

FUCHUN SECONDARY SCHOOL PRELIMINARY EXAMINATION 2020 SECONDARY 4 EXPRESS

NAME		
CENTRE S NUMBER S	INDEX NUMBER	
CLASS:		

CHEMISTRY Paper 1

6092/01 Max mark: 40 15 September 2020 1 hour

READ THESE INSTRUCTIONS FIRST

Do not use staples, paper clips, glue or correction fluid. Write your name, class and index number on the Answer Sheet in the spaces provided. You may use a soft pencil for any diagrams, graph or rough working.

There are forty questions on this section. Answer **all** questions.

For each question there are four possible answers **A**, **B**, **C** and **D**.

Choose the one you consider correct and record your choice in **soft pencil** on the OTAS provided.

Read the instructions on the Answer Sheet very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this booklet.

A copy of the Periodic Table is printed on page 18.

The use of an approved scientific calculator is expected, where appropriate.

Setter: Mdm Yogeswari

This paper consists of 18 printed pages, including the cover page.

FCSS 2020

S4E/Chem/Prelim

[Turn Over]

1 An experiment is done to measure the rate of reaction between calcium carbonate and dilute hydrochloric acid. The gas formed is collected in a gas syringe.

Which additional pieces of apparatus are essential to measure how the rate of the reaction changes with temperature and the amount of acid used?

	apparatus to measure temperature	apparatus to measure amount of acid used
A	balance	thermometer
В	measuring cylinder	balance
С	thermometer	measuring cylinder
D	thermometer	beaker

2 After acidification with dilute nitric acid, a colourless solution of X reacts with aqueous silver nitrate to give a white precipitate.

What is X?

- A calcium iodide
- B copper(∏) chloride
- C lead(IV) iodide
- D sodium chloride
- 3 Which solution can be used to distinguish between sulfuric acid and nitric acid?
 - A aqueous barium chloride
 - B copper(II) carbonate
 - C aqueous silver nitrate
 - D aqueous sodium hydroxide

4 Cobalt is a transition element.

A particle of cobalt contains 24 electrons and has a nucleon number of 60.

Which statement about this particle is correct?

- A It forms a 3+ ion.
- B It forms a 3- ion.
- C It contains 24 neutrons.
- D It contains 24 protons.
- 5 A chromatography was carried out using a drop of solution of an alloy, German silver. The results are shown below:

Which metals do German silver not contain?

- A copper and nickel
- B copper and zinc
- C silver and aluminium
- D zinc and nickel

6 Powdered calcium carbonate reacts with dilute hydrochloric acid to produce calcium chloride, water and carbon dioxide.

What is the correct ionic equation, including state symbols, for this reaction?

- A $CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + H_2O(l) + CO_2(g)$
- B $Ca^{2+}(aq) + CO_3^{2-}(aq) + 2H^{+}(aq) \rightarrow Ca^{2+}(aq) + H_2O(l) + CO_2(g)$
- $C = CO_3^{2^-}(aq) + 2H^+(aq) \rightarrow H_2O(l) + CO_2(q)$
- **D** $CaCO_3(s) + 2H^+(aq) \rightarrow Ca^{2+}(aq) + H_2O(l) + CO_2(g)$
- 7 20 cm³ of hydrogen is burnt in 20 cm³ of oxygen. Which diagram represents the particles that remain in the reaction vessel?

8 The diagram shows the structure of a compound of carbon and silicon, (SiC)_n.

What will be a property of (SiC)n?

- A acts as a lubricant
- **B** conduct electricity
- C insoluble in water
- D low melting point

9 The electronic structure of a compound formed between an element **Y** and chlorine is shown below. Only valence electrons are shown.

What is the chemical formula when aluminium combines with element Y?

- A AIY
- B A/Y₂
- C Al₃Y
- $D = A/Y_3$
- 10 In which reaction does the oxidation state of iron remain unchanged?
 - A $2Fe + 3Cl_2 \rightarrow 2FeCl_3$
 - **B** $2\text{FeC}l_2 + Cl_2 \rightarrow 2\text{FeC}l_3$
 - C Fe + 2FeC $l_3 \rightarrow 3$ FeC l_2
 - D Fe₂O₃ + 6HC $l \rightarrow 2$ FeC $l_3 + 3$ H₂O
- Which volume of 0.1 mol/dm³ hydrochloric acid is required to react completely with 25 cm³ of 0.2 mol/dm³ of aqueous sodium carbonate?
 - A 100 cm³
 - B 50 cm³
 - C 25 cm³
 - **D** 6.25 cm³

12 8 g of X₂O₃, an oxide of element X, contains 5.6 g of X.

How many moles of X does 5.6 g of the element contain?

- A $\frac{2.4}{16} \times \frac{2}{3}$
- **B** $\frac{2.4}{16} \times \frac{3}{2}$
- $C \qquad \frac{8}{16} \ \chi \ \frac{2}{3}$
- $D \qquad \frac{8}{16} \times \frac{2}{3}$
- 13 How many moles of iron can be extracted from 40 g of Fe₂O₃?
 - A 0.15 mol
 - **B** 0.25 mol
 - C 0.35 mol
 - **D** 0.5 mol
- 14 3.0 dm³ of sulfur dioxide is reacted with 2.0 dm³ of oxygen according to the equation below.

$$2SO_2(g) \ + \ O_2(g) \ \rightarrow \ 2SO_3(g)$$

What is the total volume of gas(es) at the end of the reaction? (Assume the reaction goes to completion and the gases are measured at the same temperature and pressure.)

- A 2.0 dm³
- B 2.5 dm³
- C 3.0 dm³
- **D** 3.5 dm³

15 Naturally-occurring chlorine has a relative atomic mass of 35.5 and consists entirely of two isotopes of relative atomic masses 35 and 37.

What can be deduced about naturally-occurring chlorine from this information only?

- A Chlorine contains two isotopes in different proportions.
- B Chlorine has different oxidation states.
- C Chlorine isotopes have different number of protons.
- D Chlorine isotopes are radioactive.
- 16 In an electrolysis experiment, the same amount of charge deposited 6 g of zinc and 30 g of manganese.

What was the charge on the manganese ion?

[Ar: Mn, 25; Zn, 30]

- A +2
- B +3
- C +4
- D +7
- In an experiment, 4.0 cm³ of 1.0 mol/dm³ copper(II) sulfate solution are mixed with 8.0 cm³ of 1.0 mol/dm³ sodium carbonate solution.

What does the reaction vessel contain?

- A a green precipitate and a blue solution
- B a colourless solution only
- C a white precipitate and a colourless solution
- D a green precipitate and a colourless solution

18 Many properties of an element and its compounds can be predicted from the position of the element in the Periodic Table.

What property could not be predicted in this way?

- A the acidic and basic nature of its oxide
- B the formula of its oxide
- c the number of isotopes it has
- D its metallic and non-metallic properties
- 19 Elements X and Y are in Group VII in the Periodic Table.

X is a liquid at room temperature, Y is a solid at room temperature.

Which statements are correct?

- 1 Atoms of Y have more protons than atoms of X.
- 2 Molecules of Y have more atoms than molecules of X.
- 3 Y displaces X from aqueous solutions of X ions.
- A 1 only
- B 2 only
- C 3 only
- **D** 1, 2 and 3
- 20 A dilute aqueous solution of a strong acid, HX, contains molecules of water and the ions H⁺ and X⁻.

Which statement is true?

- A The pH value of the acid is above 7.
- B The solution also contains a high concentration of HX molecules.
- C The solution also contains OH⁻ ions.
- D The solution contains more H⁺ ions than water molecules.

21 Both magnesium oxide and magnesium carbonate react with sulfuric acid.

In what way are both these reactions the same?

- A a gas is set free
- B an acid is neutralised by a soluble base
- C sulfuric acid is acting as an oxidising agent
- D water is a product
- 22 The oxides of three elements T, U and V are added to the water.

	oxide of T	oxide of U	oxide of V
water added	dissolved to form a solution of pH 2	insoluble	dissolved to form a solution of pH 10

The oxide of U is white in colour.

What could T, U and V be?

	oxide of T	oxide of U	oxide of V
Α	calcium	aluminium	sulfur
В	calcium	copper	sulfur
С	sulfur	aluminium	calcium
D	sulfur	copper	calcium

23 Which graph shows the changes in pH as excess of hydrochloric acid is added to aqueous sodium hydroxide?

- 24 Some statements about acids are given.
 - 1 A 1 mol/dm³ solution of a strong acid will have lower pH than a 1 mol/dm³ solution of a weak acid.
 - 2 pH gives a measure of the H+ concentration in a solution.
 - 3 Universal indicator turns green when placed in a solution of pH 5.
 - 4 When acids react with metals, hydrogen ions lose electrons.

Which statements about acids are correct?

- A 1, 2 and 3
- B 1 and 2 only
- C 1 and 4 only
- D 2 and 4 only

Which pairs of statements correctly describe the differences between the conduction of electricity during electrolysis and the the conduction of electricity by metals?

	conduction during electrolysis	conduction by metals
1	The current is due to the movement of both positive and negative ions.	
2	Charged particles move towards both electrodes.	Charged particles move in one direction only.
3	It results in a chemical change.	It does not result in a chemical change.

- A 1, 2 and 3 are correct
- **B** 1 and 2 only are correct
- C 2 and 3 only are correct
- D 1 only is correct

26 The diagram shows an experiment to produce and collect hydrogen.

What is R?

- A copper(II) oxide
- B iron
- C lead
- D lead(II) oxide

27 Metal X reacts rapidly with dilute hydrochloric acid. It can be used for the sacrificial protection of underwater pipes.

Metal Y does not corrode easily. It can be used for jewellery.

Metal Z reacts rapidly with water to form hydrogen.

Which method of extraction of the metals from their ores is most likely to be used?

electrolysis of molten ore	heating with carbon
X and Y	Z
X and Z	Y
Y	X and Z
z	X and Y
	X and Y X and Z Y

- In the manufacture of the iron by the blast furnace, which are the main gases that escape from the top of the blast furnace?
 - A carbon monoxide, carbon dioxide and hydrogen
 - B nitrogen, carbon dioxide, carbon monoxide
 - C nitrogen, oxygen, steam
 - D oxygen, carbon dioxide, sulfur dioxide
- 29 Four test tubes were set up as shown.

Each piece of iron was protected on one side by a different coating.

In which test-tube is the iron least likely to rust?

FCSS 2020

S4E/Chem/Prelim
PartnerInLearning
More papers at www.testpapersfree.com

30	Which	product is formed at the cathode when molten silver bromide is electrolysed?
	A	bromide ions
	В	bromine molecules
	С	silver ions
	D	silver atoms
31	Approx	ximately 40% of all iron and steel is produced by recycling.
	Which	statements are the correct reasons for recycling iron?
		1 Iron, when obtained by a recycling process produces less carbon dioxide than the blast furnace process.
		2 Scrap steel contains a higher percentage of iron than iron ore.
		3 Scrap metal, if not recycled, would cause environmental problems due to its disposal by landfill.
	A	1, 2 and 3
	В	1 and 2 only
	С	1 and 3 only
	D	2 and 3 only
32	In whic	ch electrolyte would a carbon cathode (negative electrode) increase in mass during electrolysis?
	A	aqueous copper(II) sulfate
	В	concentrated hydrochloric acid
	С	concentrated aqueous sodium chloride
	D	dilute sulfuric acid

33 The circuit shown below is set up and an electric current is passed through the four cells in series.

In which cells is the intensity of the blue colour unchanged?

- A W and Z
- B X and Y
- C X and Z
- D Y and Z

34 The energy profile diagram for Haber Process is shown below.

What does the energy change E2-E1 represent?

- A activation energy of the forward reaction
- B activation energy of the reverse reaction
- c enthalpy change of the forward reaction
- D enthalpy change of the reverse reaction

35 The enthalpy diagram shows an uncatalysed exothermic reaction.

The reaction was repeated in the presence of a catalyst.

What effect does the catalyst have on the activation energy, E_a , and the enthalpy change, ΔH ?

	E_{a}	ΔH
A	decreases	decreases
В	decreases	unchanged
С	increases	unchanged
D	unchanged	decreases

36 Dissolving ammonium nitrate in water is endothermic.

Which graph shows how the temperature alters as the ammonium nitrate is added to the water and then the solution is left to stand for some time?

FCSS 2020

S4E/Chem/Prelim

[Turn Over]

37 An experiment was conducted on three unknown metals P, Q and R. The set-up is shown in the diagram below.

The results are shown in the table.

metal tested	voltage / V	direction of electron flow
Р	0.2	zinc to metal P
Q	0.5	metal Q to zinc
R	1.1	zinc to metal R

Arrange the three metals according to their reactivity in the reactivity series, starting with the least reactive metal.

- A P, Q, R
- B P, R, Q
- C Q, P, R
- D R, P, Q

FCSS 2020

38 The following diagram shows the setup used to electroplate an iron spoon with chromium.

Which row correctly states the cathode, the electrolyte used, as well as the reaction which takes place at the anode?

cathode used	electrolyte used	reaction at anode
spoon	aqueous chromium(III) nitrate	Cr³+ + 3e → Cr
spoon	aqueous chromium(III) nitrate	Cr → Cr³+ 3e
chromium	aqueous iron(III) nitrate	Cr³⁺ + 3e → Cr
chromium	aqueous chromium(III) nitrate	Cr → Cr³+ 3e
	spoon spoon chromium	spoon aqueous chromium(III) nitrate spoon aqueous chromium(III) nitrate chromium aqueous iron(III) nitrate

39 Which change will increase the speed of the reaction between 1 mol of each of two gases?

- A a decrease in the surface area of the catalyst
- B a decrease in temperature
- C a decrease in the volume of the reaction flask
- **D** an increase in the volume of the reaction flask

40 A student performs two reactions.

reaction 1: 10 g of magnesium ribbon with excess 2.0 mol/dm3 dilute hydrochloric acid

reaction 2: 5 g of magnesium powder with excess 2.0 mol/dm³ dilute hydrochloric acid

In both reactions, the volume of hydrogen produced, V, is measured against time, t.

Which set of graphs is correct for both reactions?

The Periodic Table of Elements

	0	N	<u></u>	Hellum	4	9	Ž	neon #0	82	*	₹	Hothe	040	ဗ္ဗ	호	ruyptan Tu	2	4	×	xenon	131	98	ž	radon	1				
	₹					o o	ᄔ	fuorine	19	17	ວັ	chionine	35.5	32	卤	promine	88	53	_	iodine	127	æ	¥	astatine	ı				
	5					හ	0	cxygen	16	9	တ	eufur	32	쓩	å	selement.	79	25	Ţe	tellurium	128	\$	o C	polonium	1	116	<u>></u>	Evermonum	ì
	>					~	z	ndrogen	14	15	٦	phosphorus	31	33	As	ansenic	75	5	Sp	antimony	122	83	õ	Dismuth	503				
	2					9	ပ	carpon	12	4	ŝ	SHIDON	28	32	9	germanium	73	20	Ŝ	£	119	82	<u>C</u>	feed	207	114	ī	Herovium	ı
	=	**************************************				2	~	povou	-	-13 -13	¥	akumimum	27	31	g B	malleg	70	49	드	magni	115	20	ĩ-	thellium	5 64				
														99	5	zine	65	48	క	cadmium	112	8	Ë	mercury	22	112	ភ	copemicium	1
		Appaidemental of constitution and the Appaidement												88	ਟੋ	eddoo	64	47	Ag	Silver	108	79	Αn	piot	197	111	ğ	roentgenium	ı
음		And the second s												88	Z	nickel	28	46	P	palladium	106	78	ā	pletinum	195	110	õ	darmstaditum	1
Group														27	පි	cobalt	20	45	듄	rhodium	103	11	۲	iridium	192	2	₹	meitnerfum	1
		-	I	hydrogen	-									38	Fe	igu.	28	44	2	ruthenium	101	76	ő	Comium	<u>8</u>	108	ĩ	hassum	1
						,								25	Ę	mangariese	22	43	٦ ک	technetium	ı	75	Z.	shenium	186	107	뜐	bohrium	1
		The state of the s				umber	Ţ.		nass					24	Ö	Chromium	25	42	Š	molybdenum	98	7.4	₹	tangsten	184	106			
		derricing the part of colored recent			X ev	proton (atomic) number	atomic symbol	rieme	relative atomic mass					23	>	vanacium	5	41	2	midoin	83	73	Ē	tentelum	181	105	දි		
						proton	CIE		relativ	and the same of th				22	 =	mayaria.	48	40	77	zimonium	9	72	Ϊ	hafnium	178	104	ď	rutherfordfurn	ı
		sedeficiences benefit of the time assessment												21	Š	scandium	54	39	>	value	68	57 - 71	anthanoids			89 - 103	actinoids		
	-	-				¥	r a	berytkum	G	12	Ž	magnesium	24	20	ű	Calcium	40	38	Ö	chordina	88	56	ã	Dari III	137	88	ď	radium	1
	_					ď	· ::	ithium	^	11	2	Sodium	23	19	. ×	misseton	39	37	ਨੰ	tra life in the	85	55	ő	Constitution of	133	87	ů.	francium	1

lanthanoids	57	58	59		61	62	63	64	65	99	67	99	69	2	7.1
	2	ပိ	귭		F	SH	显	B	P	<u></u>	운	ш	Ę	چ	3
	lanthanum	certum	praggodymium	ž	promethium	Samanum	europium	gadolmium	terbium	dysprosium	halmitum	ertxium	thulium	ytherbium	hitelium
	139	140	141		1	150	152	157	159	163	165	167	169	173	175
potinoide	86	8	91	1_	63	3	95	96	26	86	66	8	101	102	- - - -
	Ac	f	G E	>	Ž	2	Am	క్ర	番	ざ	Ŋ	Ē	M	ž	د
	actinium	thornum	projectinium	_	neptunium	photomium	amencium	currem	berkelum	celifornium	einsteinum	fermium	mendelevum	порейит	lawrencem
	1	232	231		ļ	ı	ı	ı	l	ı	ı	1	ı	ı	ı

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.)

FUCHUN SECONDARY SCHOOL PRELIMINARY EXAMINATION 2020 SECONDARY 4 EXPRESS

NAME						
CENTRE NUMBER	S			INDEX NUMBER		
CLASS:						

CHEMISTRY Paper 2

6092/02 Max mark: 80 14 September 2020 1 hour 45 minutes

READ THESE INSTRUCTIONS FIRST

Write your name, index number and class in the spaces provided at the top of this page. Write in dark blue or black pen in the spaces provided on the Question Paper. You may use a pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid.

Section A

Answer all the questions in the spaces provided.

The number of marks is given in brackets [] at the end of each question or part-question.

Section B

Answer all three questions, the last question is in the form either/or.

Write your answers in the spaces provided.

The number of marks is given in brackets [] at the end of each question or part question.

A copy of the Periodic Table is printed on page 21.

The use of an approved scientific calculator is expected, where appropriate

For Exami	ner's Use
Section A	
Section B	
Total	

Setter: Mdm Yogeswari

This paper consists of 21 printed pages, including the cover page.

FCSS 2020

S4E/Chem/Prelim PartnerInLearning

[Turn Over]

71
More papers at www.testpapersfree.com

Section A

Answer all the questions in the spaces provided.

The total mark for this section is 50.

A1 Phosphorus is a non-metal. This diagram shows the structure of one molecule of phosphorus(III) oxide.

(a)	(i)	Give the molecular formula of phosphorus(III) oxide.
		[1]
	(ii)	Give the empirical formula of phosphorus(III) oxide.
		[1]
(b)	Expla	ain why phosphorus(III) oxide has the properties given below.
	Prop	perty 1 Phosphorus(III) oxide is acidic.
	expla	anation
	Prop	perty 2 Phosphorus(III) oxide has a low melting point.
	expla	anation
	Prop	perty 3 Phosphorus(III) oxide will not conduct electricity when molten.
	expla	anation
		[3]

[Total: 5]

A2 The table shows some information about three gases.

name of gas	formula	relative molecular mass
chlorine		71
ammonia		17
	HC <i>i</i>	

(a) Complete	the	table	by	filling	in	the	boxes.
--------------	-----	-------	----	---------	----	-----	--------

[3]

(b) A student heated some solid ammonium chloride, NH₄Cl, in a test-tube. Ammonia and one other gas were formed. He tested the gases coming out of the tube with litmus paper.

The red litmus quickly turned blue. A few seconds later, both pieces of litmus paper turned red.

(i)	Identify the gas that turned red litmus paper blue.
	[1]
(ii)	Identify the gas that turned blue litmus paper red.
	[1]
(iii)	Explain why the two gases travelled along the test-tube at different speeds. Use information from the table.
	[2]

[Total: 7]

lero a)	Flevo	orium wa	s made by bombarding	st made in research labora atoms of Plutonium, Pu, a								
	atom •	 atoms of element Z. The nucleus of one atom of Plutonium combined with the nucleus of one atom of element Z. 										
	•	This formed the nucleus of one atom of Flevorium.										
	Sugg	jest the i	identity of element Z.									
					[1]							
b)	To w	hich per	iod of the Periodic Tabl	e does Flevorium belong?								
					[1]							
c)	Pred	ict the n	umber of outer shell ele	ectrons in an atom of Flevo	orium.							
					[1]							
d)	Two isotopes of Flevorium ²⁸⁶ Fl and ²⁸⁹ Fl are discovered. Complete the table below to show the number of protons, neutrons and electrons in atoms of the isotopes shown.											
	is	otope	number of protons	number of neutrons	number of electrons							
		²⁸⁶ F <i>l</i>										
	-	²⁸⁹ F <i>l</i>										
		· · •·			[2]							
					[2]							
e)	and	the prop	vely small number of a perties of Flevorium have suggested that Flevorium	e not yet been investigate	peen made in the laboratory d.							
	(i)	Sugge	est two physical propert	ies of Flevorium.								
		1										
		2			[2]							
	(ii)	Sugge	est one chemical proper	ty of flevorium oxide.								
					[1]							

S4E/Chem/Prelim PartnerInLearning

A3

A4 Three experiments are carried out to find the order of reactivity of three metals.

The metals used were zinc, tin and unknown metal X.

experiment 1	experiment 2	experiment 3
zinc	tin	metal X
EE EE		
tin(II) chloride	metal X sulfate	zinc sulfate

		experiment 1	experiment 2	experiment 3
colour of metal	start	silver grey	silver grey	orange brown
	end	silver-grey with crystals formed on surface	brown coating on surface	
colour of solution	start	colourless	blue	colourless
	end	colourless	paler blue	

(a)	Suggest the name of metal X.	
	[11

(b) Complete the table to show the colour of the metal and the solution at the end of experiment 3. [2]

(c)	Give the order of	reactivity of the three metals.	
	most reactive		
	least reactive		
			[1]
(d)	Write an ionic equ	uation, with state symbols, for the reaction in experiment 1.	
		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	[1]
			[Total: 5]

A5 The diagram below shows some information about the Haber process for making ammonia.

(a)	Explain why the gases are mixed in a 1.3 ratio. Include an equation in your answer.
	[2]
(b)	Name the catalyst used in the process.
	[1]

(c)	When the mixture of nitrogen, hydrogen and ammonia enters the cooler, the ammonia turns into a liquid but the other gases do not.			
	Wha	t does this tell you about the boiling point of ammonia?		
		[1]		
(d)	Give	a reason, other than cost, why the unreacted nitrogen and hydrogen are recycled.		
	•••••	[1]		
(e)		Haber process is carried out at 450°C and 200 atm pressure. Studies have shown a higher pressure and lower temperature can produce a better yield of ammonia.		
	(i)	Explain in terms of collision theory, how a higher pressure can produce a reasonable yield of ammonia, within a shorter span of time.		
		[2]		
	(ii)	Studies have shown that lowering the temperature can increase the yield of ammonia. Explain in terms of energy of reacting particles why this condition is not favored.		
		[2]		
(f)	Calc	ulate the maximum mass of ammonia that can be made form 3 tonnes of hydrogen.		
	[1 to	nne = 100000 g] [2]		

[Total: 11]

A6 Study the reactions scheme below and answer the following questions.

(a)	Name the green-yellow gas.	
		[1]
(b)	Name the green precipitate and state its chemical formula.	
	name:	
	chemical formula:	[2]
(c)	Identify the red brown solution.	
		[1]
(d)	Identify the green solution.	
		[1]
(e)	What is the role of reagent A and of reagent B?	
	Reagent A:	
	Reagent B:	[2]

[Total: 7]

A7 Zinc is manufactured from the ore zinc blende, which contains zinc sulfide (ZnS) and impurities including sand. The ore is heated in air to produce zinc oxide and sulfur dioxide. The zinc oxide can then be heated with coke and limestone in a blast furnace, a simplified diagram of which is shown below.

The zinc distils off and is collected.

(a)	Name a metal manufactured by a similar method to that used for zinc.		
		[1]	
(b)	Construct a chemical equation for the heating of zinc sulfide in air.		
		[1]	

(c)	Describe one environmental problem caused by sulfur dioxide produced in this process if it is allowed to escape into the atmosphere.
	[1]
(d)	Suggest a reason for adding limestone to the furnace.
	[1]
(e)	State two reasons other than cost that supports the reasons for recycling zinc rather than extracting the metal from its ore.
	1
	2[2]
(f)	Explain why bars of zinc fixed to the ship's hull prevents the steel body of the ship from rusting.
	[1]
	[Total: 7]

Section B

Answer all three questions in this section.

The last question is in the form of an either/or and only one of the alternatives should be attempted.

B8 A series of chemical reactions happen in hydrothermal vents that are found on the ocean floor.

	normal seawater	hydrothermal vent water
temperature / °C	2	350
pH	7.8	4.3
concentration of ic	ns/× 10 ⁻³ mold	m ^{-s}
Ct-	531	539
Na*	450	419
Mg²+	51.2	0.0
SO ₄ 2-	27.1	0.0
HCO ₃ -	2.3	5.7
Ca²·	9.9	15.1
K*	9.5	22.5
Fe²⁺	0.0	1.62
Mn²⁺	0.0	0.93
Zn²+	0.0	0.10
Cu²⁴	0.0	0.03
NH ₄ :	0.0	0.03
concentration of g	jases/x 10 ⁻³ mo	ldm ⁻³
O ₂	0.1	0.0
H₂S	0.0	7.1
H ₂	0.0	1.7
CH4	0.0	0.1
He	0.0	2 × 10 ⁻⁶

Seawater flows through the rocks in the ocean floor and is heated by molten rock below the surface. It then flows back out into the ocean through the hydrothermal vent, producing a cloud of smoke consisting of precipitated solids. The chemical composition of the water coming out from the vents is different from normal seawater. The table shows a typical composition of both types of water.

The discovery of life in deep oceans was a surprise to the scientific community as it was assumed that food energy resources would be scarce in an environment without sunlight to support photosynthesis. Researchers soon discovered that the organisms responsible for this biological abundance do not need photosynthesis, but instead are able to obtain energy from chemical reactions through a process known as chemosynthesis.

The hydrothermal vent water is chemical rich and boiling hot. Saturated with toxic chemicals and heavy metals, it is more acidic than vinegar and are deadly to most marine animals.

This noxious brew is paradise to the bacteria that coats the rocks around the vent in thick orange and white mats. The bacteria absorb hydrogen sulfide streaming from the vents, and oxidise it to sulfur.

Reaction 1: $2H_2S + O_2 \rightarrow 2S + 2H_2O$ $\triangle H = -1124 \text{ kJ/mol}$

S4E/Chem/prelim PartnerInLearning

[Turn Over]

They use the chemical energy released during oxidation to combine carbon, hydrogen, and oxygen into sugar molecules in a process known as *chemosynthesis*.

• Chemosynthesis:

$$18H_2S + 6CO_2 + 3O_2 \rightarrow C_6H_{12}O_6 + 18S + 12H_2O$$

Chemosynthesis is the use of energy released by inorganic chemical reactions to produce food. It is analogous to the more familiar process of photosynthesis.

Photosynthesis:

$$6CO_2 + 6H_2O \rightarrow C_6H_{12}O_6 + 6O_2$$

Plants use energy form the sun to convert carbon dioxide and water to form glucose (sugar) and oxygen.

In photosynthesis, plants grow in sunlight, capturing solar energy to make organic matter. In chemosynthesis, bacteria grow in mineral-rich water, harnessing chemical energy to make organic material.

From this simple reaction, an entire ecosystem grows. Snails, clams, mussels, and a host of other grazing animals feed on the bacterial mats. Crabs and shrimp eat the grazers, and then are hunted by larger crabs, fish, and octopi.

Chemosynthesis can sustain life in absolute darkness.

(a)	(i)	State which ions are removed from the seawater by the hydrothermal vent.	
			[1]
	(ii)	State which metal ions have been added to the water by the process.	
			[1]
(b)	(i)	Explain Reaction 1 is a redox reaction in terms of gain and loss of hydrogen ato	ms
			•
			[3]

(ii) Draw the energy profile diagram for Reaction 1.

Label clearly the reaction enthaply change and the activation energy.

Your diagram should also include the reactants and products of the reaction.

[3]

(c) Chemosynthesis and photosynthesis are important chemical reactions that sustain life on Earth. Fill in the blanks in the table below which compares both processes.

Chemosynthesis	Photosynthesis	
Usesenergy	Usesenergy	
By products : Glucose and	By products : Glucose and	
is oxidised to form	is oxidised to form	
is reduced to form	is reduced to form	

[4]

[Total: 12]

In an experiment, aqueous sodium carbonate was reacted with dilute sulfuric acid completely.

The reaction can be represented by the following chemical equation.

$$Na_2CO_3 + H_2SO_4 \rightarrow Na_2SO_4 + CO_2 + H_2O$$

The set-up is shown below.

The rate of reaction was investigated by recording the mass of the reaction mixture at suitable time intervals.

- (a) The experiment was first performed using a sample of sodium carbonate solution that was prepared by dissolving 2.5 g of solid sodium carbonate in 200 cm³ of water.
 - (i) Calculate the concentration of the sodium carbonate solution in mol/dm³.

[Relative atomic masses: Ar.: C, 12; Na, 23; O, 16]

[2]

(ii) Sketch a graph to show how the mass of the reaction mixture changes with time.

[1]

FCSS 2020

(b)	The 6	experiment was repeated by using sodium carbonate solution with a concentration of nol/dm ³ . All other variables were kept constant.
	(i)	Describe how the rate of the reaction would be different. Explain your answer.
		[2]
	(ii)	On the same axes in (a)(ii) , sketch the graph you would expect for this second experiment. Label the graph as G . [1]
(c)	gas p	rate of reaction in this experiment can also be obtained by measuring the volume of produced per unit time. Draw a labelled diagram to illustrate the apparatus and set- equired for this experiment.
		[2]
		[Total: 8]

Either

B10 Most experiments involving electrolysis use inert electrodes, which do not take part in the reactions. However, in some experiments the electrodes do take part in the reactions.

A student passed an electric current into three cells containing different solutions for 10 minutes, using the apparatus shown.

The student weighed the **anode** of each cell before and after the experiment and worked out the decrease in mass. The table shows the results of his experiment.

0.81
2.70
0.00

1)	Write	Write the ionic equation for the reaction that occurred at the anode of each cell.			
	P :				
	Q :				
	R :		[3]		

(b) (i) Calculate the number of moles of copper and silver lost at the respective anodes during the experiment. [2]

(ii)	Suggest an explanation for the difference in the number of moles of copper and silver lost when the same conditions are used
	,
	[2]
(i)	The student repeated the experiment but this time, he modified the apparatus by replacing the platinum anode in Cell R with lead. His results showed that there was an initial increase in mass at the lead anode. However, the electrolysis stopped shortly, within 10 minutes of the experiment. Explain why these observations were made.
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	[2]
lf a 🤉	iron object is placed in Cell Q , a silver coating forms on the iron. gold object is placed in Cell Q , no reaction happens. ain why.
	······································
*****	[1]
	(i) If an If a (Expl

Or

The NASA space shuttle uses fuel cells to generate electricity. The diagram below shows **B10** hydrogen and oxygen fuel cell.

Complete the table below for the reactions that happen in the fuel cell. (a)

[2] lonic equation for reaction at the electrode electrode positive negative

> S4E/Chem/Prelim **PartnerInLearning**

(b) The overall equation in the fuel cell is the reaction between hydrogen and oxygen to form water. A fuel cell uses 240 dm³ of hydrogen. Calculate the volume of oxygen needed, and the mass of water formed. All gas volume are measured at to room temperature and pressure.

[2]

(c) Car manufacturers are also exploring the use of fuel cells for cars. Two possible fuels for use in fuel cells that manufacturers are considering are hydrogen and octane, C₈H₁₈.

fuel	boiling point/ °C	Density at room temperature and pressure in g/dm ³	Enthalpy change when 1 mole of fuel is completely burned in kJ/ mol	Enthalpy change when 1 kg of fuel is completely burned in kJ/ kg
hydrogen	-252	0.083	-286	
octane	128	0.703	-5075	

The table gives the values for the energy change of combustion for each fuel in kJ/mol. Complete the table by calculating the enthalpy change when 1 kg of each fuel is completely burned.

Use the space below to show your working.

[2]

(d)	Use the information in the table to evaluate the use of hydrogen and octane as fuels. You answer should consider	our
	ease of storage;	
	the energy content of the fuels. [3]
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
(e)	Some people think that hydrogen is a completely non-polluting fuel.	
	Explain why this is incorrect.	
		[1]
	[Total:	10]

The Periodic Table of Elements

		" €	Ī		^	_				ç	_		,	5			_	¥			_	ç					
	0	~ 울툴-	*	-	ž	Leo	20	18	₹	argo	40	36	호	ę P	8	¥	×	xenc	13	88	æ	90	1				
	ΙΛ			တ	LL.	fluoring	18	17	ŭ	chiorine	35.5	32	ā	bromine	8	33	-	iodine	127	88	¥	estatine	1				
	5			ထ	0	ustikko	16	16	S	suffer	32	34	Š	selenium	79	52	œ	tellurium	128	28	o C	polonium	j	116		wermorium	1
	>			~	z	nitrogen	14	15	<u>a</u>	phosphorus	<u>ب</u>	33	Ą	arsenic	7.5	51	g	antimony	122	83	面	Dismuth	508		*****		
	2			6	ပ	carbon	12	14	Ø	Silicon	88	32	ő	germanium	73	20	တ်	Ę	119	82	<u>6</u>	Pe-ad	207	114	ī	Nercovium	1
	=		-	មា	œ	baron	7	13	₹	atuminium	27	31	ගී	gallium	20	49	S	- Lagran	115	1	~~	thallium	ğ		******	~~~~	
			ı	*********	*****			<u> </u>	•	***************************************	***************************************	සි	72	zinc	65	48	8	Cadmium	112	98	£	mercury	ફ	112	5	opernicken	1
<u>Caracta and manners and the Caracta and the C</u>												8	ਨ	seddoo	2	47	Ag	Silver	<u> </u>	79	₹	plog	197	Ę	8	sentgenium c	1
dŋ												28	Z	nickel	50	46	2	palladium	8	78	െ	platinum	195	110	ő	armstadium r	1
Group												27	රි	cobalt	28	45	æ	modern	5	11	<u>.</u>	iridium	192	109	¥	melimerium o	1
		⊢ ⊞ Hydrogen	_									56	H.	uoų	20	44	₹	ruthenium	101	76	ő	CSTRUTE	190	108	£	hassium	1
												22	ž	manganese	55	43	ည	technetium	j	75	æ	rherium	186	107	뜐	bohrium	_
			***************************************	nmper	Q		nass					24	ŏ	chromium	52	42	Ψo	molypdanum	96	74	≥	tungsten	184	1 08	Sg	seaborgium	_
			Say.	proton (atomic) number	atomic symbol	пате	e atomic i													-				105			
-				proton	ato		relativ					22	F	Mantum	48	40	7	uninocuiz	9	72	Ĭ	hafmum	178	104	ž	rutherfordlum	1
***************************************							•	•				21	တိ	scandium	45	39	>	yttrinu	89	57-71	anthanoids			89 - 103	actinoids		
	=			4	Be	benyilhum	o	12	Σ	magnesium	24	20	ర	calclum	9	88	ģ	strontium	88	26	æ	barium			_	molpes	ļ
	_			ო		Efficia	~	F	ž	sodium	23	18	×	potasskum	38	37	2	rubidium	82	55	ర	Caesium	133	87	ŭ	francium	ı

		-	-	-	•	-	-	•		-	-	•		í	ì
rs6	ડે	n n	œ œ	8	9	62	83	2	8	9	Q	8	50	2	Ξ
	e	ථ	ፚ		Ę	£	a	පි	2	<u></u>	운	ш	£	₹	3
	lanthanum		DEMONSTRUCTOR	œ	promethium	samarium	europium	gadolinium	terbirm	dysprosium	holmium	erbitum	thullium	yttarbium	Intellium
	139		141		†	150	152	157	159	1	165	167	169	173	175
actinoids	68	8	94	85	63	æ	35	8	26	83	66	100	101	102	2
	Ş	£	g.	>	S	2	Am	5	益	Ö	щ П	Ē	₽	2	ت
	actinium	thornum	profectinium	uranium	neptunium	plutomium (ERTREPROPURE	CUMPLET	berkelium	osificanium	einsteinium	fermium	mendelevium	nobelium	lawrenchum
	1	232	231	238	1	l	1	ı	ı	l	ı	1	1	ı	1

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.l.p.)

Fuchun Secondary School

Secondary 4 Express

Chemistry (6092)

Prelim Examination P1 & P2 2020

Marking Scheme

QN	Ans	Qn	Ans	Qn	A	Qn	Ans
					n		
					S	2	
1	C	11	A	21	D	31	
2	D 12 A 22					32	
3	Α	13	D	23	D	33	D
4	D	14	D	24	В	34	8
5	C	15	Α	25	A	35	Conference of the Conference o
6	D	16	8	26	В	36	
7	3	17	D	27	В	37	
8	C	18	C	28	В	38	
9	A	19	A	29	D	39	Carl Control Lill
10	D	20	C	30	D	40	D
	<u> </u>						
Section	Answ				1 84-		1
A	Answ	er			Ma	arks	
1ai	P ₄ O ₆			100.100	\vdash	_ 1	
1aii	P ₂ O ₃				╁	- i	
1b		rtv 1: It is	a non me	etallic oxide	 	1	
'-	property 1: It is a non metallic oxide property 2: It is a covalent molecule which has					1	1
	weak	intermo	ecular fo	rces of attraction		•	
	I .			which requires little			
	energy			, , , , , , , , , , , , , , , , , , ,			
			es not h	ave mobile ions or		1	
				ic charge.			
2a		ne: Cl ₂					
					(₩₩3	İ
	Ammo	nia: NH ₃	,				
						√√2	
	Hydro	gen chlo	ride -	36.5			
2bi	ammo	nia				1	
2bii		gen chlor				1	
2biii				molecular mass of 17		2	
				lrogen chloride whose			
			s is 36.5.(must quote values)			
3a	calciu	m			1		
3b	7						
3c	4						
3d		72, 114				1	
		75, 114				1	
3ei				uctor of electricity, high		1	
				iny (any two)		1	

3eii	It reacts with acids to form salt and water.		
		1	
		•	
4 a	copper	1	
4b	colour of metal: orange brown	1	
	colour of solution: colourless	1	
4c	most reactive: zinc	1	
	tin		
	least reactive: metal x/copper		
4d	$Zn(s) + Sn^{2+}(aq) \rightarrow Sn(s) + Zn^{2+}(aq)$	1	
5a	$N_2 + 3H_2 \rightarrow 2NH_3$		
	According to the eqn, 1 mole of hydrogen	1	
	reacts with 3 moles of nitrogen.		
	Since 1 mol of any gas occupies 24dm³ at rtp,	1	
<u> </u>	the mole ratio is equal to the volume ratio.	14	
5b	iron	1	
5c	higher than nitrogen and hydrogen	1	4
5d	to increase the yield of ammonia	2	
5ei	higher pressure leads to more successful	1	
	collisons per unit time leading to faster rate	1	
	of reaction which will produce a higher yield of		
	ammonia	1	
5eii	At lower temperature, proportion of particles	"	
	with energy greater or equal to Ea will be lesser, leading to		
	lesser successful collisions per unit time and	1	
	cause a slower rate of reaction.		
5f	no of moles of hydrogen : 3/2 mole = 1.5 x 10 ⁶		
•	mole		
	no of moles of ammonia: $(1.5 \times 10^6/3) \times 2 = 1.0$	1	
	x 10⁵ mole		
	mass of ammonia: 1 x 10 ⁶ x 17=17 tonnes	1	
6a	chlorine	1	
6b	Fe(OH) ₂ , iron (II) hydroxide	1, 1	
6c	FeCl ₃ (Iron (III) chloride)		
6d	Iron (II) chloride, FeCl₂	1	
6e	A: reducing agent	1	
	B: oxidising agent	1	
7a	iron	1	
7b	$ZnS + O_2 \rightarrow ZnO + SO_2$	1	
76 7c	It dissolves in rainwater to form acid rain which	1	
70	might increase the acidity of soil and destroy	1	
	crops		
7d	to remove acidic impuriites	†1	

7 e	Metal ores are finite resources.	1	
	Fewer landfills needed to dispose off scrap	1	
	metal	:	
7f	zinc is more reactive than iron and will provide	1	
	sacrificial protection/ corrodes in place.		
	Section B		
8ai	Mg ^{2+,} SO ₄ ²⁻	1	
8aii	Fe ²⁺ , Mn ²⁺ , Zn ²⁺ , Cu ²⁺	1	
8bi	H₂S is oxidised to S as it loses hydrogen .	3	
ODI	O ₂ is reduced to H ₂ O as it gains oxygen	٦	
	O2 is reduced to H2O as it gains oxygen		
	avidinal lane budgered and and animality		
	oxidised – loses hydrogen/ reduced – gain of H		
	2m		
A.	correct species 1m		
8bii	energy profile diagram of exothermic reaction		
		3	
	enthalpy -1m		1
	activation energy 1m	1	
	correct reactants/products and energy levels-1m		
8c	Chemosynthesis	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	uses chemical energy		
	.	1	
	by products: Glucose and sulfur		
	-, production or decode dated 22		
	H ₂ S oxidized to S		
	TIZE CARDIZED TO D	1	
	CO made and to always		
	CO₂ reduced to glucose		
E			
		1	
	photosynthesis		
	uses light energy	1	
		,	
1	by products: glucose and oxygen		
	water is oxidized to oxygen	1	
		ļ '	
	carbon dioxide is reduced to glucose		
	Sample dioxide is reduced to glucose		
		1	
06!	no of moles of acidium carbon star 2 5/400	1.4	
9ai	no of moles of sodium carbonate= 2.5/106=	1	
	0.02358 moles		
	concentration in mol/dm 3 = 0.02358/200 x		
	1000=0.1 mol/dm ³	1	
9aii	downward curve	1	
	should not reach zero		

9bi	When the concentration of sodium carbonate	1	
	increases, the frequency of successful	1	
	collisons per unit time increases. The rate of		
	reaction increases.		Amme-
9bii	new curve should be shifted inwards and	1	
	labelled		
9c	must draw conical flask set up	1	
	must draw collection of gas by gas syringe/	1	
	stopwatch to take time		
either	P: Cu → Cu ²⁺ + 2 e	1	
10a	Q: Ag → Ag ⁺ + e	1	
	R: 4OH → 2H ₂ O + O ₂ + 4e	1	
10bi	No of moles of Cu lost = 0.81/64 = 0.127	1	
	No of moles of Ag lost = 2.70/108 = 0.25	1	
10bii	for every 1 mole of electrons, 1 mole of silver	1	
. • • • • • • • • • • • • • • • • • • •	is discharged to become silver ions but only 1/2	1	
	mole of copper is discharged.		
	or		
	<u> </u>		
	The ratio of Ag : Cu in terms of electrons given	1	
	off is 2:1	1	
10ci			
	Initial increase is because the lead form lead	1	
	sulfate layer when lead reacted with the sulfuric	'	
	acid formed.		
	the insoluble layer then prevents further		
	reaction of the anode so the electrolysis	1	
	stopped.		
	S.Spp-3.		
10d	Iron is more reactive than silver so it displaces	1	
	silver from its salt solution.		
	gold is less reactive than silver so no		
	displacement		
		_	
either			
10a	positive: 0 ₂ + 2H ₂ 0 + 4e → 4OH	1	
•			
	negative: 2H ₂ + 4 OH ⁻ → 4 H ₂ O + 4e	1	
10b	$2H_2 + O_2 \rightarrow 2H_2O$		
	no of moles of hydrogen= 240/24= 10moles		
	no of moles of oxygen = 5 moles	1	
	vol of oxygen = 5 x 24dm ³ = 120 dm ³		
	no of moles of water= 10 moles		
	mass of water formed= 10 x 18= 180g	1	
		1	
			ŀ
	1		

Mass/Mr = 1000g/2 = 500mol	1	
——————————————————————————————————————		
1 kg of octane = 8.772 x -5075KJ= -44518KJ of	1	
hydrogen is a gas and octane is a liquid at rt.	1	
So it is more difficult to store and transport hydrogen ags than liquid octane needed.	1	
hydrogen has a higher energy output compared to octane. But larger volumes of hydrogen are needed compared to octane.	1	
Hydrogen is produced by the cracking of alkanes which requires the usage of fossil fuels that might cause the release of carbon dixoide when they undergo combustion. Carbon dioxide is a greenhouse gas that can cause global warming that leads to	1	
	lkg of hydrogen =- 286 kJ/mol x 500 mol = -143000KJ of energy For Octane 1000g/ 114 = 8.772 mol 1 kg of octane = 8.772 x -5075KJ= -44518KJ of energy hydrogen is a gas and octane is a liquid at rt. So it is more difficult to store and transport hydrogen ags than liquid octane needed. hydrogen has a higher energy output compared to octane. But larger volumes of hydrogen are needed compared to octane. Hydrogen is produced by the cracking of alkanes which requires the usage of fossil fuels that might cause the release of carbon dixoide when they undergo combustion. Carbon dioxide is a greenhouse gas that can cause	Ikg of hydrogen =- 286 kJ/mol x 500 mol = -143000KJ of energy For Octane 1000g/ 114 = 8.772 mol 1 kg of octane = 8.772 x -5075KJ= -44518KJ of energy hydrogen is a gas and octane is a liquid at rt. So it is more difficult to store and transport hydrogen ags than liquid octane needed. hydrogen has a higher energy output compared to octane. But larger volumes of hydrogen are needed compared to octane. Hydrogen is produced by the cracking of alkanes which requires the usage of fossil fuels that might cause the release of carbon dixoide when they undergo combustion. Carbon dioxide is a greenhouse gas that can cause