

KENT RIDGE SECONDARY SCHOOL Preliminary Examination P1 2022

Marking Scheme

MATHEMATICS 4048/01

SECONDARY 4 EXPRESS/ 5 NORMAL ACADEMIC

18 August 2022

2 hours

Question	Solution	Mark/ Remark
Q1	-0.876	[B1]
Q2 (a)	$y = k(3x+7)^2$	[M1]
	$6 = k(-12 + 7)^2$	
	k = 6/25 or 0.24	
	$y = 0.24 (3x + 7)^2 \text{ OR } y = 6/25 (3x + 7)^2$	[A1]
Q2(b)	$15.36 = 0.24 (3x + 7)^2$	
	$64 = (3x + 7)^2$	[M1 15.36 ÷ their k
	3x + 7 = 8 or - 8	seen]
	x = 1/3 or $x = -5$	[A1 both answer must
		be seen]
Q3	$4 \cdot 16a^3$	
	$aw^2 \div \overline{5w}$	
		$[M1 \times \text{ and } 5/4]$
	$=\frac{4}{aw^2}\times\frac{5w}{16a^3}$	seen]
	aw ² 16a ³	seenj
	ξ.	
	$=\frac{5}{4wa^4}$	[A1]
]	$4wa^4$	
]		
-		
	<u> </u>	

Q4	1. The scale on the vertical axis does not start from zero.	[B1 for point 1 only]
	2. The scale on the axes are inconsistent/ not equally spaced, therefore projection of the profit will be inaccurate.	[B1 Either point 2 or 3 or 4 only]
	3. Data from 2013 to 2022 cannot be used to predict future profit.	
	4. 2015 to 2022 is not linear.	
Q5	Ratio of the side regular hexagon: equilateral triangle = 7:3	
	Ratio of the perimeters hexagon: triangle = $7 \times 6 : 3 \times 3$ = 42: 9	
Q6	Let x be the time taken in hour when they meet	
	70x + 50x = 100 $120x = 100$	[M1]
	x = 5/6 hours = 50 minutes	[M1 5/6 h or 50 min]
	0800 + 0050 = 0850 They will meet at 0850 or 8.50 am OR	[A1]
	Let y be the distance	
	(100 - y) / 50 = y / 70 $50y = 7000 - 70y$ $120y = 7000$ $y = 700/12$	[M1]
	time taken = (700/12) /70 = 5/6 hours = 50 minutes	[M1 distance /speed]
	0800 + 0050 = 0850 They will meet at 0850 or 8.50 am	
		[A1]
Q7 (a)	4/5 or 0.8 or 80%	[B1] [B0 for 8/10]
Q7(b)	r + s = 8 $r \times s = $ Prime therefore $r = 1$ and $s = 7$	[M1 able to deduce 1 and 7]
	P(choosing a red ball) = 0.1 or 1/10	[A1]

Q8	$\frac{x}{3} - \frac{3x - 7}{4} = 8$ $\frac{4x}{12} - \frac{9x - 21}{12} = 8$	[M1 common deno]
	4x - 9x + 21 = 96 $-5x = 75$ $x = -15$	[M1 multiply by 12 and allow 1 slip, the slip cannot be the negative sign]
		[A1]
Q9(a)	$ \begin{array}{r} -8a - 4b + 7b - 21a \\ = 3b - 29a \end{array} $	[M1 any 2 terms are expanded correctly]
Q9 (b)	= 6x (2y + x) - (2y + x) = (6x - 1) (2y + x)	[M1 allow 1 slip] [A1] [A0 if 1 slip is found]
Q10	$3b + 8d = 2ab + 5$ $3b - 2ab = 5 - 8d$ $b(3 - 2a) = 5 - 8d$ $b = \frac{5 - 8d}{(3 - 2a)}$	[M1 regroup and factorise b] [A1]
Q11	$7/9 \times 1440 = 1120$ $\frac{1}{3} : \frac{5}{6} : 0.5 = 2 : 5 : 3$	[M1 for 1120 or 2: 5: 3 is seen]
	10 units represent 1120 5 units represent 560	[A1]
	OR $\frac{\frac{5}{6}}{(\frac{1}{3} + \frac{5}{6} + \frac{1}{2})} \times 1120 = 560$	[M1 + A1]

Q12 (a)	$x^2 + 5x + 4$	$[B1 (x + 2.5)^2]$
Q12 (a)		B1 –2.25 if not
	$=(x+2.5)^2-2.25$	working is shown]
Q12(b)	4 -2.5 -1 -2.25	[C1 shape (min curve) [P1 1. cuts at the x axis at -1 and -4 with min shape 2. cuts at y axis at 4.
Q12(c)	Min pt (-2.5, -2.25)	[B1 or ECF 1 from (a)]
Q13 (a)	$6.3 \times 10^7 - 4.7 \times 10^6 = 58300000$ $58300000 = 5.83 \times 10^7$	[M1 showing subtraction] [A1 for conversion to standard form] [A0 if 5.8 × 10 ⁷]
Q13(b)	£5.88 ÷ 5 = £1.176 £1 = SGD \$1.70 £1.176 = SGD \$1.9992 2.98 - 2.00 = 0.98 United Kingdom is cheaper and by SGD\$0.98.	[M1 for comparing 1 litre] [M1 conversion of pound to SGD] [A1 must show UK and SGD\$0.98]
Q14	x = 0.8m y = 1.3n x/y = 0.8m/1.3n x/y = 8m/13n 8m/13n < m/n	[M1 for 0.8 or 1.3 shown] [M1 able to show the fraction of x/y OR ECF 1 for their version of fractions]

		
	Thus, x/y is lesser than m/n	[B1 must say lesser and show comparison between 8m/13n and m/n]
		[No B1 if they just conclude]
Q15	r/4 or 40	[B1]
	$2200 = 950 (1+(r/4)/100)^{10x4}$ $2.315789474 = (1+r/400)^{40}$	
	$\sqrt[40]{2.315789474} = (1 + \frac{r}{400})$ $1.021215686 -1 = r/400$	[M1 ÷ by their $\sqrt[x]{y}$
	$0.021215686 \times 400 = 8.49$	[A1]
	r = 8.49	
Q16(a)	$4 (2^{a}) = 32 2^{a} = 8 a = 3$	[M1 able to show 4 or 2^2]
	<i>a</i> – 5	[A1]
Q16(b)	$5^{2(x+2)} \times 5^3 \div 5^{-x} = 5^0$	[M1 to show $1 = 5^{0}$ or $5^{2(x+2)} \times 5^{3}$
	$5^{(2x+4)+3+x} = 5^{0}$	[M1 use indices law to combine the
	3x + 7 = 0	power]
	x = -7/3	[A1]

Q17(a)	9 cm (c)	(a) [C1 for the arc] [G1 for the triangle with $PR = 9 \text{ cm} \pm 0.1 \text{ cm}$ and $\angle PQR = 75^{\circ} \pm 1^{\circ}$] (b) [G1 at PX with $4 \text{ cm} \pm 0.1$] (c) [G1 at $\angle Q$ with $37.5^{\circ} \pm 1^{\circ}$]
Q18(a)	ξ B 6,7,8,10 A 4, 9,16 5,11,12,13,14,15	[C2 – all correct]
Q18(b)	$A = \{x : x \text{ is a perfect square}\}$	[B1 bold keyword]
Q18(c)	$A \cap B' = \{\}$ or ϕ	[B1] No B1 for {\phi}
Q19 (a)	2 cm : 1 km 17 cm : 8.5 km	[B1]
Q19(b)	4 cm ² : 1 km ² 1 cm ² : 0.25 km ² 9 cm ² : 2.25 km ²	[M1 conversion]

Q20 (a)(i)	$756 = 2^2 \times 3^3 \times 7$	[M1+ A1]
Q20(a) (ii)	$360 = 2^3 \times 3^2 \times 5$	
(11)	$756 = 2^2 \times 3^3 \times 7$	
	$HCF = 2^2 \times 3^2$	[D1]
	= 36	[B1] [B0 index notation]
Q20 (b)		[B1] [B1]
Q21 (a)	8 - 3.5 = 4.5	[B1] must show subtraction from
	OR	radius
	By Pythagoras' theorem,	
	$OD^2 = 8^2 - (6.61)^2$	
	$OD \approx 4.5 \text{ cm (shown)}$	
Q21(b)	Area of biggest circle = 64π cm ²	[M1 for area of
	Area of the shaded triangle = $0.5 \times 4.5 \times (13.22)$ = 29.745 cm^2	biggest circle or triangle found]
	Area of region between 2 concentric circles $= 16 \pi \text{ cm}^2 - 4\pi \text{ cm}^2$ $= 12\pi \text{ cm}^2$	[M1]
	Area of the unshaded region = $64\pi \text{ cm}^2 - 12\pi \text{ cm}^2 - 29.745 \text{ cm}^2$ = $52\pi - 29.745 \text{ cm}^2$	[M1 for unshaded region]
	Cost of shaded region with gold paint = $(12\pi + 29.745) \times 2	[M1 Finding the cost of shaded or unshaded
	= \$134.8882237	region or ECF 1]
	Cost of unshaded region with silver paint = $(52\pi -29.745) \times 1.20	
	= \$160.3413816	
	Total cost of the plaque = \$134.8882237 + \$160.3413816 = \$295.23	[A1 for addition of costs]
	,	00000]

Q22(a)	$3\overrightarrow{AN} = 6\mathbf{b} - 6\mathbf{a}$	[M1 for vector AB = 6b- 6a OR
	$\overrightarrow{AN} = 2\mathbf{b} - 2\mathbf{a} \text{ or } 2(\mathbf{b} - \mathbf{a})$	1/3 of their = \overrightarrow{AB} [A1]
Q22(b)	$\overrightarrow{ON} = \overrightarrow{OA} + \overrightarrow{AN}$ $= 6\mathbf{a} + 2\mathbf{b} - 2\mathbf{a}$ $= 4\mathbf{a} + 2\mathbf{b}$ $= 2(2\mathbf{a} + \mathbf{b})$	[B1]
Q22 (c)	$\overrightarrow{NM} = \overrightarrow{OM} - \overrightarrow{ON}$ $= 3\mathbf{b} - (4\mathbf{a} + 2\mathbf{b})$ $= \mathbf{b} - 4\mathbf{a}$	[M1 OR $\overrightarrow{NO} + \overrightarrow{OM}$] [A1 shown]
	$\overrightarrow{NM} = \overrightarrow{NA} + \overrightarrow{AO} + \overrightarrow{OM}$ $= -2\mathbf{b} + 2\mathbf{a} - 6\mathbf{a} + 3\mathbf{b}$ $= \mathbf{b} - 4\mathbf{a}$	[M1] [A1 shown]
Q22(d)(i)	$\overrightarrow{MP} = 3\overrightarrow{MN}$ $\overrightarrow{OP} - \overrightarrow{OM} = 3 (-\mathbf{b} + 4\mathbf{a})$ $\overrightarrow{OP} - 3\mathbf{b} = -3\mathbf{b} + 12\mathbf{a}$	[M1]
	$\overrightarrow{OP} = 12a$	[A1]
Q22(d) (ii)		
	 Since \$\overline{OP} = 2 \overline{OA}\$, OP // OA. A is the common point, O, A and P are collinear. OP is twice the length of OA. OP = 2 OA 	[B1 with working] [B1 with working] [B1] [B1 magnitude]

	Calcu	ulator	Model	:
--	-------	--------	-------	---

For Examiner's Use

KENT RIDGE SECONDARY SCHOOL PRELIMINARY EXAMINATION 2022

MATH	IEM.	ATI	CS
PAPE	R 2		

4048/02

SECONDARY 4 EXPRESS/ 5 NORMAL (ACADEMIC)

Tuesday 23 Aug 2022

2 hours 30 minutes

KENT RIDGE SECONDARY SCHOOL KE

_()

Name:	

Class: Sec

MARK SCHEME

The total number of the marks for this section is 100.

For Exa	miner's Use
Total	100

Penalty:

- 1. Poor presentation for algebraic notations and solving equations (-1 overall)
- 2. Accuracy errors (-1 overall)

This Question Paper consists of 24 printed pages, including this page.

For

Examiner's Use

For Examiner's Use

S/n	Solutions	Marks	Comments
1(a)	5(4x+1) > 3(3-2x) $20x + 5 > 9 - 6x$	M1	
	$26x > 4$ $x > \frac{2}{13}$		Do not accept $x > 0.154$
<u> </u>	1	A1	
1(b)	$\left(\frac{b^8}{16a^{12}}\right)^{\frac{1}{4}}$	M1	
	$=\frac{b^2}{2a^3}$	A1	
1(c)	$\frac{x}{(5-2x)^2} + \frac{3}{5-2x}$ $= \frac{x+3(5-2x)}{(5-2x)^2}$	M1	$\frac{x}{(2x-5)^2} - \frac{3(2x-5)}{(2x-5)^2} M1$
	$= \frac{15-5x}{(5-2x)^2}$	A1	Accept $\frac{5(3-x)}{(5-2x)^2}$ or $\frac{5(3-x)}{(2x-5)^2}$
1(d)	$14x + 12y = 66 \dots (1)$ $15x - 12y = 21 \dots (2)$ (1) + (2): 29x = 87	M1	Equivalent method or Substitution method
	x = 3, y = 2	A1,A1	
1(e)	$\frac{(5x+4)(5x-4)}{(5x+4)(3x-1)}$	M2	
	$=\frac{5x-4}{3x-1}$	A1	
Q2: Pe	nalize 1 mark for the entire question if	no bracke	ets are written.
2(a)	(430 635 335) (430 585 310)	B1	
2(b)	(98) (78) 48)	B1	
2(c)	Value of both elements correct and correct matrix order to award B2	B1 B1	
2(d)	The elements represent the total price of the tickets from all categories sold on Saturday and Sunday respectively	B1	
2(e)	(1 1)	B1	
3(a)	Volume = $\frac{2}{3}\pi r^3 + \pi r^3 = \frac{5}{3}\pi r^3$	B1	
3(b)	$\frac{2}{3}\pi r^2 h = \frac{5}{3}\pi r^3 + \frac{1}{3}\pi r^2 h$ $\frac{1}{3}\pi r^2 h = \frac{5}{3}\pi r^3$	M1	
	h = 5r (shown)	A1	

Secondary 4 Express/ 5 Normal (Academic) Kent Ridge Secondary School

2(a)	$\frac{2}{3}\pi r^3 = 54\pi$		
3(c)	$r^3 = 81$	144	
	r = 4.3267 Volume of Solid A	M1	
		M1	
	$= \frac{5}{3}\pi(4.3267)^3 + \frac{1}{3}\pi(4.3267)^2(5 \times 4.3267)$	Ecf	
	= 848 cm³ (3sf)	A1	
3(d)	$\frac{1}{2} \times (10+6) \times y \times (20) = 848.2014$	M1	$\frac{1}{2} \times (10+6) \times y$: M1
	Height = $\frac{848.2014}{8 \times 20}$	M1	
	rieignt — 8×20	Ecf	
	= 5.30 cm	A1	
4(a)	$\frac{WY}{\sin 28.6} = \frac{3}{\sin 20}$	M1	
	$WY = \frac{3}{\sin 20} \times \sin 28.6 = 4.20 \text{ m (3sf)}$	A1	
4(b)	$4.1988^2 = 7^2 + 10^2 - 2(7)(10)\cos \angle WXY$	M1 Ecf	
	$\angle WXY = \cos^{-1}\left(\frac{7^2 + 10^2 - 4.1988^2}{2(7)(10)}\right)$	M1 Ecf	
	= 20.2° (1dp) shown	A1	
4(c)	Bearing = $180 - (360 - 308) + 28.6$	M1	(360 – 308) seen: M1
	= 156.6° (1dp)	A1	
4(d)	Height = $\sqrt{8^2 - 7^2}$ = 3.87 m (3sf)	B1	
4(e)	Shortest $WT = 7 \sin 20.2224 = 2.41966 \text{ m}$	M1	
	Greatest angle of elevation $= \tan^{-1} \frac{3.87298}{2.41966}$	M1 Ecf	
	= 58.0° (1dp)	A1	

S/n	Solutions	Marks	Comments
5(a)(i)	$\frac{37}{21}$	B1	
5(a)(ii)	Solving $\frac{6n-5}{3n} = \frac{64}{33}$ n = 27.5 Since n is not a positive integer, $\frac{64}{33}$ is not a term in the sequence.	B1	Accept: Since the numerator must always be an odd number, $\frac{64}{33}$ is not a term in the sequence.
5(a)(iii)	$T_n = 2 - \frac{5}{3n}$ When $n = 1$, $T_1 = \frac{1}{3}$ Since $0 < \frac{5}{3n} \le \frac{5}{3}$ for integer values of $n \ge 1$, therefore $\frac{1}{3} \le 2 - \frac{5}{3n} < 2$ Accept since $\frac{5}{3n} > 0$, $2 - \frac{5}{3n} < 2$ or	M1 A1	Finding $T_1 = \frac{1}{3}$ M1 Do not accept substituting values of n to give a few cases of T_n .
	equivalent reasoning.	54	
5(b)(i)	130	B1	
5(b)(ii)	$T_n = (n+1)(n+2)-2$	M1	
	$= n^2 + 2n + n + 2 - 2$ = $n^2 + 3n$ (shown)	A1	
5(b)(iii)	$T_k = k^2 + 3k = 208$ $k^2 + 3k - 208 = 0$	M1	
	(k+16)(k-13) = 0	M1	
	k = -16 (reject), $k = 13$	A1	No A1 without method
6(a)	19.25 kg	B1	Accept 19 <q2<19.5< td=""></q2<19.5<>
6(b)	IQR = 22.5 - 15.75	M1	Accept 22.25 <q3<23 Accept 15.5<q1<16< td=""></q1<16<></q3<23
	= 6.75 kg	A1	Accept 6.25 <iqr<7.5< td=""></iqr<7.5<>
6(c)	27.5 kg	B1	
6(d)	On the average, members in Amazing lost more mass as the median mass loss is higher than Supreme (18 kg)	B1	
	The <u>spread</u> of the mass loss of the members in <u>Amazing is smaller</u> as the <u>interquartile range of Amazing is smaller than Supreme</u> (9 kg)	B1	

6(e)(i)	$\frac{168-20}{200} = \frac{37}{50}$	B1	Accept 0.74
6(e)(ii)	Andy calculated the probability <u>with</u> <u>replacement</u>	B1	
	Correct probability = $\frac{32}{200} \times \frac{31}{199} = \frac{124}{4975}$	B1	Accept 0.0249 (3sf)
7(a)	AD = BE (given)		
	$\angle CAB = \angle CBA = 60^{\circ}$ (interior angles of equilateral triangle)	M2	Accept (angles on a st line).
	$\angle BAD = \angle CBE = 180 - 60 = 120^{\circ}$ (adjangles on a st line)	(all 3)	Accept if 60° labelled on diagram to show $\angle BAD = \angle CBE$.
	AB = BC (sides of equilateral triangle)		
	Therefore, $\Delta ABD \equiv \Delta BCE$ (SAS)	A1	Award A1 if M2 awarded
7(b)(i)	Let A be (a, 0): $\frac{6-0}{7-a} = \frac{6-4}{7-3}$ a = -5	M1	Finding gradient $\frac{6-4}{7-3}$ M1
	Area = $\frac{1}{2} \times 5 \times 4$	M1 Ecf	
	= 10 units ²	A1	
7(b)(ii)	Let point D be (d, 0). OB // DC $\frac{6-0}{7-d} = \frac{4}{3}, d = 2.5$ D is (2.5, 0)	B1	Or scale factor = $\frac{3}{2}$, AD = $\frac{3}{2} \times 5 = 7.5$ units
7(b)(iii)	$\frac{area\ of\ \Delta ABO}{area\ of\ \Delta ACD} = \left(\frac{5}{7.5}\right)^2 = \frac{4}{9}$	M1 Ecf	
	$\frac{area\ of\ OBCD}{area\ of\ \Delta ACD} = \frac{5}{9}$	A1	

Examiner's Use

For Examiner's Use

S/n	Solutions	Marks	Comments
8(a)	p = 2.6	B1	
8(b)		P2 C1	At least 4 points correct: P1 All 8 points correct: P2
8(c)	Line y = 5 <u>drawn or mentioned</u> or line indicated on graph to show x-coordinate solution	B1	
	The line $y = 5$ intercepts the curve at only 1 point, therefore $\frac{x^3}{5} - 2x = 3$ has only one solution	B1	
8(d)(i)	Line $y = -2x + 5$ drawn for $-1 \le x \le 4$	B1	
8(d)(ii)	$x = 2.45 \pm 0.2$	B1	Refer to their graph
8(d)(iii)	$\frac{x^3}{5} - 2x + 2 = -2x + 5$ $x^3 - 15 = 0$	M1	
	A = 0, B = -15	B1,B1	
Q9(a): P	enalize 1 mark for each missing reasor	or wro	ng reason <u>up to 2 marks</u>
9(a)(i)	$\angle OEA = 90$ (radius \perp tan) $\angle OBA = 360 - 90 - 72 - 38$ (angle sum of quadrilateral)	M1	
	= 160°	A1	
9(a)(ii)	$\angle BCE = 72 \div 2 = 36 \ (\angle \text{ at centre} = 2\angle \text{ at circumference})$ $\angle DEB = 180 - (36 + 40) \ (\angle \text{s in opp segments})$	M1	
	= 104°	A1	

6

4048/02 Mathematics Preliminary Examination 2022

9(a)(iii)	$\angle OBE = (180 - 72) \div 2 = 54 \ (\angle \text{ sum of isosceles triangle})$ $\angle EBA = 160 - 54 = 106$	M1	
	$\angle CBE = 180 - 106 = 74$ (adj \angle s on a st. line) $\angle OEC = 180 - 74 - 36 - 54$ (\angle sum of	M1	
	triangle)		
	= 16°	A1	
9(b)(i)	$r\theta = 12.785 - 4.5 - 4.5 = 3.785$	M1	
	$\theta = \frac{3.785}{4.5} = 0.841 \text{ rad (3sf)}$	A1	
9(b)(ii)	The perpendicular from the centre of the circle to chord BD bisects the chord. Hence BM = MD.	B1	Accept $\Delta OMB \equiv \Delta OMD$ (RHS) or The perpendicular from the vertex of an isosceles triangle bisects the base
9(b)(iii)	Area of minor sector OAB $= \frac{1}{2}(4.5^2)(0.84111) = 8.5162 \text{ cm}^2$ Alternatively: Area of minor sector OBCD M1 $= \frac{1}{2}(4.5^2)(\pi - 2 \times 0.84111) = 14.7761 \text{ cm}^2$	М1	
	Area of triangle OBM $= \frac{1}{2}(4.5)(3)\sin(0.84111)$ $= 5.0313 \text{ cm}^2$ Alternatively: Area of triangle OBD M1 $= \frac{1}{2}(4.5^2)\sin(\pi - 2 \times 0.84111)$	M1	
	$= 10.0622 \text{ cm}^2$		Alta ma atir ca h
	Shaded area $= \frac{\pi(4.5)^2}{4} - 8.5162 - 5.0313$ $= 2.36 \text{ cm}^2 \text{ (3sf)}$	A1	Alternatively: Shaded area = $\frac{1}{2}$ (14.7761 - 10.0622) = 2.36 cm ² (3sf)

S/n	Solutions	Marks	Comments
10(a)	Electricity tariff rate for Oct-Dec 22 = 1.08 × 30.17 = 32.58 C/kWh	B1	
10(b)	Amount paid before GST = 1195.87 × \$0.3258 × 0.94 = \$366.2376	M1	M1 for using 32.58
	Amount paid after GST = 1.07 × \$366.2376	M1	
	= \$391.87	A1	Accept \$391.92 for using more accurate 32.5836 C/kWh in their calculation
	No. of solar panels to be installed = 20		No. of solar panels.
10(c)	Based on $9 \div 1.65 \approx 5$ (length) and $4 \div 1 = 4$ (width) $5 \times 4 = 20$	P1	20 seen: P1 Accept 9 × 2 = 18 panels
			Do not accept $\frac{9\times4}{1.65\times1}\approx22$
	Average amount of electricity produced per month = 20 × 19 = 380 kWh	E1	P1 × 19 (Their number of panels × 19)
	Average cost per month after solar energy savings = (1195.87 - 380) × \$0.3258 × 0.94 × 1.07 = \$267.35	C1	(1195.87 – E1) × \$0.3258 × 0.94 × 1.07 seen: C1 Accept if × 0.94 omitted
			2 × \$6250 seen: I1
	Average cost of installing solar panels per month $= 2 \times \$6250 \div (20 \times 12) = \52.08	I1	If their no. of solar panels > 20, accept 3 × \$6250
	Total average amount paid per month = \$267.35 + \$52.08 = \$319.43 (< \$391.87)	T1	Their C1+ I1
	Since the average amount paid by Mr Robert after installing the solar panels is less than what he is currently paying, he should proceed with the installation.	A1	Awarded independent of accuracy of T1

For Examiner's Use

Alternative solution for 10/c) based on total cost for 20 years:

Alternative solution for 10(c) based on total cost for 20 years: No. of solar panels to be installed = 20	P1
Average amount of electricity produced per month = $20 \times 19 = 380$ kWh	E1
Cost for 20 years <u>before</u> solar energy savings = $$391.87 \times (20 \times 12) = 94048.80	C1
Cost of installing solar panels= $2 \times $6250 = 12500	I1
Total cost for 20 years <u>after</u> solar energy savings including installation costs $(1195.87 - 380) \times \$0.3258 \times 0.94 \times 1.07 \times (20 \times 12) + \$12500 = \$76664.52$	T1
Since \$76664.52 < \$94048.80, he should proceed with the installation.	A1