge 0$		Correct D with subs	
	$K \leq 2$	111		11
8(i)	$f(x) = ax^3 + bx^2 + 24x + 16$			
	$f'(x) = 3ax^2 + 2bx + 24$	B1		
(ii)	Sub $(A, 0)$ into $f'(r) = 0$			-
	3a(16) + 2b(4) + 24 = 0	B1	Sub into their $f'(x)$ and $f(x)$	
	$\therefore 48a + 8b + 24 = 0 \dots \dots$	21		
	Sub $(4, 0)$ into f (x)			
	a(64) + 16b + 24(4) + 16 = 0			
	$\dots 04u + 10v + 90 + 10 = 0 \dots (2)$	M1	Solve simul eqn	
	a = 2, b = -15	A1	Both	
(;;;)	$f'(x) = 6x^2 - 30x + 24$			
	$= 6(x^2 - 5x + 4)$			
	= 6(x - 1)(x - 4)			
	$\therefore p = 1$	B1		
	At $x = 1$, $f(x) = 2(1) - 15(1) + 24(1) + 16 = 27$	M1	Using their <i>p</i>	
	Hence, $k > 2/$	A1		
(iv)	Min value of f' (x) = $6(2.5)^2 - 30(2.5) + 24$	M1	Use $x = 2.5$	1
	= -13.5	A1		
				9
L				L

Qn	Key Steps		Marks / Remarks	
9(i)	$y = -\frac{1}{2}(x-2)^4 + 16, \qquad \therefore \frac{dy}{dx} = -2(x-2)^3$	B1	0.e.	
(ii)	Grad of $AB = -2(-8) = 16$	B1	Grad AB seen	
	At B , $x = 0$, $\therefore y = 8$			
	Eqn AB : $y = 16x + 8$	Bl	Eqn AB seen	
	$\therefore A$ is (2, 40)	Ы		
(iii)	Area $OBACD = (8 + 40) \times 2$ = 96 units ²	M1 A1	Using composite figures	
	Area bounded by curve and axes			
	$= \int_0^4 \left(-\frac{1}{2} (x-2)^4 + 16 \right) dx$	B1	Knowing to use integral for area	
	$= \left(-\frac{1}{10}(x-2)^5 + 16x\right)_0^4$	B1	Correct integration	
	$= (-\frac{1}{10} \times 32 + 64) - (\frac{1}{10} \times 32)$	B1	Subs seen	
	= 57.6			
	\therefore shaded area – 96 – 57.6 = 38.4 units ²	B1		10
				10
10(i)	$v_0 = 12e^{k(0)} + 18 = 30 \text{ m/s}$	B1	Sub need not be seen	
(ii)	$v_2 = 40$ $\therefore 40 = 12e^{k(2)} + 18$	B1	Sub into eqn	
	$e^{2k} = \frac{11}{6}$			
	$2k = \ln\left(\frac{11}{6}\right)$	B1	Using logarithm	
	$k = 0.303 \ 1$	BI		
(iii)				
	$\wedge v (m/s)$			
	(4, 58.3)	B1	Shape	
	30	B1	Label v-intercent	
		B1	Label (4, 58.3)	
(iv)	Area under curve < Area of trapezium	B1	Find relevant distance	
	Area of trapezium = $0.5(30 + 60) \times 4 = 180$		travelled using any suitable method	
			method	
	60			
	30			
	\therefore distance travelled < 180 m			
		B1	Making conclusion	
(v)	Max accn occurs at $t = 4$ where the gradient is most steep Max accn = 0.2021 + 12 = 0.3031 (4)	2.51	1/00	
	$max accn = 0.5031 \times 12 e^{-0.0017(1)}$ $= 12.23 m/s^2$		Knowing to differentiate	11
	12.23 111 5	AI		
	1	1		1

Qn	Key Steps		Marks / Remarks	
11(i)	$x^{2} + y^{2} - 8x - 4y - 5 = 0$ A is (4, 2) Radius = $\sqrt{4^{2} + 2^{2} + 5} = 5$ (units)	B1 M1A1		
(ii)	$1^{2} + 6^{2} - 8(1) - 4(6) - 5 = 0$ Hence, (1, 6) lies on the circle.	B1	Subs seen and statement	
(iii)	Gradient of line joining (4, 2) and (1, 6) = $-\frac{4}{3}$	B1	\perp grad seen	
	Eqn of tangent at (1, 6) is $y-6 = -\frac{4}{2}(x-1)$	B1	Find eqn	
	4y - 3x = 21	B1	o.e.	
(iv)	At $B, y = 0$	M1	Finding <i>x</i>	
	$\therefore x = -7$ $\therefore B \text{ is } (-7, 0)$	A1	Ordered pair seen	
(v)	Distance between centres			
	$=\sqrt{11^2+2^2}$	M1	Find dist between centres	
	$= \sqrt{125}$	M1	Using sum radii = distance	
	$=5\sqrt{5}$ = 5	A1		
				12