(

CHIJ KATONG CONVENT PRELIMINARY EXAMINATION 2018 SECONDARY 4 EXPRESS / 5 NORMAL (ACADEMIC)

ADDITIONAL MATHEMATICS PAPER 1

4047/01

Duration: 2 hours

Classes: 403, 405, 406, 502

READ THESE INSTRUCTIONS FIRST

Write your name, class and registration number on all the work you hand in. Write in dark blue or black pen on both sides of the paper. You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid/tape.

Answer **all** the questions.

Write your answers on the separate Answer Paper provided. Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question. The use of an approved scientific calculator is expected, where appropriate. You are reminded of the need for clear presentation in your answers. Omission of essential working will result in loss of marks.

There are two sections in this paper. At the end of the examination, fasten sections *A* and *B* separately.

The number of marks is given in brackets [] at the end of each question or part question. The total number of marks for this paper is 80.

1. ALGEBRA

Quadratic Equation

For the equation $ax^2 + bx + c = 0$,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Binomial expansion

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{r}a^{n-r}b^r + \dots + b^n,$$

where *n* is a positive integer and $\binom{n}{r} = \frac{n!}{r!(n-r)!} = \frac{n(n-1)\dots(n-r+1)}{r!}$

2. TRIGONOMETRY

Identities

$$\sin^2 A + \cos^2 A = 1$$
$$\sec^2 A = 1 + \tan^2 A$$
$$\csc^2 A = 1 + \cot^2 A$$
$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$
$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$
$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$
$$\sin 2A = 2 \sin A \cos A$$
$$\cos 2A = \cos^2 A - \sin^2 A = 2 \cos^2 A - 1 = 1 - 2 \sin^2 A$$
$$\tan 2A = \frac{2 \tan A}{1 - \tan^2 A}$$

Formulae for *AABC*

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^{2} = b^{2} + c^{2} - 2bc \cos A$$
$$\Delta = \frac{1}{2}bc \sin A$$

Answer all questions.

Section A

- 1 A metal cube with sides 2x mm is heated. The sides are expanding at a rate of 0.05 mm/s. Calculate the rate of change of the total surface area of the cube when x = 0.57 mm. [3]
- 2 Without using a calculator, find the integer value of *a* and of *b* for which the solution of the equation $2x\sqrt{5} = x\sqrt{2} + \sqrt{18}$ is $\frac{\sqrt{a} + b}{3}$. [4]
- 3 The equation of a curve is $y = \frac{3x^2}{\sqrt{4x-h}}$. Given that the *x*-coordinate of the stationary point is 1, find the value of *h*. [4]
- 4 The roots of the quadratic equation $8x^2 49x + c = 0$ are $\frac{2\alpha}{\beta}$ and $\frac{2\beta}{\alpha}$. (i) Show that c = 32. [1]
 - (ii) Given that $\alpha\beta = 4$, find two distinct quadratic equations whose roots are α and β . [4]

5 Given that
$$y = \frac{2 - 3\sec^2 2x}{\tan^2 2x + 1}$$
,

(i) express y in the form $\cos 4x + k$,

- [2]
- (ii) sketch the graph of |y| for $-\frac{\pi}{2} \le x \le \pi$ and state the value of *n* when |y| = nhas four solutions. [3]

6 The polynomial
$$f(x) = px^3 + 3x^2 + qx - 6$$
 is divisible by $x^2 + x - 6$.

- (i) Find the value of p and of q. [4]
- (ii) Find the remainder in terms of x when f(x) is divided by $x^2 1$. [2]

CHIJ Katong Convent Preliminary Exam 2018

(4047/01)

7 Given the equation $\frac{2}{\sin^2 \theta} = 5 - \cot \theta$ where $0^\circ < \theta < 360^\circ$, find (i) the values of θ , [4]

(ii) the exact values of $\cos \theta$. [2]

8 (i) Express
$$\frac{2x-1}{x^2(x+1)}$$
 in partial fractions. [4]

(ii) Hence, determine
$$\int \frac{2x-1}{x^2(x+1)} dx$$
. [2]

Section **B**

Begin this section on a new sheet of writing paper.

9 Given the curve $y = (m+1)x^2 - 8x + 3m$ has a minimum value, find the range of values of m

(i) for which the line
$$y = m - 4mx$$
 meets the curve, [5]

(ii) for which the *y*-intercept of the curve is greater than $-\frac{5}{2}$. [2]

10 (i) Solve the equation
$$3\log_{27} \left[\log_{1000} (x^2 + 9) - \log_{1000} x \right] = -1.$$
 [3]

(ii) (a) On the same axes, sketch the graphs of
$$y = \log_{\frac{1}{2}} x - 1$$
 and $y = \log_{2} x + 1$. [2]

(b) Explain why the two graphs are symmetrical about the *x*-axis. [2]

A piece of wire of length 80 cm is bent into the shape of a trapezium *ABCD*. AB = CD = x cm and angle BAD = angle $ADC = 120^{\circ}$.

(i) Show that the area of the trapezium *ABCD* is given by
$$\frac{\sqrt{3}}{2}x(40-x)$$
 cm². [4]

(ii) Given that x can vary, find the value of x for which the area has a stationary value. [2]

- (iii) Determine whether this stationary value is a maximum or a minimum. [2]
- 12 A particle moves in a straight line so that its velocity, v m/s, is given by $v = 2 \frac{18}{(t+2)^2}$ where *t* is the time in seconds, after leaving a fixed point *O*. Its displacement from *O* is 9 m when it is at instantaneous rest.

Find

(i)	the value of t when it is at instantaneous rest,	[2]
(ii)	the distance travelled during the first 4 seconds.	[4]
At <i>t</i> =	= 7, the particle starts with a new velocity, V m/s, given by $V = -h(t^2 - 7t) + k$.	
(iii)	Find the value of <i>k</i> .	[1]

(iv) Given that the deceleration is 0.9 m/s^2 when t = 8, find the value of *h*. [2]

13 Solutions to this question by accurate drawing will not be accepted.

In the diagram, PQ is parallel to SR and the coordinates of P, Q and S are (3, 2), (9, 4) and (5, 7) respectively.

The gradient of the line OR is 1.

Find

(i)	the coordinates of <i>R</i> ,	[4]
(ii)	the area of the quadrilateral PQRS,	[2]
(iii)	the coordinates of the point H on the line $y = 1$ which is equidistant from P and Q.	[4]

End of Paper

CHIJ KATONG CONVENT PRELIMINARY EXAMINATION 2018 SECONDARY 4 EXPRESS / 5 NORMAL (ACADEMIC)

4047/01

[3]

ADDITIONAL MATHEMATICS PAPER 1 Classes: 403, 405, 406, 502

Solutions for students

1 A metal cube with sides 2x mm is heated. The sides are expanding at a rate of 0.05 mm/s. Calculate the rate of change of the total surface area of the cube when x = 0.57 mm.

1

Without using a calculator, find the integer value of a and of b for which the solution of the 2 equation $2x\sqrt{5} = x\sqrt{2} + \sqrt{18}$ is $\frac{\sqrt{a} + b}{3}$. [4]

<mark>OR</mark>

eptable.

[4]

Solution

$$x\left(2\sqrt{5} - \sqrt{2}\right) = \sqrt{18}$$

$$x = \frac{\sqrt{18}}{2\sqrt{5} - \sqrt{2}} \times \frac{2\sqrt{5} + \sqrt{2}}{2\sqrt{5} + \sqrt{2}} \quad \text{conjugate surds}$$

$$= \frac{\sqrt{10} + 6}{18}$$

$$= \frac{\sqrt{10} + 1}{3}$$

$$a = 10, b = 1$$
A handful used this method but did not reject one answer/ did not know why one of the answers is not acceptable.

$$(2x\sqrt{5})^2 = (x\sqrt{2} + \sqrt{18})^2$$

$$20x^2 = 2x^2 + 2\sqrt{36x} + 18$$

$$18x^2 - 12x - 18 = 0$$

$$3x^2 - 2x - 3 = 0$$

$$x = \frac{2 + \sqrt{4 - 4(2)(-3)}}{2(3)}$$

$$= \frac{1 + \sqrt{10}}{3} \text{ or } \frac{1 - \sqrt{10}}{3} \text{ (reject)}$$

$$a = 10, b = 1$$

3

The equation of a curve is $y = \frac{3x^2}{\sqrt{4x-h}}$.

Given that the *x*-coordinate of the stationary point is 1, find the value of *h*.

Solution

$$\frac{dy}{dx} = \frac{\sqrt{4x - h} (6x) - 3x^2 \left(\frac{1}{2}\right) (4x - h)^{-\frac{1}{2}} (4)}{4x - h}$$
quotient OR product rul
$$= \frac{(4x - h)^{-\frac{1}{2}} \left[(6x) (4x - h) - 6x^2 \right]}{4x - h}$$
$$= \frac{18x^2 - 6hx}{(4x - h)^{\frac{3}{2}}}$$

At stationary point, $\frac{dy}{dx} = 0$.

When
$$x = 1$$
, $\frac{18(1)^2 - 6h(1)}{(4(1) - h)^{\frac{3}{2}}} = 0$
 $h = 3$

The roots of the quadratic equation $8x^2 - 49x + c = 0$ are $\frac{2\alpha}{\beta}$ and $\frac{2\beta}{\alpha}$.

(i) Show that c = 32.

(ii) Given that $\alpha\beta = 4$, find two distinct quadratic equations whose roots are α and β . [4]

[1]

<u>Solution</u>	
(i)	
$\left(\frac{2\alpha}{\beta}\right)\left(\frac{2\beta}{\alpha}\right) = \frac{c}{8}$	
$4 = \frac{c}{8}$	
<i>c</i> = 32	
(ii) $\frac{2\alpha}{\beta} + \frac{2\beta}{\alpha} = \frac{49}{8}$	SOR
$\frac{2\alpha^2 + 2\beta^2}{\alpha\beta} = \frac{49}{8}$	
$\frac{2\alpha^2+2\beta^2}{4}=\frac{49}{8}$	
$\alpha^2 + \beta^2 = \frac{49}{4}$	
$(\alpha+\beta)^2-2\alpha\beta=\frac{49}{4}$	apply perfect squ
$(\alpha+\beta)^2-8=\frac{49}{4}$	
$(\alpha + \beta)^2 = \frac{81}{4}$	
$\alpha + \beta = \pm \frac{9}{2}$	
Eqns are $2x^2 - 9x + 8 = 0$,	2x+9x+8=0.

both eqns, accept fractional coefficients

Given that
$$y = \frac{2 - 3\sec^2 2x}{\tan^2 2x + 1}$$
,

5

4

(i) express y in the form $\cos 4x + k$,

(ii) sketch the graph of |y| for $-\frac{\pi}{2} \le x \le \pi$ and state the value of *n* when |y| = nhas four solutions. [3]

Solution
(i)
$$\frac{2-3\sec^2 2x}{\tan^2 2x+1} = \frac{2-3\sec^2 2x}{\sec^2 2x}$$

 $= 2\cos^2 2x-3$
 $= 2\cos^2 2x-1-2$
 $= \cos 4x-2$

(iii) graph

6 The polynomial $f(x) = px^3 + 3x^2 + qx - 6$ is divisible by $x^2 + x - 6$.

[2]

Find the remainder in terms of x when f(x) is divided by $x^2 - 1$. (ii)

Solution OR (i) $x^2 + x - 6 = (x - 2)(x + 3)$ $px^{3} + 3x^{2} + qx - 6 = (x - 2)(x + 3)(px + 1)$ By the factor thm, f(2) = 0 $p(2)^{3} + 3(2)^{2} + q(2) - 6 = 0$ factor thm 8p + 2q + 6 = 04p + q = -3(1) f(-3) = 0 $p(-3)^3 + 3(-3)^2 + q(-3) - 6 = 0$ factor thm -27 p - 3q + 21 = 09p + q = 7(2) Solve (1) and (2); p = 2, q = -11OP long division (act)

(ii) Using
$$x^2 = 1$$
,
 $f(x) = 2x^3 + 3x^2 - 11x - 6$
 $= 2x^2(x) + 3x^2 - 11x - 6$
 $= -9x - 3$
(iii) Using $x^2 = 1$,
 $f(x) = 2x^3 + 3x^2 - 11x - 6$
 $= 2x + 3 - 11x - 6$
 $= -9x - 3$
(iv) fold division (ect)
Many used this method.
 $2x + 3$
 $x^2 - 1[2x^3 + 3x^2 - 11x - 6]$
 $2x^3 - 2x$
 $3x^2 - 9x - 6$
 $3x^2 - 3$
 $-9x - 3$

OR

Given the equation $\frac{2}{\sin^2 \theta} = 5 - \cot \theta$ where $0^0 < \theta < 360^0$, find

- (i) the values of θ .
- the exact values of $\cos \theta$. (ii)

Solution

7

(i)
$$2 \cos ec^2 \theta = 5 - \cot \theta$$

 $2(1 + \cot^2 \theta) - 5 + \cot \theta = 0$
 $(2 \cot^2 \theta + \cot \theta - 3 = 0)$
 $(2 \cot \theta + 3)(\cot \theta - 1) = 0$ factorisation
 $\cot \theta = -\frac{3}{2}$ or $\cot \theta = 1$
 $\tan \theta = -\frac{2}{3}$ or $\tan \theta = 1$
Basic angle = 33.69°, 45°
 $\theta = 146.3^\circ, 326.3^\circ, 45^\circ, 225^\circ$
(ii) $\tan \theta = -\frac{2}{3}$ (quadrants 2, 4) or $\tan \theta = 1$ (quadrants 1, 3)
 $5 \sin^2 \theta - \sin \theta \cos \theta - 2(\cos^2 \theta + \sin^2 \theta) = 0$
 $3 \sin^2 \theta - \sin \theta \cos \theta - 2(\cos^2 \theta + \sin^2 \theta) = 0$
 $3 \sin^2 \theta - \sin \theta \cos \theta - 2 \cos^2 \theta = 0$
 $(3 \sin \theta + 2 \cos \theta)(\sin \theta - \cos \theta) = 0$
 $\tan \theta = -\frac{2}{3}$ or $\tan \theta = 1$

[2]

$$\cos\theta = \pm \frac{3}{\sqrt{13}}, \quad \cos\theta = \pm \frac{1}{\sqrt{2}}$$

(i) Express
$$\frac{2x-1}{x^2(x+1)}$$
 in partial fractions. [4]

(ii) Hence, determine
$$\int \frac{2x-1}{x^2(x+1)} dx$$
. [2]

Solution

8

(i)
$$\frac{2x-1}{x^2(x+1)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x+1}$$
 correct factors

 $2x-1 = Ax(x+1) + B(x+1) + Cx^{2}$ Let x = -1, $-3 = C(-1)^{2} = > C = -3$ Let x = 0, B = -1Let x = 1, $1 = 2A - (2) - 3(1)^{2} = > A = 3$ Hence, $\frac{2x-1}{x^{2}(x+1)} = \frac{3}{x} - \frac{1}{x^{2}} - \frac{3}{x+1}$

(ii)
$$\int \frac{2x-1}{x^2(x+1)} dx = \int \left(\frac{3}{x} - \frac{1}{x^2} - \frac{3}{x+1}\right) dx$$

9 Given the curve $y = (m+1)x^2 - 8x + 3m$ has a minimum value, find the range of values of m

(i) for which the line y = m - 4mx meets the curve, [5]

[2]

(ii) for which y – intercept of the curve is greater than $-\frac{5}{2}$.

Solution

(i)
$$(m+1)x^2 - 8x + 3m = m - 4mx$$

 $(m+1)x^2 + 4mx - 8x + 2m = 0$ quadratic eqn

$$b^{2} - 4ac \ge 0$$

$$(4m-8)^{2} - 4(m+1)(2m) \ge 0$$

$$(4(m-2))^{2} - 8m(m+1) \ge 0$$

$$2(m^{2} - 4m + 4) - m^{2} - m \ge 0$$

$$m^{2} - 9m + 8 \ge 0$$

$$(m-1)(m-8) \ge 0$$

$$m \le 1 \text{ or } m \ge 8$$

Since it is a minimum graph, m + 1 > 0, ie m > -1So $-1 < m \le 1$ or $m \ge 8$

(ii) At y - intercept, x = 0,

$$(m+1)x^2 - 8x + 3m > -\frac{5}{2}$$

 $m > -\frac{5}{6}$

10 (i) Solve the equation
$$3\log_{27} \left[\log_{1000} (x^2 + 9) - \log_{1000} x \right] = -1.$$
 [3]
Solution

$$\log_{1000} \frac{x^2 + 9}{x} = 27^{-\frac{1}{3}}$$

$$\log_{1000} \frac{x^2 + 9}{x} = \frac{1}{3}$$

$$\frac{x^2 + 9}{x} = 1000^{\frac{1}{3}}$$

$$x^2 + 9 = 10x$$

$$x^2 - 10x + 9 = 0$$

$$(x - 1)(x - 9) = 0$$

$$x = 1 \text{ or } 9$$

index form

(ii) (a) On the same axes, sketch the graphs of $y = \log_{\frac{1}{2}} x - 1$ and $y = \log_{2} x + 1$. [2] (b) Explain why the two graphs are symmetrical about the *x*-axis. [2]

Solution

(ii)
$$-(\log_{\frac{1}{2}} x - 1) = -\frac{\log_2 x}{\log_2 \frac{1}{2}} + 1$$
 [M1]
 $= -\frac{\log_2 x}{\log_2 2^{-1}} + 1$
 $= \log_2 x + 1$

The functions are negative of each other. [A1]

11

A piece of wire of length 80 cm is bent into the shape of a trapezium *ABCD*. AB = CD = x cm and angle BAD = angle $ADC = 120^{\circ}$. (i)

Show that the area of the trapezium *ABCD* is given by
$$\frac{\sqrt{3}}{2}x(40-x)$$
 cm². [4]

[2]

(ii) Given that x can vary, find the value of x for which the area has a stationary value. [2]

(iii) Determine whether this stationary value is a maximum or a minimum.

$$= \frac{1}{4}(80 - 3x + x)\sqrt{3}x$$

$$= \frac{\sqrt{3}}{4}x(80 - 2x)$$

$$= \frac{\sqrt{3}}{2}x(40 - x) \quad \text{(Shown)}$$
(ii) $\frac{dA}{dx} = 0$ when the area has a stationary value
 $20\sqrt{3} - \frac{\sqrt{3}}{2}(2x) = 0$ differentiation
 $x = 20$
(iii) $\frac{d^2A}{dx^2} = -\sqrt{3} < 0$.
Area is a maximum

12 A particle moves in a straight line so that its velocity, v m/s, is given by $v = 2 - \frac{18}{(t+2)^2}$ where *t* is the time in seconds, after leaving a fixed point *O*. Its displacement from *O* is 9 m when it is at instantaneous rest.

(i)	the value of t when it is at instantaneous rest,	[2]

[4]

[1]

At t = 7, the particle starts with a new velocity, $V \text{ ms}^{-1}$, given by $V = -h(t^2 - 7t) + k$.

- (iii) Find the value of k.
- (iv) Given that the deceleration is 1.9 m/s^2 when t = 8, find the value of h. [2]

Solution

(i) At turning pt,
$$v = 0$$

$$2 - \frac{18}{(t+2)^2} = 0$$

$$t = 1 \text{ or } -5 \text{ (NA)}$$

(ii)

$$s = \int \frac{dv}{dt} dt = 2t + \frac{18}{t+2} + c$$
When $t = 1, s = 9$

$$2(1) + \frac{18}{1+2} + c = 9$$

 $c = 1$, so $s = 2t + \frac{18}{t+2} + 1$

When t = 0, s = 10 m When t = 1, s = 9 m When t = 4, s = 12 m

Total distance travelled = 10 - 9 + 12 - 9 = 4 m

(iii) When
$$t = 7$$
, $v = 2 - \frac{18}{(7+2)^2} = \frac{16}{9}$
 $V = -h(t-7) + k = \frac{16}{9}$, hence $k = \frac{16}{9}$

(iv)
$$V = -h(t^2 - 7t) + k = -ht^2 + 7ht + k$$

 $a = \frac{dV}{dt} = -2ht + 7h$
 $-2h(8) + 7h = -0.9$
 $-16h + 7h = -0.9$
 $-9h = -0.9$
 $h = 0.1$

13 Solutions to this question by accurate drawing will not be accepted.

In the diagram, PQ is parallel to SR and the coordinates of P, Q and S are (3, 2), (9, 4) and (5, 7) respectively. The gradient of the line OR is 1.

Find

(i) the coordinates of
$$R$$
, [4]

- (ii) the area of the quadrilateral *PQRS*, [2]
- (iii) the coordinates of the point H on the line y = 1 which is equidistant from P and Q. [4]

Solution (i) $m_{PQ} = \frac{1}{3}$ Since PQ // SR, $m_{SR} = \frac{1}{3}$

Eqn of SR, $(y-7) = \frac{1}{3}(x-5) = > y = \frac{x}{3} + \frac{16}{3}$ Sub. R(a, a) into $y = \frac{x}{3} + \frac{16}{3}$, a = 8 OR use eqn of OR as y = x $\therefore R = (8, 8)$ (ii) Area of $PQRS = \frac{1}{2} \begin{vmatrix} 3 & 9 & 8 & 5 & 3 \\ 2 & 4 & 8 & 7 & 2 \end{vmatrix}$ [M1] $= \frac{1}{2}(39) = 19.5$ units² [A1]

(iii) Since the point *H* lies on the line y = 1 and is equidistant from *P* and *Q*, *H* must lie on the \perp bisector of *PQ*.

Mid-point of PQ = (6, 3)

gradient of \perp bisector = -3. Equation, (y-3) = -3(x-6)y = -3x + 21

Since y = 1,

1 = -3x + 21, x =
$$6\frac{2}{3}$$

∴ $H(6\frac{2}{3}, 1)$

<mark>OR</mark>

$$PH=QH$$

$$\sqrt{(2-1)^{2} + (3-x)^{2}} = \sqrt{(4-1)^{2} + (9-x)^{2}}$$
using length
$$1+9-6x+x^{2} = 9+81-18x+x^{2}$$
expansion
$$12x = 80$$

$$x = \frac{20}{3}$$

$$H = (\frac{20}{3}, 1)$$

_____(

CHIJ KATONG CONVENT PRELIMINARY EXAMINATION 2018 SECONDARY 4 EXPRESS/ 5 NORMAL (ACADEMIC)

ADDITIONAL MATHEMATICS PAPER 2

4047/02

Duration: 2 hours 30 minutes

Classes: 403, 405, 406, 502

READ THESE INSTRUCTIONS FIRST

Write your name, class and registration number on all the work you hand in. Write in dark blue or black pen on both sides of the paper. You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid/tape.

Answer **all** the questions.

Write your answers on the separate Answer Paper provided. Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question. The use of an approved scientific calculator is expected, where appropriate. You are reminded of the need for clear presentation in your answers. Omission of essential working will result in loss of marks.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 100.

1. ALGEBRA

Quadratic Equation

For the equation $ax^2 + bx + c = 0$,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Binomial expansion

$$(a+b)^{n} = a^{n} + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^{2} + \dots + \binom{n}{r}a^{n-r}b^{r} + \dots + b^{n},$$

where *n* is a positive integer and $\binom{n}{r} = \frac{n!}{r!(n-r)!} = \frac{n(n-1)\dots(n-r+1)}{r!}$

2. TRIGONOMETRY

Identities

$$\sin^2 A + \cos^2 A = 1$$
$$\sec^2 A = 1 + \tan^2 A$$
$$\csc^2 A = 1 + \cot^2 A$$
$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$
$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$
$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$
$$\sin 2A = 2 \sin A \cos A$$
$$\cos 2A = \cos^2 A - \sin^2 A = 2 \cos^2 A - 1 = 1 - 2 \sin^2 A$$
$$\tan 2A = \frac{2 \tan A}{1 - \tan^2 A}$$

Formulae for ∆ABC

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^{2} = b^{2} + c^{2} - 2bc \cos A$$
$$\Delta = \frac{1}{2}bc \sin A$$

A rectangular garden, with length x m and breadth y m, has an area of 270 m². It has a path of width 2.5 m all round it. Given that the outer perimeter of the path is 87 m, find the length and breadth of the garden. [5]

2 (a) Solve
$$2(9^{x-1}) - 5(3^x) = 27$$
. [4]

(b) Given that
$$f(x) = \ln(5x-2)^3$$
,
(i) State the range of x for $f(x)$ to be defined. [1]

(i) State the range of x for f(x) to be defined. [1]

(ii) Show that
$$5f'(x) + (5x-2)f''(x) = 0$$
. [4]

³ (a) (i) Write down the first four terms in the expansion of $(1+x)^{50}$ and $(1-x)^{50}$. Hence, write down the first two terms for $(1+x)^{50} - (1-x)^{50}$. [3]

- (ii) Without the use of calculator, deduce if 1.01^{50} or $1^{50} + 0.99^{50}$ is larger. [3]
- (b) The term independent of x in $x^{11}\left(2x + \frac{k}{x^2}\right)^7$ is 896. Find the two possible values of k. [4]

4 (i) Prove that
$$\tan A + \cot A = \frac{2}{\sin 2A}$$
. [4]

(ii) Hence, or otherwise, solve $\tan A + \cot A = 2.5$ for $0^{\circ} < A < 270^{\circ}$. [4]

5 In the diagram, not drawn to scale, P(a, b) is a point on the graph $y^2 = 16x$, and Q is a point on the line x = -4. PQ is the perpendicular distance from P to this line. F(4, 0) is a point on the x-axis.

(i)	Find the length <i>PF</i> in terms of <i>a</i> .	[3]
-----	--	-----

- (ii) Given that the tangent to the curve at *P* cuts the *y*-axis at *G*, find the coordinates of *G* in terms of *a*.
- (iii) Show that G is the mid-point of QF. [2]
- (iv) Find the equation of the normal at P in terms of a. [2]

6 (a) Evaluate
$$\int_{0}^{\frac{\pi}{6}} \sin\left(2x + \frac{\pi}{6}\right) dx$$
, leaving your answer in surd form. [3]

(b) (i) Find
$$\frac{\mathrm{d}}{\mathrm{d}x} \left[e^{2x} \left(\cos 3x + \frac{3}{2} \sin 3x \right) \right].$$
 [4]

(ii) Hence find
$$\int e^{2x} \cos 3x \, dx$$
. [2]

7 The diagram shows a point P on a circle and PQ is a tangent to the circle. Points A, B and C lie on the circle such that PA bisects angle QPB and QAC is a straight line. The lines QC and PB intersect at D.

(i) Prove that AP = AB. [4]

- (ii) Prove that *CD* bisects angle *PCB*. [4]
- (iii) Prove that triangles *CDP* and *CBA* are similar.
- 8 The table below shows experimental values of two variables *x* and *y* obtained from an experiment.

x	1	2	3	4	5	6
У	5.1	17.5	37.5	60.5	98	137

It is also given that x and y are related by the equation $y = ax + bx^2$, where a and b are constants.

- (i) Plot $\frac{y}{x}$ against x and draw a straight line graph. Use 2 cm to represent 1 unit [4]
- on the horizontal axis and 4 cm to represent 10 units on the vertical axis.
- (ii) Use the graph to estimate the value of a and of b. [2]
- (iii) By drawing a suitable straight line, estimate the value of x for which (b+5)x = 38-a. [4]

[2]

[3]

9 The figure below shows two circles, C₁ and C₂, touching each other in the first quadrant of the Cartesian plane. C₁ has radius 5 and touches the *y*-axis at D. C₂ has radius 4 and touches the *x*-axis at E. The line AB joining the centre of C₁ and C₂, meets the *x*-axis at F. Angle BFO is θ.

(i) Find expressions for *OD* and *OE* in terms of θ and show that

$$DE^2 = 122 + 90\cos\theta + 72\sin\theta.$$
 [3]

- (ii) Hence express DE^2 in the form $122 + R\cos(\theta \alpha)$, where R > 0 and α is acute. [3]
- (iii) Calculate the greatest possible length of DE and state the corresponding value of θ .

CHIJ Katong Convent Prelim Exam 2018				4047/02	Sec 4E/5N
Name	9:	_ ()		Class:
10	The population of a town is estin	nated t	o inc	rease by <i>k</i> % per year. The	population at

10	The population of a town is estimated to increase by k 70 per year. The population at	
	the end of 2017 was 20000. The population, y , after x years can be modelled by	
	$y = A \left(1.11 \right)^x.$	
	(i) Deduce the value of A and of k with the information provided.	[2]

- (ii) Sketch the graph of y. [1]
 (iii) Find the value of x when y = 9600. Explain the meaning of this value of x. [3]
- (iv) Calculate the population of the town at the end of 2027. [2]
- 11 Given that $y = 2x^3 + 3x^2 + 11x + 5$,

sketch the graph of *y*,

(i) show that

(ii)

(a) y is an increasing function for all values of x ,	[2]
1	

(b) y has only one real root at
$$x = -\frac{1}{2}$$
. [3]

[2]

(iii) hence, calculate the area bounded by $y = 2x^3 + 3x^2 + 11x + 5$, the x-axis and the lines x = -1 and x = 1. [4]

End of paper

4E5N PRELIM 2018 AM P2 Ans Scheme

1	xy = 270
	$y = \frac{270}{2}$ (1)
	2(x+5+y+5) = 87
	$x + y = \frac{67}{2}$ (2)
	Substitute (1) into (2),
	$r + \frac{270}{67} = \frac{67}{67}$
	$x + \frac{1}{x} - \frac{1}{2}$
	$2x^{2} - 6/x + 540 = 0$ $(2x - 27)(x - 20) = 0$
	(2x - 27)(x - 20) = 0 2x - 27 = 0 or $x - 20 = 0$
	x = 13.5 or $x = 20$
	When $x = 13.5$, $y = 20$
	When $x = 20, y = 13.5$
	Since x is the length, then $x = 20$ m and $y = 13.5$ m.
2a	$\left(-2x + 1 \right) = \left(-2x + 1 \right)$
	$2(3^{2x} \cdot \frac{9}{9}) - 5(3^{x}) = 27$
	Let 3^x ,
	$\frac{2}{9}y^2 - 5y - 27 = 0$
	$2y^2 - 45y - 243 = 0$
	(2y+9)(y-27) = 0
	$y = -\frac{9}{2}$ or $y = 27$
	$3^{x} = -\frac{9}{2}$ (rejected) or $3^{x} = 3^{3}$
	2
	$\therefore x = 3$
01.	5
261	5x - 2 > 0 2
	$x > \frac{1}{5}$
	$f'(x) = \frac{3(5x-2)^2 \cdot 5}{(5x-2)^2 \cdot 5}$
	$(5x-2)^{5}$
	$=\frac{15}{5x-2}$

	OR
	$f'(x) = \frac{3 \cdot 5}{(5x - 2)}$
	(5x-2) 15
	$=\frac{1}{5x-2}$
	$f''(x) = -\frac{15}{(5x-2)^2} \bullet 5$
	$-\frac{75}{1}$
	$\left(5x-2\right)^2$
	$\therefore 5f'(x) + (5x-2)f''(x)$ 75 75
	$=\frac{75}{5x-2} - \frac{75}{5x-2}$
	= 0 (shown)
3ai	$(1+x)^{50} = 1^{50} + 50x + {}^{50}C_2x^2 + {}^{50}C_3x^3 + \dots + x^{50}$
	$= 1 + 50x + 1225x^{2} + 19600x^{3} + \dots + x^{50}$
	$(1-x)^{5^{5}} = 1 - 50x + 1225x^{2} - 19600x^{3} + \dots - x^{5^{5}}$
	$(1+x)^{50} - (1-x)^{50} = 100x + 39200x^{3}$
ii	Let $x = 0.01$,
	$1.0150 - 0.0050 - 1.00(0.01) - 20200(0.01)^3$
	$1.01^{30} - 0.99^{30} = 100(0.01) + 39200(0.01)$ $= 1 + 0.0392$
	$1.01^{50} = 1 + 0.0392 + 0.99^{50}$
	$> 1 + 0.99^{50}$
	Hence, 1.01 ⁵⁰ is larger.
2h	
50	$T_{r+1} = {^{7}C_{r}} \left(2x\right)^{7-r} \left(\frac{k}{x^{2}}\right)^{7}$
	$= {}^{7}C_{r} 2^{7-r} k^{r} x^{7-3r}$
	For $7 - 3r = -11$
	r = 6

OR

$$x^{11}T_{r+1} = {}^{7}C_{r} (2x)^{7-r} \left(\frac{k}{x^{2}}\right)^{r} x^{11}$$

 $= {}^{7}C_{r} 2^{7-r} k^{r} x^{18-3r}$
For $18 - 3r = 0$
 $r = 6$
Term independent of $x = 896$
 $x^{11} \left(2x + \frac{k}{x^{2}}\right)$

$$\left(x + \frac{\kappa}{x^2}\right) = 896$$

$$C_6 2^{7-6} k^6 = 896$$

$$k^6 = 64$$

$$k = +2$$

7

Alternative method:

$$x^{11} \left(2x + \frac{k}{x^2} \right)^7$$

$$= x^{11} \left(2^7 x^7 + 7(2x)^6 \left(\frac{k}{x^2} \right) + {}^7C_2 (2x)^5 \left(\frac{k}{x^2} \right)^2 \right)$$

$$+ {}^7C_3 (2x)^4 \left(\frac{k}{x^2} \right)^3 + {}^7C_4 (2x)^3 \left(\frac{k}{x^2} \right)^4 \right)$$

$$+ {}^7C_5 (2x)^5 \left(\frac{k}{x^2} \right)^2 + {}^7C_6 (2x)^6 \left(\frac{k}{x^2} \right) + \left(\frac{k}{x^2} \right)^7 \right)$$

$$= x^{11} \left(2^7 x^7 + 7(2^6) kx^4 + {}^7C_2 2^5 k^2 x + {}^7C_3 2^4 k^3 x^{-2} + {}^7C_4 2^3 k^4 x^{-5} + {}^7C_5 2^2 k^5 x^{-5} + {}^7C_6 2k^6 x^{-11} + k^7 x^{-15} \right)$$
Term independent term of $x = 896$

$$896 = x^{11} \left({}^7C_6 2k^6 x^{-11} \right)$$

$$896 = 14k^6$$

$$k^6 = 64$$

$$k = \pm 2$$

4 i	$LHS = \tan A + \cot A$
	$-\frac{\sin A}{4}$
	$\cos A \sin A$
	$=\frac{\sin^2 A + \cos^2 A}{2}$
	$\sin A \cos A$
	$=\frac{1}{1}$
	$\frac{1}{2}(2\sin A\cos A)$
	2
	$-\sin 2A$
	= RHS (shown)
	OR
	$LHS = \tan A + \cot A$
	$= \tan A + \frac{1}{\tan A}$
	$\tan^2 A + 1$
	$=$ $\frac{1}{\tan A}$
	$-\sec^2 A$
	$-\frac{1}{\tan A}$
	$=\frac{1}{\cos^2}$
	$\cos^2 A \sin A$
	$=\frac{1}{1}$
	sin A cos A
	$=\frac{2}{2\sin 4\cos 4}$
	2
	$=\frac{2}{\sin 2A}$
	= RHS (shown)
4ii	2 5
	$\frac{1}{\sin 2A} = \frac{1}{2}$
	$\sin 2A = \frac{4}{2}$
	5
	$\alpha = 53.13^{\circ}$
	$2A = 53.13^{\circ}, 126.87^{\circ}, 413.13^{\circ}, 486.67^{\circ}$
	$A = 26.6^{\circ}, 63.4^{\circ}, 206.6^{\circ}, 243.4^{\circ}$

At P, $b^2 = 16a$ $PF = \sqrt{(a-4)^2 + b^2}$ $= \sqrt{a^2 - 8a + 16 + 16a}$ $= \sqrt{(a+4)^2}$ $= a + 4$ ii $y^2 = 16x$ $y = 4\sqrt{x}$ $\frac{dy}{dx} = \frac{2}{\sqrt{x}}$ At P, $\frac{dy}{dx} = \frac{2}{\sqrt{a}}$
$PF = \sqrt{(a-4)^2 + b^2}$ $= \sqrt{a^2 - 8a + 16 + 16a}$ $= \sqrt{(a+4)^2}$ $= a + 4$ ii $y^2 = 16x$ $y = 4\sqrt{x}$ $\frac{dy}{dx} = \frac{2}{\sqrt{x}}$ At P, $\frac{dy}{dx} = \frac{2}{\sqrt{a}}$
$PF = \sqrt{(a-4)^2 + b^2}$ $= \sqrt{a^2 - 8a + 16 + 16a}$ $= \sqrt{(a+4)^2}$ $= a+4$ ii $y^2 = 16x$ $y = 4\sqrt{x}$ $\frac{dy}{dx} = \frac{2}{\sqrt{x}}$ At P, $\frac{dy}{dx} = \frac{2}{\sqrt{a}}$
$PF = \sqrt{(a-4)^2 + b^2}$ $= \sqrt{a^2 - 8a + 16 + 16a}$ $= \sqrt{(a+4)^2}$ $= a + 4$ ii $y^2 = 16x$ $y = 4\sqrt{x}$ $\frac{dy}{dx} = \frac{2}{\sqrt{x}}$ At P, $\frac{dy}{dx} = \frac{2}{\sqrt{a}}$
$ii = \sqrt{a^2 - 8a + 16 + 16a}$ $= \sqrt{(a+4)^2}$ $= a+4$ $y^2 = 16x$ $y = 4\sqrt{x}$ $\frac{dy}{dx} = \frac{2}{\sqrt{x}}$ At P, $\frac{dy}{dx} = \frac{2}{\sqrt{a}}$
$ii = \sqrt{(a+4)^2}$ $= a+4$ $y^2 = 16x$ $y = 4\sqrt{x}$ $\frac{dy}{dx} = \frac{2}{\sqrt{x}}$ At P, $\frac{dy}{dx} = \frac{2}{\sqrt{a}}$
= a + 4 ii $y^{2} = 16x$ $y = 4\sqrt{x}$ $\frac{dy}{dx} = \frac{2}{\sqrt{x}}$ At P, $\frac{dy}{dx} = \frac{2}{\sqrt{a}}$
ii $y^2 = 16x$ $y = 4\sqrt{x}$ $\frac{dy}{dx} = \frac{2}{\sqrt{x}}$ At P, $\frac{dy}{dx} = \frac{2}{\sqrt{a}}$
$y = 4\sqrt{x}$ $\frac{dy}{dx} = \frac{2}{\sqrt{x}}$ At P, $\frac{dy}{dx} = \frac{2}{\sqrt{a}}$
$\frac{dy}{dx} = \frac{2}{\sqrt{x}}$ At P, $\frac{dy}{dx} = \frac{2}{\sqrt{a}}$
$\frac{dy}{dx} = \frac{2}{\sqrt{x}}$ At P, $\frac{dy}{dx} = \frac{2}{\sqrt{a}}$
At P, $\frac{dy}{dx} = \frac{2}{\sqrt{a}}$
$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2}{\sqrt{a}}$
$dx = \sqrt{a}$
Equation of tangent at P.
$\frac{1}{2}$ $\frac{2}{2}$ $(x - x)$
$y - b = \frac{1}{\sqrt{a}} (x - a)$
$y = \frac{2x}{\sqrt{a}} - 2\sqrt{a} + 4\sqrt{a}$
2x
$=\frac{1}{\sqrt{a}}+2\sqrt{a}$
When $x = 0$, $y = 2\sqrt{a}$
\therefore G (0, $2\sqrt{a}$)
iii Mid-point of QF
$=\left(\frac{-4+4}{2}, \frac{b+0}{2}\right)$
$= \left(0, \frac{4\sqrt{a}}{2}\right)$
$=$ $\begin{pmatrix} 0, & 2\sqrt{a} \end{pmatrix}$
Hence, G lies in the centre of QF.
OR find lengths of QG and GP.

iv	Gradient of normal at $\mathbf{P} = -\frac{\sqrt{a}}{\sqrt{a}}$
	$\frac{1}{2}$
	Equation of normal at P:
	$y-b = -\frac{\sqrt{a}}{2}(x-a)$
	\sqrt{a} $a\sqrt{a}$.
	$y = -\frac{1}{2}x + \frac{1}{2} + 4a$
6a	π
-	$\int_0^6 \sin\left(2x + \frac{\pi}{6}\right) dx$
	$\left[-\cos(2x+\pi)\right]^{\frac{\pi}{6}}$
	$=\left[\frac{-\cos\left(2x+\frac{1}{6}\right)}{2}\right]$
	$-\frac{\cos\frac{\pi}{2}}{\cos\frac{\pi}{6}}$
	$\left[-\frac{2}{2}-\left(-\frac{2}{2}\right)\right]$
	$=0+\frac{\sqrt{3}}{\sqrt{3}}$
	$\sqrt{3}$
	$=\frac{\sqrt{3}}{4}$
6bi	$\frac{d}{d} \left[e^{2x} \left(\cos 3x + \frac{3}{2} \sin 3x \right) \right]$
	$dx \begin{bmatrix} c & (cossx + 2sinsx) \end{bmatrix}$
	$=2e^{2x}\left(\cos 3x + \frac{3}{2}\sin 3x\right) + e^{2x}\left(-3\sin 3x + \frac{9}{2}\cos 3x\right)$
	$=e^{2x}\left(2\cos 3x + 3\sin 3x - 3\sin 3x + \frac{9}{\cos 3x}\right)$
	$\left(1222222222222222222222222222222222222$
	$=\frac{13}{2}e^{2x}\cos 3x$
6bii	2 r 2 r 13
0.011	$\int e^{2x} \cos 3x dx = \frac{2}{13} \int \frac{13}{2} e^{2x} \cos 3x dx$
	$=\frac{2}{C}e^{2x}\left(\cos 3x + \frac{3}{2}\sin 3x\right) + C$
	$13^{\circ} \left(\begin{array}{c} 13^{\circ} \\ 2 \end{array} \right)^{\circ} \left(\begin{array}{c} 13^{\circ} \left(\begin{array}{c} 13^{\circ} \\ 2 \end{array} \right)^{\circ} \left(\begin{array}{c$
7i	$\measuredangle ABP = \measuredangle APQ$ (alt. segment theorem)
	Since PA bisects $\angle QPB$,
	$\therefore \measuredangle ABP = \measuredangle APB \text{(base } \measuredangle \text{s of isosceles triangle APB)}$
	Hence,
	AP = AB.

ii	$a = \frac{y}{y} - \text{int} ercept$
	x = 1.5
	b = gradient
	_13.5
	$-\frac{3.8}{3.8}$
	= 3.55
iii	(b+5)x=38-a
	bx + 5x = 38 - a
	bx + a = 38 - 5x
	Draw $\frac{y}{x} = 38 - 5x$,
	at point of intersection, $x = 4.25$
0:	$OE = 5 + 0 \cos \theta$
91	$OL = 3 + 9\cos\theta$ $OD = 4 + 9\sin\theta$
	$DE^2 = OE^2 + OD^2$
	$= (5+9\cos\theta)^2 + (4+9\sin\theta)^2$
	$= 25 + 90\cos\theta + 81\cos^2\theta$
	$+16+72\sin\theta+81\sin^2\theta$
	$=41+81+90\cos\theta+72\sin\theta$
	$= 122 + 90\cos\theta + 72\sin\theta$
ii	Let $90\cos\theta + 72\sin\theta = R\cos(\theta - \alpha)$.
	$R = \sqrt{90^2 + 72^2}$
	$=\sqrt{13284}$
	=115 (3 s.f.)
	. 72
	$\theta = \tan^{-1} \frac{\tau^2}{90}$
	= 38.65°
	$DE^2 = 122 + 115\cos(\theta - 38.7^{\circ})$
	OR
	$122 + \sqrt{13284}\cos(\theta - 38.7^{\circ})$

iii	DE is greatest when $\cos(\theta - 38.7^\circ) = 1$
	$DE = \sqrt{122 + 115}$
	=15.4 units (3 s.f.)
	Corresponding θ is 38.7°.
10i	A = 20000, k = 11
ii	▲ V
	20000
	<u>20000</u>
iii	When $y = 9600$,
	$9600 = 20000 (1.11)^{x}$
	$x = \lg \frac{9600}{2} \div \lg 1.11$
	= -7.03 (3 s f)
	= -7.05 (5.3.1)
	The population of the town was 9000 approximately / years ago.
iv	When $\mathbf{x} = 10$
ĨV	$20000(1,11)^{10}$
	y = 20000(1.11)
	= 30/88 The population of the town would be 56788 (or 56800) at the and of 2027
	The population of the town would be 50788 (of 50800) at the end of 2027.
11i	$v = 2x^3 + 3x^2 + 11x + 5$
	$dy = 6x^2 + 6x + 11$
	$\frac{dx}{dx} = 0x^2 + 0x + 11$
	$= 6\left(x+\frac{1}{2}\right)^2 + \frac{19}{2}$
	$\frac{dy}{dx} > 0 \operatorname{as}\left(x + \frac{1}{2}\right)^2 \ge 0 \text{ for all values of } x, \text{ hence } y \text{ is an increasing function for all}$
	values of <i>x</i> .

ii	Using long division,
	$y = (2x+1)(x^2+x+5)$
	But for $x^2 + x + 5$, discriminant = -19 < 0, hence $x^2 + x + 5$ has no real roots.
	Therefore, <i>y</i> has only one real root at
	$x = -\frac{1}{2} .$
iii	↑ <i>v</i>
	x
	0.5
iv	Area required
	$=\int_{-1}^{1} y \mathrm{dx}$
	$= \left \int_{-1}^{-0.5} 2x^3 + 3x^2 + 11x + 5 \right dx$
	$+\int_{-0.5}^{1} 2x^3 + 3x^2 + 11x + 5 \mathrm{d}x$
	$= \left \frac{x^4}{2} + x^3 + \frac{11}{2} + 5x \right _{-1}^{-0.5} + \left[\frac{x^4}{2} + x^3 + \frac{11}{2} + 5x \right]_{-0.5}^{1}$
	$= \left -\frac{39}{32} \right + \left[12 - \left(-\frac{39}{32} \right) \right]$
	$=14\frac{7}{16}$
	or
	=14.4 sq. units (3 s.f.)