TANJONG KOTUNG

BP~665

			n-july spicit
1	$1\frac{1}{9}, \left(\frac{\sqrt{2}}{2}\right)^4, -\pi, -\frac{22}{7}$		
2	$16a^{\frac{3}{2}}$		
	$\frac{a}{b^3}$		
	0-		
3	$5(5n^2-2n+1)$ is a multiple of 5	for all integ	ore of n
	3(3n-2n+1) is a multiple of 3	tor an integ	ers of u
4(a)	(6y + 5x - 5)(6y - 5x + 5)	4(b)	(4x-y)(3x+2y)
1(0)	(Oy Sx S)(Oy Sx O)		(10))(50 , 2))
5	T F		
J	$x = \pm \sqrt{\frac{4y^2 + 1}{y^2 - 1}}$		
	$x = \pm \sqrt{\frac{v^2 - 1}{v^2 - 1}}$		
	N 2		
6(-)		6(h)	2
6(a)	k=6	6(b)	The other solution is $x = \frac{2}{5}$
7	Angle DEB= 90°	" ,	
8	Misleading feature: The heights of	the hars are	not proportional to the number of
•	covid-19 tests per million people.	the barb are	not proportional to the number of
		eights of the	e bars suggest that Argentina tests about
	1	-	
		_	as the *USA. However, Argentina tests
	,	SA tests /0	00 people per million, which is about 21
	times.	41	- (The leave and 1/5 are 1/2 times
	*Accept correct comparison with o		` · · · ·
	Germany 2/3 vs 48 times or Norwa	y /2 vs 08 u	imes)
0(a)	F1 6 7 6 60	9(b)	(A + D/)
9(a)	Elements of set B are factors of 9.		$(A \cup B')' = A' \cap B = \{1, 3\}$
9(c)	$A' \cap B' \neq \emptyset n[(A \cup B)'] = 5 \{3$	$\} \subset A \cup B$	{9} ∉ A ∩ C
		1400	
10(a)	15.6%	10(b)	June 2021
10(c)	US\$2.39		
11	Since $\frac{m}{3} = k$, where $k=0.18$ is a no	n-zero cons	tant, m is directly proportional to x^3 .
	x3		
12	24.004		The state of the s
12	24.9%		
12(-)	Tago	120	
13(a)	46°	13(b)	134°
13(c)	33°	···	
14(a)	1:2	14(c)	$3.96 \times 10^{-2} \text{ m}^2$
14(b)	1000ml bottle cost \$0.0053 less per	r ml than 12	25 ml bottle. The 1000 ml bottle provides
	better value for money.		F
	OR		
		re ml ner ¢1	than 125 ml bottle. The 1000 ml bottle
	provides better value for money.	om por ør	. with 125 im could. The 1000 im bottle
	provides oction value for money.		

Tanjong Katong Girls' School

4048/S4Prelim/01/2022

[Turn over

		• ,	
15(a)	n=8	15(b)	10°
16(a)	smallest positive integer $x = 63$	16(b)	smallest positive integer $y = 44$
	A CONTRACTOR OF THE CONTRACTOR	1.243	3
17(b)	36.4 cm	17(c)	13.7 cm ²
10()		10(L)	3
18(a)	$\binom{3}{m+3}$	18(b)	$m = -\frac{3}{4}$
18(c)	5 units	,	4
	3 units		
19(a)	x = 1.0 or 4.0 (accept 3.9)	19(b)	x = 0.6
20(a)	y=3	20(b)	IQR of boy's height = $178 - 168 =$
			10 cm
w		24(1)	
21(a)	$\cos \angle LMN = -\frac{3}{5}$	21(b)	k = 7 or -5
21(c)	Q(3,6)		
		22(-)(::)	4 501
22(a)(i)	035°	22(a)(ii)	4.59km
22(b)(i)	55°	22(b)(ii)	10.2 min
23(a)	Speed = 18.75 m/s	woman.	
(~)	ppeda 10.75 H/V		

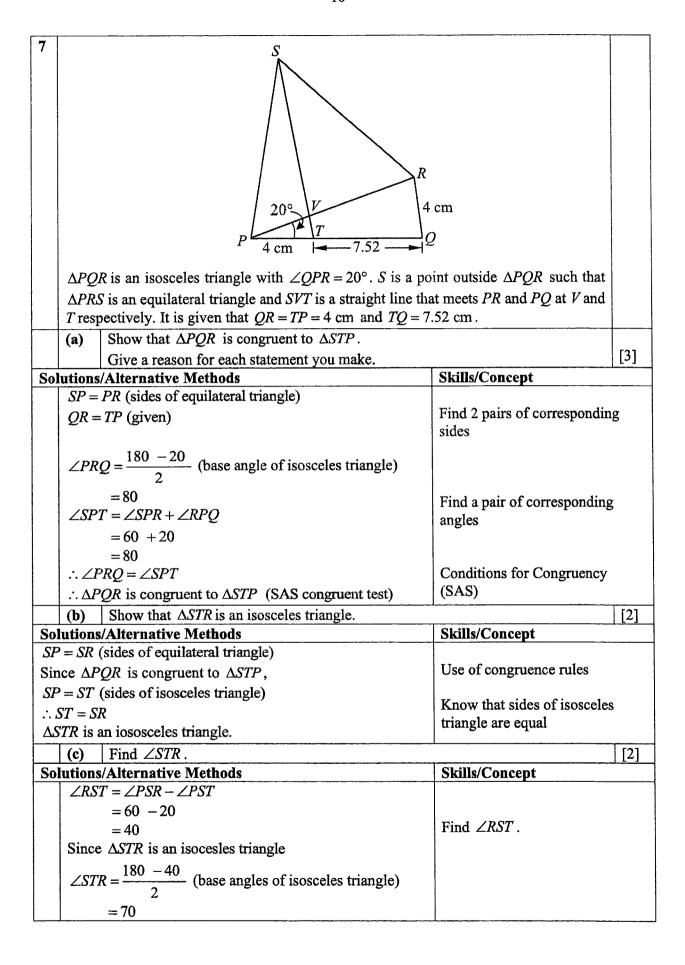
Sec 4 Prelim Math Paper 2 Solutions

1 (a) Express as a single fraction in	its simplest form	
(i) $\frac{24q^2}{63p^3} \div \frac{9q^5}{21p}$,		[1]
Solutions	Skills/Concept	
$=\frac{24q^2}{63p^3}\times\frac{21p}{9q^5}$	Take reciprocal: $\frac{24q^2}{63p^3} \times \frac{21p}{9q^5}$	
$=\frac{8}{9p^2q^3}$	Laws of indices: $a^{m+n} = a^m \times a^n$ $a^{m-n} = a^m \div a^n$	
(ii) $\frac{1}{m-4} + \frac{2m}{m^2-16}$.		[2]
Solutions	Skills/Concept	
$= \frac{1}{m-4} + \frac{2m}{(m-4)(m+4)}$	Quadratic Identity: $a^2 - b^2 = (a + b)(a - b)$	
$=\frac{(m+4)+2m}{(m-4)(m+4)}$	Express as single fraction	
$=\frac{3m+4}{(m-4)(m+4)}$		
(m-4)(m+4)		
(b) Simplify $\frac{3x-9}{2x-xy+3y-6}$.		[3]
Solutions/Alternative Methods	Skills/Concept	
Solutions/Alternative Methods $= \frac{3x-9}{(2x-xy)+(3y-6)} = \frac{3x-3}{x(2-y)+3}$	$\frac{-9}{3(y-2)}$ Factorisation by grouping	
$=\frac{3(x-y)}{x(2-y)}$	$\frac{-3)}{3(2-y)}$ Change of sign	
	$-\frac{3}{y-2}$ also acceptable	
$=\frac{3}{2-y}$		
(c) Solve the equation $(x+2)(x+2)$	(x-5) = (x-5)(4x-7).	[3]
Solutions/Alternative Methods	Skills/Concept	
(x+2)(x-5) - (4x-7)(x-5) = 0 $(x-5)[(x+2) - (4x-7)] = 0$ $(x-5)(9-3x) = 0$	Factorisation of quadratic function Solving quadratic equation	
(x-3)(9-3x) = 0 x=3 or $x=5$		

•	T- 2010 Al I D-1- I II- I		an invested \$210,000 and			
2	In 2019, Alan and Bala decided to start a bu					
	Bala invested \$140 000. They agreed that all profit should be divided in the same ratio as the sums of the money they invested.					
	(a) In 2019, the profit was \$20 000. Cal	loulate Alan's share	of the profit	[2]		
Salv	tions/Alternative Methods	Skills/Concept	of the profit.			
Som			n 2			
	Alan's share of profit = $\frac{3}{5} \times 20\ 000$ Ratio: $\frac{210000}{210000 + 140000} = \frac{3}{5}$					
	3	210000 + 1	40000 5			
	= \$12 000	:4 in 2020 duamed	to \$12 500 Calculate the]		
	(b) Due to the pandemic, the total prof		to \$12 500. Calculate the	Γ1 7		
Call	percentage decrease in profit from 2 ations/Alternative Methods	Skills/Concept				
Solu		Skins/Concept	difference			
	percentage decrease in profit	Percentage decrea	$se = \frac{difference}{original} \times 100$			
	$= \frac{20\ 000 - 12\ 500}{20\ 000} \times 100\%$		original			
	20 000					
	= 37.5%			4		
	(c) To expand their business, they decided to borrow \$100 000 from a bank. The bank					
	charged an interest rate of 2.4% per annum compounded half yearly. Calculate					
	how much interest they need to pay	after 5 years. Give	your answer correct to the			
	nearest dollars.			[3]		
Solu	tions/Alternative Methods	Skills	/Concept			
	$\left[\left(2.4 \right) \right]^{5\times2}$	_				
	Interest = 100 000 $1 + \frac{\left(\frac{2.4}{2}\right)}{100} = -100 000$	n=5	×2			
	Interest = $100\ 000 1 + \frac{100}{100} -100\ 000$	0				
	100	$r = 2.4 \div 2$				
	010 ((0.1770					
	= \$12 669.1778					
	= \$12 669		d up to nearest dollars	1		
	(d) Alan and Bala can choose to import					
	Malaysia or NT\$265 000 in Taiwar					
	Malaysia is S1 = RM3.20 and the					
	is NT100 = S4.60 . There is a frei			1		
	Taiwan only. Determine which cou	intry they should in	mport their raw materials			
	from.		G1 *** /G	[4]		
Solu	utions/Alternative Methods	40.000	Skills/Concept			
	Amount paid in S\$ for Malaysia import =	40 000	Exchange rate for			
		3.2	Malaysia Ringgit			
	= \$	\$12 500				
	Amount paid in S\$ for Taiwan import $=\frac{102}{100}\left(\frac{265\ 000}{100}\times4.6\right)$ Exchange rate for Taiv					
	Amount paid in 55 for Taiwan import	$\frac{100}{100} \left(\frac{100}{100} \right)^{4.0}$	Exchange rate for Tai	lwan		
		\$12 433.80	dollars			
	_	Ψ122 TJJ,UU	Include 20/ fresht -1			
			Include 2% freight ch	iarge		
	They should import their raw materials	from Taisvan bacc	ICA Compara with differen	mea		
	the total amount paid is <u>\$\$66.20</u> lower co			HUU		
l	inc was amount para is source tower co	inparcu w maiaysi	a. III values			

3	A wholesaler supplies snacks and delivers to two stalls. The matrix, S, shows the number of each type of snacks per delivery made to Stalls A and B. In a week, the wholesaler delivers 5 times to Stall A and 7 times to stall B.						
	sandwich cake pie						
		$\mathbf{S} = \begin{pmatrix} 25 & 20 & 13 \\ & & \\ 40 & 18 & 21 \end{pmatrix} \mathbf{S}$	tall A				
		S=					
		(40 18 21) S	tall B				
	(a)	The wholesaler charges the stalls \$2.00, \$0.70 ar					
		and pie respectively. Represent these prices in co					
Solu		/Alternative Methods	Skills/Concept				
	P =	(2.00) (0.70) (1.50)	Column matrices 3×1				
		Evaluate the matrix $C = SP$.	[2]				
Solu	itions.	/Alternative Methods	Skills/Concept				
	C =($ \begin{pmatrix} 25 & 20 & 13 \\ 40 & 18 & 21 \end{pmatrix} \begin{pmatrix} 2.00 \\ 0.70 \\ 1.50 \end{pmatrix} $ $ \begin{pmatrix} 83.50 \\ 124.10 \end{pmatrix} $	Multiplying matrices, Order: $(2\times3)\times(3\times1)=(2\times1)$				
	=((83.50) (124.10)	[17]				
G.I.		State what each of the elements of C represents. /Alternative Methods	Skills/Concept [1]				
Son		elements represent the amount collected by the	Skins/Concept				
	who	<u>lesaler</u> from the sales of snacks <u>per delivery</u> from <u>A</u> and Stall <u>B</u> respectively.					
	(d)	The amount collected by the wholesaler in a	week from Stall A and Stall B				
		respectively is represented by a 2×1 mat multiplication, find W .	rix, W. Using only matrix [2]				
Solı	itions	/Alternative Methods	Skills/Concept				
	W =		Matrix multiplication of 2×2 with 2×1 to get 2×1				
	=	(417.50) 868.7)					
)	· · · · ·					
	=	(417.50) 868.7)					
	(e)	Hence, find the total amount collected by the wh	olesaler in a week. [1]				
Solı	ıtions	/Alternative Methods	Skills/Concept				
	Tota	al amount $= \begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} 417.50 \\ 868.7 \end{pmatrix}$	Unit matrix (1 1)				
	f	total amount collected in a week is \$1286.20					

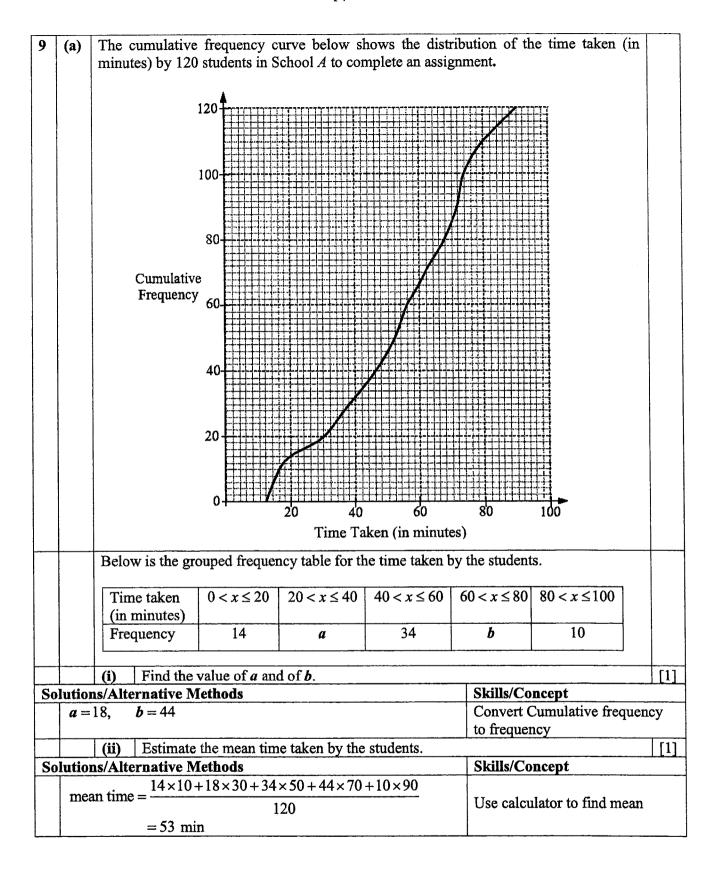
4	(a)	Thes	e are the fir	st four terms in a s	equence.			
-	(4)	Thes	Caro the in	ot rour terms in a s	oqueneo.			
				-2 1	4 7			
		Find	an express	ion, in terms of n , f	for the nth	term	of the sequence.	[1]
Sol	utions	/Alter	native Me	thods			lls/Concept	
	3(n	-1)-2	2 = 3n - 3 -	2		Gen	neral term: $a + (n-1)d$	
			=3n-5			<i>a</i> :	1st term,	
						<i>d</i> :	constant difference between te	rms
	(b)	Stud	y the follow	ving number patter	n of the Py	thag	orean Triples.	
				Row			ean Triples	
				1		$5^2 = 3$	$3^2 + 4^2$	
				2	1	$3^2 = 3$	$5^2 + 12^2$	
				3	2	$5^2 = '$	$7^2 + 24^2$	
				4	4	$1^2 = 9$	$9^2 + 40^2$	
				5		$p^2 =$	$q^2 + 60^2$	
				3.7		2 (0.2 . p.2	
				N	P_{λ}	<u> </u>	$Q_N^2 + R_N^2$	
	_	(i)	Write dov	vn the value of p ar	\mathbf{nd} of \mathbf{a} in \mathbf{b}	Row	5.	[2]
Sol	lutions		native Me				Skills/Concept	
	p =						Number patterns	
	q =						-	
	1	(ii)	Write dov	vn the Pythagorear	Triples in	Rov	$w 10 \text{ when } P_{10} = 221.$	[1]
Sol	lution	s/Alter	native Me	thods			Skills/Concept	
	221	$1^2 = 21^2$	$^{2} + 220^{2}$				Include P, Q & R	
		(iii)	When Q_N	=111, find N .				[2]
So	lution	s/Alter	rnative Me	thods			Skills/Concept	
	Q_{N}	$=\overline{2(N)}$	-1) + 3				Find number pattern for Q_N	
		=2N	-1					
	2 <i>N</i>	+1 = 1	.11				Equate $2N+1$ to 111	
		2N=1						
		N=5	55					


(iv) Given that $R_N = aN^2 + bN$, find the value	of a and of b.	[4]
Solutions/Alternative Methods	Skills/Concept	
$R_{N} = aN^{2} + bN$		
When $N = 1$, $a(1)^2 + b(1) = 4$	Form 1 st equation	
$a+b=4 \cdots (1)$ When $N=2$, $a(2)^2 + b(2) = 12$	Form 2 nd equation	
$4a + 2b = 12 (2)$ $(1) \times 2, \ 2a + 2b = 8 (3)$		
	Solve simultaneous equations	
Substitute $a = 2$ into (1), $(2) + b = 4$	Both a & b must be correct	
b=2		1 507
(v) Explain with reason why it is not possible		[2]
Solutions/Alternative Methods	Skills/Concept	
$2N^2 + 2N = 2(N^2 + 1)$	Make R_N a multiple of 2	
Since $2N^2 + 2N = 2(N^2 + 1)$ is always even for all values of N, it is not possible for 2021 which is odd to be a number of R_N .	Multiples of 2 are even numbers	3

5	(a)	C D E C D E				
		i		m shows a parallelogram $OABC$. The point E on AB is such that AB		
		1	= 3DB OC =2		LD = 3.1. Given that $OA = 2a$	
		(i)		ess in terms of a and b, giving each	of your answers in its simplest	
			(a)	OB,		[1]
Sol	utions	/Alter	native	Methods	Skills/Concept	
	ОВ	$= OA - $ $= 2\mathbf{a} + $			Triangle Law of Vector Additio	n
			(b)	CD.		[2]
Sol	ution	s/Alter	native	Methods	Skills/Concept	
		$= CO$ $= CO$ $= -2\mathbf{b}$ $= -2\mathbf{b}$	$+\frac{5}{6}OE + \frac{5}{6}(2 + \frac{5}{3}a -$	$\mathbf{a} + 2\mathbf{b})$ $+ \frac{5}{3}\mathbf{b}$	Vector addition with $OD = \frac{5}{6}O$	PB
		$=\frac{5}{3}\mathbf{a}$	$-\frac{1}{3}\mathbf{b}$	w that C , D and E are collinear.		[3]
So	lution		 	e Methods	Skills/Concept	1121
	CE	= CB	+BE		Find CE using vector addition	
		$= 2\mathbf{a} + \mathbf{a} + \mathbf{a}$	$-\frac{1}{5}BA$)	Make CD a scalar multiple of Or any other scalar multiple	CE
		=2a-	$\frac{2}{5}$ b		$DE = \frac{1}{3}\mathbf{a} + \frac{1}{15}\mathbf{b}$ $= \frac{1}{15}(5\mathbf{a} - \mathbf{b})$	
		$0 = \frac{1}{3}(5)$ $0 = \frac{1}{3}(5)$ $0 = \frac{2}{5}(5)$			$=\frac{15}{5\times3}(5\mathbf{a}-\mathbf{b})$	
		$CD = \frac{5}{6}$ $ce CD$		scalar multiple of CE and C is a	$DE = \frac{1}{5}CD$ Conditions for collinearity	
				$\therefore C$, D and E are collinear.		

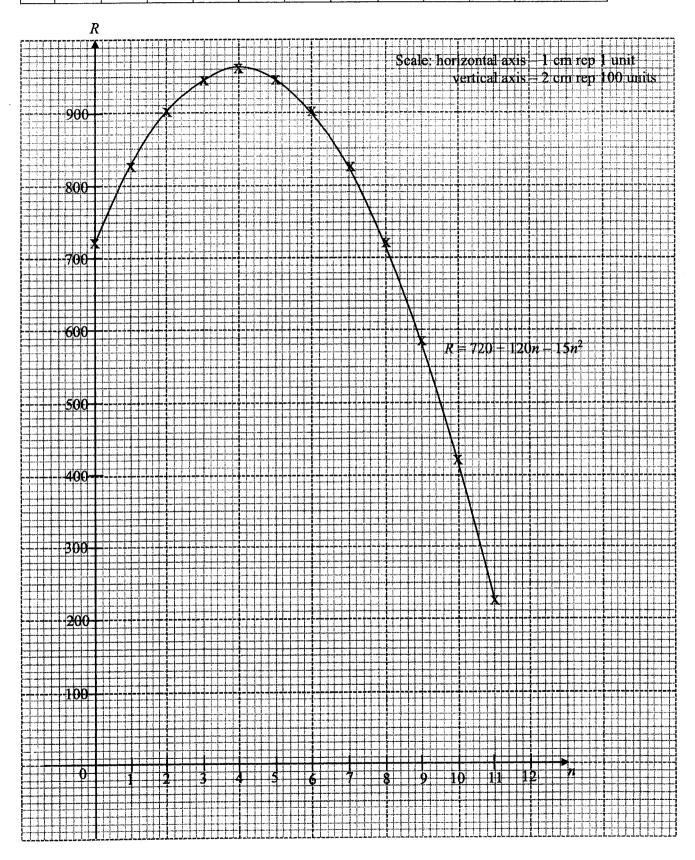
		Area of Δ <i>ODC</i>
(ii	i) Find the numerical value of	Area of parallelogram <i>OABC</i> [1]
Solutions/Al	ternative Methods	Skills/Concept
Area of	$\frac{c\Delta ODC}{S\Delta OBC} = \frac{\frac{1}{2} \times 5 \times h}{\frac{1}{2} \times 6 \times h}$ $= \frac{\frac{5}{6}}{\frac{1}{2}}$ Area of ΔODC Figurallelogram $OABC$ $= \frac{5}{6} \times \frac{1}{2}$ $= \frac{5}{12}$	Use of Area of triangle = $\frac{1}{2} \times \text{base} \times \text{height to}$ find ratio of 2 triangles with common height Or use counting method
	is given that $PQ = \begin{pmatrix} 5 \\ 1 \end{pmatrix}$ and coordinates of the point S such that	the coordinates of R are $(4,0)$. Find the nat $PQRS$ is a parallelogram.
	ernative Methods	Skills/Concept
$PQ = S$ $PQ = C$ $\binom{5}{1} = \binom{6}{1}$		PQ = SR for equal vectors in parallelogram R S/Q Clockwise or anti-clockwise for $PQRS$
∴ S(-1,	-1 <i>)</i> -1)	Must be coordinates

6	An aircraft flew from Town A to Town B and made a return trip to Town A from Town							
	<i>B.</i> T	The total distance covered was 1200 km. The speed of the aircraft in still air is 200						
		/h. The aircraft flew against the wind when flying from Town A to Town B, and						
	flew	wwind assisted when flying back to Town A from Town B.						
	(a)	The speed of the wind, which is constant throughout, is $x \text{ km/h}$. The time taken						
		by the aircraft, in hours, to fly from Town A to Town B is $\frac{600}{200-x}$. Write down						
		an expression, in terms of x , the time taker	n by the aircraft, in hours, to fly from [1]					
		Town B to Town A.						
Sol		s/Alternative Methods	Skills/Concept					
	6	00						
	200) + x						
	(b)	The time taken to fly against the wind is 10 fly wind assisted. Write down an equation to $x^2 + 7200x - 40000 = 0$.	-					
Sal	ution	us/Alternative Methods	Skills/Concept					
50.		$\frac{00}{00} - \frac{600}{00} = \frac{10}{00}$						
		$\frac{300}{1-x} - \frac{300}{200+x} = \frac{10}{60}$	Forming quadratic equations					
	600	$0.200 \pm x = 600(200 \pm x) = 1$						
		$\frac{0(200+x)-600(200-x)}{(200^2-x^2)} = \frac{1}{6}$	$(200+x)(200-x)=(200^2-x^2)$					
	Į.		as denominator					
	600	$0(200+x)-600(200-x)=\frac{1}{6}(200^2-x^2)$						
	120	$0x = \frac{1}{6}(200^2 - x^2)$						
		$00x = 200^2 - x^2$ + 7200x - 40 000 = 0 (shown)	Simplify equation to required one					
	(c)	Showing your working clearly, solve the ed	$\frac{1}{\text{mustion } x^2 + 7200x - 40000 = 0, \text{ giving}}$					
		your solutions correct to 2 significant figure						
Sol	ution	ns/Alternative Methods	Skills/Concept					
	x2 -	$+7200x - 40\ 000 = 0$	Solving of quadratic equation using					
	"		formula or completing square only					
:	x =	$\frac{-7200 \pm \sqrt{7200^2 - 4(1)(-40000)}}{2(1)}$						
	_	2(1)						
		.55113 or = -7205.55113	Leave answers in 2 sig fig					
	<u> </u>	.6 or = -7200 (2 s.f.)						
50		ns/Alternative Methods						
	1	$+7200x - 40\ 000 = 0$	Solve by completing the square					
	1	$+3600)^2 - (3600)^2 - 40\ 000 = 0$	Solve by completing the square					
	1 `	$+3600)^2 = 13000000$						
	1	$=-3600 \pm \sqrt{13000000}$						
	1	.55113 or = -7205.55113						
	= 5	6.6 or = -7200 (2 s.f.)	Leave answers in 2 sig fig					
	(d)	Find the time taken for the whole trip.	[2]					
So	lutio	ns/Alternative Methods	Skills/Concept					
	Ti	600 10						
	1111	ne taken = $2 \times \frac{300}{200 + 5.55113} + \frac{10}{60}$	Use $x = 5.55113$ to find time taken to the					
	1	= 6.0046	nearest hour					
		= 6 hours						
So	lutio	ns/Alternative Methods						


Time taken = $2 \times \frac{600}{200 - 5.55113} - \frac{10}{60}$	
1000000000000000000000000000000000000	
= 6.0046	
= 6 hours	
Solutions/Alternative Methods	
Time taken = $\frac{600}{}$ + $\frac{600}{}$	
$\frac{11116 \text{ taken}}{200-5.55113} + \frac{1}{200+5.5511}$	3
= 6.0046	
= 6 hours	

	(d)	Show that QR is parallel to ST , hence find the area of ΔPVT if area of triangle $\Delta PQR = 22.7 \text{ cm}^2$.				
Sol	utions	/Alternative Methods	Skills/Concept	l		
	Since	ΔPQR is congruent to ΔSTP ,				
	∠PQ	$R = \angle STP$ (corresponding \angle s of congruent triangles)	Use of congruent rule			
		= 80°	Com analag narallal linas			
	By co	nverse of corresponding angles, QR is parallel to ST .	Corr. angles, parallel lines			
	OR					
	∠TSI	R = 40 °				
	∠SRQ	Q = 60°+80°=140°				
	∠TSI	$R + \angle SRQ = 40^{\circ} + 140^{\circ} = 180^{\circ}$. By converse of interior				
	angle	s, QR is parallel to ST .				
	OR					
	∠VR	$Q = 180^{\circ} - 40^{\circ} - 60^{\circ} = 80^{\circ}$ (angle sum in a triangle)				
	∠SVI	$R = \angle VRQ = 80^{\circ}$. By converse of alternate angles, QR				
	is par	allel to ST.				
		V is similar to ΔPQR	•			
	Area	of $\Delta PTV = \left(\frac{4}{11.52}\right)^2 \times 22.7$	Areas of similar triangles			
		$= 2.7368 \text{ cm}^2$				
		$= 2.74 \text{ cm}^2$				

A roof in the shape of a triangular right prism is confidence of the shape of a triangular right prism is confidence of the shape of a triangular right prism is confidence of the shape of a triangular right prism is confidence of the shape of a triangular right prism is confidence of the shape of a triangular right prism is confidence of the shape of a triangular right prism is confidence of the shape of a triangular right prism is confidence of the shape of a triangular right prism is confidence of the shape of a triangular right prism is confidence of the shape of a triangular right prism is confidence of the shape of t	
(a) the area of triangle ABE,	[2]
Solutions/Alternative Methods	Skills/Concept
area of triangle $ABE = \frac{1}{2} \times 12 \times 12 \times \sin 120$ = 62.354 = 62.4 m ²	Area of triangle involving sine
(b) AB^2 ,	[2]
Solutions/Alternative Methods	Skills/Concept
$AB^{2} = 12^{2} + 12^{2} - 2(12)(12)\cos 120$ $= 432$	Cosine rule
(c) AC,	[2]
Solutions/Alternative Methods	Skills/Concept
$AC = \sqrt{432 + 12^2}$ (Pythagoras' Theorem) = 24 m	Pythagoras' Theorem
(d) ∠AEC,	[3]
Solutions/Alternative Methods	Skills/Concept
$EC = \sqrt{12^2 + 12^2}$ (Pythagoras' Theorem) = $\sqrt{288}$ m $12^2 + (\sqrt{288})^2 - 24^2$	Pythagoras' Theorem
$\cos \angle AEC = \frac{12^2 + \left(\sqrt{288}\right)^2 - 24^2}{2(12)(\sqrt{288})}$ $= \frac{-144}{407.293506}$ $\angle AEC = 110.7048$	Cosine rule
$\angle AEC = 110.7048$ = 110.7 (1 d.p.)	


(e) the largest angle of elevation of M viewed from a po	int along <i>CD</i> .	[3]
Solutions/Alternative Methods	Skills/Concept	
Let the point directly below M at AB be P and let the point		
be Q on CD .		
AM = 6 m		
$\angle PAM = 30^{\circ}$ (base angle of isocesles triangle)		
$PM = 6\sin 30^{\circ}$	Sine Trigo Ratio	
=3 m	Sine Tigo Rado	
PQ = 12 m		
$\tan \angle PQM = \frac{3}{12}$		
$\tan \angle PQM = \frac{3}{12}$ $\angle PQM = \tan^{-1}\left(\frac{1}{4}\right)$	Tangent Trigo Ratio	
=14.036		
=14.0 (1 d.p.)		

(iii)	Estimate the standard deviation of the time taken by	the students.								
	ernative Methods	Skills/Concept								
	$\frac{120^{2} + 18 \times 30^{2} + 34 \times 50^{2} + 44 \times 70^{2} + 10 \times 90^{2}}{120} - 53^{2}$	Use calculator to find S.D								
	$\frac{9200}{20} - 2809$									
1 1 '	52289									
1 1	min (3 s.f.)									
(iv)										
	Mean time taken60Standard deviation13.6									
	Make two comments comparing the time taken by t	he students from the 2 schools. [2]								
Solutions/Alt	ernative Methods	Skills/Concept								
On average same assi minutes 1	ge, students from school B took longer to complete the gnment as their mean time taken of 60 minutes is 7 onger than the mean time taken of 53 minutes by rom school A .	Comparing of data in context using mean by stating the difference								
students for School B minutes h	In do f the time taken to complete the assignment for from school A is wider compared to students from as their standard deviation of 22.8 minutes is 9.2 igher than School B 's 13.6 minutes. The time taken dents from School B is more homogeneous.	Comparing of data in context using S.D. by stating the difference								
	Bryan and Chandra took part in a game of dart throwing and Chandra will hit the target in a single throw are	l l								
(i)	For the first game, all three of them throw the dart Find the probability that all of them hit the target.	[2]								
Solutions/Alt	ernative Methods	Skills/Concept								
P(all of th	nem missed) = $\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4}$ = $\frac{1}{120}$	Probability of independent events								
(ii)	In the second game, they each make a single throw order of Ali, Bryan and Chandra. For this game, or will end. Find the probability the target is hit.									
Solutions/Alt	Solutions/Alternative Methods Skills/Concept									
	target) = $\frac{1}{6} + \left(\frac{5}{6} \times \frac{1}{5}\right) + \left(\frac{5}{6} \times \frac{4}{5} \times \frac{1}{4}\right)$	Probability of independent events & mutually exclusive events								
	$=\frac{1}{2}$									

10	Daryl owns a concert hall with a full capacity of 120 seats. He conducted a survey to find out how much to charge for tickets. The detail of the survey is below:								
	Price of one ticket Number of people who will attend the concert								
			\$6.00		120				
			\$7.50		110				
		-	\$9.00 \$10.50		90				
		-	\$10.50		90				
		L		<u> </u>					
	(a)	Write	e down the revenue h	e will get if all 120 seat	ts are so	ld.	[1]		
Solu	tions	/Alter	native Methods			Skills/Concept			
	Rev	enue =	=120×6						
			= \$720						
	(b)	_	le who attend the con	cert drops by 10.		of one ticket, the number of			
		(i)		he makes three \$1.50 is	ncreases		[1]		
Solu			native Methods			Skills/Concept			
	Pric	e after	r increase $= 6.00 + 3($	1.50)					
			= \$10.50						
				10.50, 90 people will at	tend		İ		
:	Rev		= 90×10.50						
	= \$945 (ii) Let n be the number of \$1.50 increase in the price of the tickets, explain why the								
		(ii)		s is given by $720 + 120$			[3]		
Solu	tions	/Alter	native Methods	3 13 given by 720 + 120.	11 1311	Skills/Concept	151		
5010			$\frac{\text{narree in tenous}}{\text{ncrease} = 1.50n + 6}$	70700		Find amount increase			
	1		f people who will atte	end = 120 - 10n		The drop in number who atte	end		
			= (1.50n + 6)(120 - 10)			Form expression for revenue			
			$=180n-15n^2+720-$	*					
			$= 720 + 120n - 15n^2 $						
		(iii)	Explain why the nu	mber of \$1.50 increase	in price	should be less than 12.	[1]		
Solu	itions		native Methods	,		Skills/Concept			
	Who	en n >	12,						
	Nun	nber o	f people who will atte	end is $120 - 10n < 0$					
	:. the number of increase of \$1.50 should not >12.								
	(iv) By drawing a suitable graph for $n < 12$ on the grid opposite, work out how much								
		<u> </u>		e his ticket to maximun			[4]		
Solu	tions/Alternative Methods					Skills/Concept			
	1 '	-		ole of values & scales					
	as they are not given in the question.								
	Smooth curve passing through all point								
	From the graph, since revenue is maximum at $n = 4$, Know max revenue is at $n = 4$								
	He	should	charge = $4(1.50) + 6$	5=\$12					

n	0	1	2	3	4	5	6	7	8	9	10	11
R	720	825	900	945	960	945	900	825	720	585	420	225

