

TANJONG KATONG SECONDARY SCHOOL Preliminary Examination 2020 Secondary 4

INDEX NUMBER
4048/01
Wednesday 5 August 2020 2 hours

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on all the work you hand in. Write in dark blue or black pen.
You may use a pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glue or correction fluid.
DO NOT WRITE IN THE MARGINS.

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 80.

Mathematical Formulae

Compound Interest

Total Amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone = $\pi r \ell$

Curved surface area of a sphere = $4\pi r^2$

Volume of a cone =
$$\frac{1}{3} \pi r^2 h$$

Volume of a sphere =
$$\frac{4}{3} \pi r^3$$

Area of triangle
$$ABC = \frac{1}{2} ab \sin C$$

Arc length = $r\theta$, where θ is in radians

Sector area =
$$\frac{1}{2} r^2 \theta$$
, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard Deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

Given that x is an integer where $1 \le x \le 4$, find the minimum value of $\frac{x}{2} + \frac{2}{x}$.

Answer	[1]
--------	-----

2 The graph shows the sales at a particular mall.

Explain why the mean sales is not a good indication as a central measure.

[1]

3	(a)	Simplify $\left(16^{12x^2}\right)^{\frac{5}{48x}}$.		
•	•		Answer	[2]
	(b)	Express 5 ⁻² as a percentage.		
			Answer	[1]
4	(i)	Express 84 as a product of prime factors.		
			Answer	[1]
	(ii)	The sequence $84p$, $84q$, $84r$, are perfect cubes arrar possible integer value of q .	nged in ascending order. Find	d the smallest
			Answer q=	[2]
5	This	amount of plastic waste in Singapore was 900 000 tons is an increase of 10% from 2018. the amount of plastic waste in 2018.		
			,	
			Answer	tonnes [2]

6	Express	$\frac{2}{3x-1}$	$-\frac{3}{1+2x}$	as a single term, in its simplest form.
---	---------	------------------	-------------------	---

		Answer	[2]
7	A city has people with Blood Types as fo	ollows:	
	Type O	45%	
	Type A	40%	
	Type B	11%	
	Type AB	4%	
	Two persons are selected at random from Find the probability that at least one pers	n the city. son is of Blood Type O.	
	•	Answer	[2]
8	Factorize completely, (i) $x^2y^4 - z^6$,		

(ii) $15a^2 - 6a + 20ab - 8b$.

Answer _____ [2]

Answer

[2]

6 Choose the most appropriate symbol from the list shown to make a correct statement. 9 (i) > = The distance between two drones is 12.5 metres, correct to the nearest 10 centimetres. (ii) What is the least possible distance between them? Answer ____ m [1] The force, F units, between two objects is inversely proportional to the square of the distance, d units, 10 between them. If the distance decreases by 10%, find the percentage change in the force.

11 Solve $4(2x-5)^2-105=0$.

Answer x = or [2]

12 The diagram shows a line segment PQ.

(i) Construct the perpendicular bisector of PQ, showing your constructions clearly.

Answer

(ii)	Explain clearly why your construction method gives the perpendicular bisector of PQ . Answer	
		[2]

The points A, B and C have coordinates (1, 0), (3, 7) and (3, 5) respectively. Find angle BAC.

Answer	order a rushigaror propher and a residence	[4]
--------	--	-----

[1]

(a) Jane claims that the first three terms of the sequence 1, 2, 4, can also be represented by an expression that is different from $T_n = \frac{1}{2}n^2 - \frac{1}{2}n + 1$. Is she correct? Justify your answer.

Answer

[2]

[3]

- (b) $\xi = \{\text{Students in a college}\}\$
 - M = {Students who take Mathematics}
 - E = {Students who take Economics}
 - P = {Students who take Psychology}

Represent the following using set language.

(i) There are students who take Mathematics and Economics.

Answer [1]

(ii) All students who take Psychology also take Mathematics.

Answer [1]

Sketch the graph of $y = 16 - (x + 3)^2$ on the axes below, indicating clearly the coordinates of the intercepts and the turning point on the graph.

4048/1/Sec 4 Preliminary Exam 2020

PartnerInLearning

		9
16	(a)	The sizes of four of the exterior angles of a decagon are in the ratio 1:2:2:3. The remaining exterior angles are each of size 36°. Find the size of the largest interior angle of the decagon.
		exterior angles are each of size 30. Find the size of the largest interior angle of the decagon.
		Answer[2]
	<i>a</i> .	
	(b)	The area of a triangle ABC is 35 cm ² and D is a point such that CD is parallel to AB . The ratio of $CD:AB$ is 1:4. Calculate the area of the triangle ACD .
	(D)	The area of a triangle ABC is 35 cm ² and D is a point such that CD is parallel to AB . The ratio of $CD:AB$ is 1:4. Calculate the area of the triangle ACD .
	(D)	The area of a triangle ABC is 35 cm ² and D is a point such that CD is parallel to AB . The ratio of $CD:AB$ is 1:4. Calculate the area of the triangle ACD .
	(D)	The area of a triangle ABC is 35 cm ² and D is a point such that CD is parallel to AB . The ratio of $CD:AB$ is 1:4. Calculate the area of the triangle ACD .
	(D)	The area of a triangle ABC is 35 cm ² and D is a point such that CD is parallel to AB . The ratio of $CD:AB$ is 1:4. Calculate the area of the triangle ACD .
	(D)	The area of a triangle ABC is 35 cm ² and D is a point such that CD is parallel to AB . The ratio of $CD:AB$ is 1:4. Calculate the area of the triangle ACD .
	(D)	The area of a triangle ABC is 35 cm ² and D is a point such that CD is parallel to AB . The ratio of $CD:AB$ is 1:4. Calculate the area of the triangle ACD .
	(D)	The ratio of CD: AB is 1:4. Calculate the area of the triangle ACD.
	(D)	The ratio of CD: AB is 1:4. Calculate the area of the triangle ACD.
	(D)	The ratio of CD: AB is 1:4. Calculate the area of the triangle ACD.
	(D)	The ratio of CD: AB is 1:4. Calculate the area of the triangle ACD.
	(D)	The ratio of CD: AB is 1:4. Calculate the area of the triangle ACD.
	(D)	The ratio of CD: AB is 1:4. Calculate the area of the triangle ACD.

17 The speed-time graph shows the journey that Lim makes during a three-hour journey.

(a) Find the acceleration at 0815.

Answer	km/h²	F1 7
Answer	 WITH IT	[4]

The corresponding distance-time graph for Lim's journey is shown below.

(b) Find the value of p and of q.

Answer	p =	q =	[3]
	-		

Mr Smith plans to invest his money in unit trust with a bank. His target is to earn an interest of \$10,000 after 5 years. The bank pays 3% compound interest per annum compounded yearly. Calculate, to the nearest hundred dollars, the minimum amount of money Mr Smith has to invest.

Answer \$	[3]

19 In the diagram, P, Q, R and S are points on a circle. PR and QS meet at T.

(a) Show that triangle PTS and triangle QTR are similar, giving a reason for each statement you make.

Answer

[3]

(b) Show that $QT \times ST = PT \times RT$.

Answer

[1]

		13	
20	(i)	A rectangular fish tank has length 100 cm, width 30 cm and height 40 cm. It is filled with water to 90% of its capacity. Find the volume of water in the fish tank, in litres. 1 litre = 1000 cm ³ .	
		Answer	<i>l</i> [2]
		Auswei	
	(ii)	A particular species of fish need 1600 cm ³ of water per fish. What is the maximum number of such fish that could be kept in this fish tank?	
			[0]
	/*** <u>\</u>	Answer	[2]
	(iii)	Given that this species of fish grow at a rate such that in each week the need for space increases by 200 cm ³ per fish.	
		How much space, in cm ³ , does each fish need after one month?	
		Answer	cm ³ [1]

A manufacturer sells drinks in bottles of two sizes that are geometrically similar. Some specifications for the bottles are shown below.

Regular Size Bottle

- Capacity of bottle = 330 ml
- Amount of material needed to manufacture bottle = 24 cm³

Large Size Bottle

- Capacity of bottle = 1500 ml
- Amount of material needed to manufacture bottle = x cm³
- (i) Find the ratio of height of the regular size bottle to the height of the large size bottle. Give your answer in the form 1:n.

Answer	:	[2
ZIIWWEI	•	<u>ر</u> ســ
		_

(ii) Given that the thickness of the bottles are the same, find the value of x.

[2]

22 The prices of noodle set and rice set at two shops are shown below.

	Noodle set	Rice set
Shop R	\$2.50	\$3.50
Shop S	\$2.80	\$3.20

(a) Find
$$\begin{pmatrix} 2.5 & 3.5 \\ 2.8 & 3.2 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
.

	Answer	[2]
(b)	Describe what your answer in (a) represents.	
		[2]
		L~J

(c) Sally has to buy a total of 6 meal sets from one particular shop.

How many noodle sets and rice sets does she have to buy such that the total cost is the same regardless of whether she buys from Shop R or Shop S?

23

Six hundred runners took part in a race.

The fastest runner took 8 minutes to complete the race while the slowest took 18 minutes. The points (8, 1), (15, 300), (17, 450) and (18, 600) are points on the cumulative frequency curve for the runners as shown on the grids above.

It is given that the interquartile time for the race is 4 minutes.

(i) State the coordinates of the point that represents the lower quartile for the cumulative frequency curve.

	Answer ([1]
(ii)	Draw the cumulative frequency curve on the grids above.	[2]
(iii)	"The bottom 10% runners have more consistent timings than the top 10% runners." Do you agree with the statement above? Give your reasons clearly.	
	Answer	
		ſ 2 1
		[4]

4048/1/Sec 4 Preliminary Exam 2020

[Turn over

		17		
24	(i)	By completing the square or otherwise, express $y = x^2 - 4x + 6$.	in terms of y given that	
		Answer $x =$	or	[3]
	(ii)	Solve the equation $38 = a^6 - 4a^3 + 6$.		
	(11)			
		Answer a =	Or	[3]
		End of Paper		

18 BLANK PAGE

4048/1/Sec 4 Preliminary Exam 2020

19 **BLANK PAGE**

20 BLANK PAGE

TANJONG KATONG SECONDARY SCHOOL Preliminary Examination 2020 Secondary 4

Paper 2		Thursday 13 August 2020 2 hours and 30 minutes
MATHEMATIC	es	4048/02
CLASS		INDEX NUMBER
CANDIDATE NAME		

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on all the work you hand in. Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

You are expected to use a scientific calculator to evaluate explicit numerical expressions. If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place. For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total of the marks for this paper is 100.

Mathematical Formulae

Compound Interest

Total Amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone = πrl

Curved surface area of a sphere = $4\pi r^2$

Volume of a cone =
$$\frac{1}{3} \pi r^2 h$$

Volume of a sphere =
$$\frac{4}{3} \pi r^3$$

Area of triangle
$$ABC = \frac{1}{2} ab \sin C$$

Arc length = $r\theta$, where θ is in radians

Sector area = $\frac{1}{2} r^2 \theta$, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard Deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

1 (a) Express $\frac{12xy^2}{15} \div \frac{2xy^3}{(3x)^2}$ as a single fraction in its simplest form.

Answer[2]

(b) Given that $\frac{v}{3} = \sqrt{\frac{2s+v}{s-3}}$, express s in terms of v.

Answer[3]

BP~571

			3	5
(c)	(i)	Solve the equation	=	
(4)	(-)	Solve the equation	2x - 1	x-2

(ii) Simplify
$$(x^{\frac{1}{2}} + y^{\frac{1}{2}})(x^{\frac{1}{2}} - y^{\frac{1}{2}})$$
.

Answer[1]

(d) Show that
$$2(9^{n+1}) + 3^{2n+3} - 9^n$$
 is a multiple of 11 for all positive integer values of n .

[4]

Answer

and-le	nale shopper mount of tir eaf diagram. a b 2	(nate suc	pher sh			
1	a	0	1	4	7	8	8	8	9
2	ь	3	c	4	4	4	d		
3	2	2	5						
4									
5	е								means 32 mi
TT	nodal time t		7.4 mainus	400 mbil	a tha m	-		•	***************************************
	nodai time t shoppers sp							HG8.	
(i)	State the va	ilues of	ahe	d and a					
(1)	State the va	nues or	u, v, c, c	i anu e.					
		Answer	· a=	h	=	c=		<i>d=</i>	, e =
				•		•			
(ii)								artile r	ange of the
(ii) 20 male shoppers went to buy their groceries. The interquartile range of the time spent by the males shoppers was 4.5 minutes.									
	-	·							. •
	Use this in	nformati	on to m	ake one				e time	spent by
	-	nformati	on to m	ake one				e time	spent by
	Use this in	nformati nd fema	on to ma	ake one pers.	comme	nt comp	aring th		
	Use this in the male a	nformati nd fema	on to male shopp	ake one pers.	comme	nt comp	aring th	*** *** ***	
	Use this in the male a	nformati nd fema	on to ma	ake one pers.	comme	nt comp	aring th		
	Use this in the male a	nformati nd fema	on to ma	ake one pers.	comme	nt comp	aring th		
	Use this in the male a	nformati nd fema	on to ma	ake one pers.	comme	nt comp	aring th		
(iii)	Use this in the male a	nformati nd fema	on to male shopp	ake one pers.	taken b	nt comp	aring th	mpers w	as 4.53 minute
(iii)	Use this in the male a	nformati nd fema	on to made shopp	ake one pers. the time squared	taken t	oy the m	aring th	opers w	
(iii)	Use this in the male a Answer The standa Given tha	nformati nd fema	on to made shopp	ake one pers. the time squared	taken t	oy the m	aring th	opers w	as 4,53 minute
(iii)	Use this in the male a Answer The standa Given tha	nformati nd fema	on to made shopp	ake one pers. the time squared	taken t	oy the m	aring th	opers w	as 4,53 minute
(iii)	Use this in the male a Answer The standa Given tha	nformati nd fema	on to made shopp	ake one pers. the time squared	taken t	oy the m	aring th	opers w	as 4,53 minute
(iii)	Use this in the male a Answer The standa Given tha	nformati nd fema	on to made shopp	ake one pers. the time squared	taken t	oy the m	aring th	opers w	as 4,53 minute
(iii)	Use this in the male a Answer The standa Given tha	nformati nd fema	on to made shopp	ake one pers. the time squared	taken t	oy the m	aring th	opers w	as 4,53 minute

[Turn over

Answerminutes [2]

- 3 Five discs numbered 1, 3, 4, 6 and 7 are placed in a bag. Two disc are taken out of the bag at random without replacement.
 - (a) Complete the tree diagram to show the probabilities of the possible outcome.

Answer

(b) Find the probability that one disc is odd and the other is even.

(c) Peter thinks that there is more than 10% chance that both numbers drawn is	less than 4.
Is he correct or wrong? Explain your answer.	
Answer	

(d) Calculate the probability where the sum of both numbers drawn is a prime	e number.
Answer	[2]
Answer	[2]

4 ((a)	The employees of a company are offered an increase in salary.
	` '	Employees have the option to choose from either Scheme A or Scheme B.

Scheme A offers an increase of 8% of the current monthly salary. Scheme B offers an increase of 5% of the current monthly salary plus an additional \$87 per month.

(i) Mr Lim claims that his new monthly salary would be the same under either scheme. Calculate his current monthly salary.

Answer \$ [2]

(ii) The company has a total of 1.19×10^5 employees.

The ratio of employees who opted for Scheme A to Scheme B is 7:3.

How many more employees choose Scheme A over Scheme B?

Leave your answer in standard form.

Answer[2]

(b)	Mdm Ang worked for a company in Germany from 2018 to 2019.
` '	In 2018, her monthly salary was €3500 and the exchange rate between
	Singapore Dollars (\$) and Euro (\mathfrak{E}) then was \$1 = $\mathfrak{E}0.67$.

(i)	Calculate her	monthly salary	in Singapore	Dollars (\$)	for 2018
-----	---------------	----------------	--------------	--------------	----------

Answer	\$	[1]
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	••••	

Mdm Ang received a pay cut in 2019, but she still earns the same amount of salary in Singapore dollars. The exchange rate between Singapore Dollars (\$) and Euro (ϵ) in 2019 was \$1 = ϵ 0.61.

(ii) What is the percentage change in her salary for 2019?

Answer	%	[3]
--------	---	-----

5 The diagram shows the first three of a sequence of figures that are formed by squares of the same size.

The number of vertical sides V and the total number of sides S are recorded in the table.

Figure Number (n)	Number of vertical sides (V)	Total number of sides (S)
1	2	4
2	5	10
3	9	18
		•
		•
		•
6	p	q

(a) Find the value of p and of q.

(b) The relationship between S and n is given by $S = n^2 + 3n$. Find the value of n when the total number of sides is 270.

Answer [2]

	4	E
7	١-	ı

	11
(c)	Find an expression, in terms of n , for V .
	Answer[1]
(d)	Explain why the difference between the total number of sides and the number of vertical sides for any figure cannot be 100.
	Answer
	2113WC

	,
	[3]

4048/2/Sec4Prelim20

[Turn over

A, B, C, D and E are points on the circle, centre O. QP and QR are tangents to the circle at B and E respectively. AC intersects BD at O and QAOC is a straight line.

Angle BOA = 50°. Find, giving reasons for each answer,

(a) angle CED,

	o	ral
Answer		[4]

4	2
	J

(b)	angle BQE .	
	•	
•		
	Answer° [3	3
	Answer	J
(c)	Determine if BD is parallel to AE .	
• ′	•	
	4	
	Answer	

	[2	<u>!]</u>

4048/2/Sec4Prelim20

[Turn over

In the diagram, A is the point (-2, 4), and C is the point (4, 7).

AB is a vertical line. The line BC has gradient $\frac{3}{2}$.

(a) Find the coordinates of B.

Answer[3]

(b) Find the shortest distance from A to BC.

Answerunits [3]

(c) The equation of line L is $\frac{4}{3}y - \frac{2}{3}x = 9$ Show how you can tell that the line does not intersect the line AC.

Answer	***************************************	

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	[2]

Another triangle PQR, is formed by reflecting triangle ABC about the y-axis. Calculate the overlapping area between triangle ABC and triangle PQR.

Answerunits² [3]

BP~583

The diagram shows four points P, Q, R and S which lie on level ground in a garden. P is due south of Q. The bearing of S from P and Q are 068° and 126° respectively. PS = 460 metres and QR = 562 metres.

(a) Find QS,

Answer	metres	[2]

-	ш,
-	

It is given	that the	bearing	of R	from	Q is	098°
-------------	----------	---------	------	------	------	------

(b) Find RS.

Answer	metres	[3]
221657801	***************************************	f. 1

(c) Joseph walks from P to Q, how far is he away from Q when he is west of R?

Answer metres [2]

The diagram shows a lecture theatre in the shape of a prism with height 9 metres. The floor of the lecture theatre, ABCD, is an isosceles trapezium. AB = 45 metres, CD = 17 metres, AD = 21 metres, and AB is parallel to DC. D is a point on D0 such that D1 and D2 are perpendicular.

The lecture theatre is positioned on horizontal ground and the walls are vertical.

(a) Find the floor area of the lecture theatre.

Answer	m²	[3]

_	_
•	•
-	

(b)	Find the volume of the lecture theatre.		
		Answer	m³ [2]

(c) Find the angle of elevation of G from J.

Answerº [3]

In the diagram, POR is a quadrant of a circle with radius 6 cm. OR and PQ are parallel. QR is an arc of a circle with centre P.

(a) Calculate angle QPR in radians.

Answer [1	1				•	1	
----------	---	---	--	--	--	---	---	--

(b) Calculate the area of the shaded region.

Answercm² [4]

A solid cylinder of height h cm and volume V cm³ is cut from a solid sphere of radius 7 cm. The rim of each base of the cylinder touches the surface of the sphere. 11

Diagram 1

Diagram 2

The radius of the cylinder is r cm.

Show that
$$r^2 = 49 - \frac{h^2}{4}$$
.

Answer

BP~589

The volume of the cylinder is given by the equation $V = \pi h$	49-	$\frac{h^2}{4}$).
	The volume of the cylinder is given by the equation $V = \pi h$	The volume of the cylinder is given by the equation $V = \pi h \left(49 - 49\right)$	The volume of the cylinder is given by the equation $V = \pi h \left(49 - \frac{h^2}{4}\right)$

Some corresponding values of h and V, correct to the nearest whole number, are given in the table below.

h	0	2	4	7	10	12
V	0	302	p	808	754	490

(i)	Find	the	value	of p
-----	------	-----	-------	--------

Answer[1]

(ii) On the grid opposite, draw the graph of
$$V = \pi h \left(49 - \frac{h^2}{4}\right)$$
 for $0 \le h \le 12$.

[3]

BP~590

(i) the maximum volume of the cylinder,

(ii) the solutions to the equation $2400 = \pi h (196 - h^2)$.

Answer
$$h =$$
 or [2]

(d) The line V = kh + 500, where k is a constant, is a tangent to the curve. By drawing a suitable straight line on the graph, find the value of k.

		[2]
Answer	*** ***	[4]

- The cash price of a new motorcycle is \$25 120.

 Jack paid a down payment of 20% of the price of the motorcycle and the balance with a fixed simple interest rate of 4% per annum for a period of 3 years.
 - (a) Calculate his monthly instalment.

Answer	\$	[3]
22110110.	# 11,111 11.	L #

4048/2/Sec4Prelim20

The technical specification of his new motorbike, as stated by the manufacturer, is shown in Table 1.

Fuel capacity:	3.7 gallons	
Fuel efficiency:	6 litres/100 km	
Dimension front tyre:	120 / 70 R17	
Dimension rear tyre:	180 / 55 R17	
Recommended replacement:	Front tyre, every 6000km	
	Rear tyre, every 2900km	

(b)

(i)

	Fuel capacity:	3.7 gallons	
	Fuel efficiency:	6 litres/100 km	
	Dimension front tyre:	120 / 70 R17	
	Dimension rear tyre:	180 / 55 R17	
		Front tyre, every 6000km	
	Recommended replacement:	Rear tyre, every 2900km	
	Conversions:		
	1 gallon = 3.785 litres	1 inch = 2.54 cm	
(i)	Find the fuel capacity of his motorbil	Answer	
	starts riding with a full tank of petrol. As e petrol tank to the brim again, by pum		00 km, he filled
(ii)	Determine if the fuel efficiency stat	ed by the manufacturer in Table 1 i	s true.
	Answer		*******

			[2]

[Turn over

An example of the dimensions for a motorbike tyre 195 / 55 R16 is explained below.

The cross-section of a wheel can be presented in **Diagram II**, where d is the diameter of inner rim, and h the height of the sidewall.

	27				
(c)	Jack replaces his tyres at the recommended distance travelled.				
	What would be the number of complete revolutions made, when Jack has to first replace a front tyre?				
	Use the information in Table 1 and show your calculations clearly.				
	·				
	Answer [5]				
	22750700				
	END OF PAPER				

4048/2/Sec4Prelim20

Answer Key:

No.	Answer
1	2
2	Mean is not a good indicator as there is an outlier.
3a	2 ⁵ x or 32 ^x
3b	4%
4i	$2^2 \times 3 \times 7$
4ii	q = 7056
5	818 000
6	$\frac{5(1-x)}{(3x-1)(1+2x)} \text{ or } \frac{5-5x}{(3x-1)(1+2x)}$
7	0.6975 or $\frac{279}{400}$
8i	$(xy^2-z^3)(xy^2+z^3)$
8ii	(3a+4b)(5a-2)
9i	$0.\dot{5} = \frac{5}{9}$
9ii	12.45
10	23.5%
11	5.06 or -0.0617
12i	A Q B

12ii	AP = AQ = BP = BQ
į	∴ AB and PQ are diagonals of a rhombus. Diagonals of rhombus bisect each other at 90°.
	Diagonais of momous disect each other at 90.
13	∠BAC = 74.05° – 68.20°
	= 5.9°
1 4 a	Jane is correct,
	because $T_n = 2^{n-1}$ could also be a general term.
bi	M∩E≠φ
01	MITE
bii	$P \subset M$
15	77. Å
	(-3, 16) y h
	/ \\^7
	(-7, 0)/ \((1, 0)
ļ	7 O X
16a	162°
164	
16b	$8\frac{3}{4} \text{ or } 8.75 \text{cm}^2$
	4
17a	-80 km/h ²
17b	p = 40, q = 100
18	\$62800
19a	$\angle PST = \angle QRT (\angle, \text{ same seg})$
1	$\angle SPT = \angle RQT (\angle, \text{ same seg})$
	$\angle PTS = \angle QTR \text{(vert opp } \angle s)$
	$\therefore \Delta PTS \text{ and } \Delta QTR \text{ are similar.}$
19b	From 1,
	$\frac{PT}{}=\frac{TS}{}$
	$\overline{QT} = \overline{TR}$
	Hence $QT \times ST = PT \times RT$
20i	108 litres

20ii	67 fish
20ii	2 400 cm ³
21i	1:1.657
21ii	65.9 cm ³
22a	(8.5)
	(8.8)
22b	The cost for two rice sets and one noodle set from Shop R and Shop S respectively.
220	The cost for two rice sets and one notatio set not stop it and one it are
22c	3 noodles, 3 rice
23i	(13, 150)
23ii	
The state of the s	200 200 100 5 10 15 20 Time taken
23iii	Agree. The spread of timing for the bottom 10% is 0.5 min whereas the spread in timing for the top 10% is 3 min.
24i	$x=2\pm\sqrt{y-2}$
0411	
24ii	a = 2, -1.59

BP~600

Answers

1	(a)	$18x^2$				
		5 <i>y</i>				
	(b)	$3v^2 + 9v$				
		$s = \frac{3v^2 + 9v}{v^2 - 18}$				
 	(ci)	1				
	` ′	$x = -\frac{1}{7}$				
	(cii)	x - y				
	(di)	$2(9^{n+1}) + 3^{2n+3} - 9^n = (3^{2n})(4)(11)$				
		Since 11 is a factor of $2(9^{n+1}) + 3^{2n+3} - 9^n$, and 2^{3n} is a whole number,				
		Since 11 is a factor of $2(9^n)+3^{n-2}$, and 2^n is a whole number, $2(9^{n+1})+3^{2n+3}-9^n$ is a multiple of 11 for all positive integer values of n .				
		$2(9^{n+1})+3^{n+1}-9^n$ is a multiple of 11 for an positive integer values of n .				
2	(ai)	b=1,				
		c = 3, d = 4, a = 0, e = 6				
	(aii)	Interquartile range for female				
	(ап)	= 24 - 17.5 = 6.5 mins				
		The time taken by the male shoppers are more consistent than the female				
		shopper because IQR for male shoppers is smaller than female shoppers.				
	(aiii)	20.78				
3	(a)	First Second Odd				
		$\left(\frac{3}{5}\right)$ Odd $\left(\frac{1}{2}\right)$ Even				
		$\left(\frac{2}{5}\right)$ Even $\left(\frac{3}{4}\right)$ Odd				
		$\left(\frac{1}{4}\right)$ Even				
	(b)	3 5				
	(c)	Disagree. The chance is exactly 10%, not more.				
	(d)	0.5				
4	(ai)	a = \$2900				
	(aii)	4.76×10 ⁴				
	(bi)	\$5223.88				
	(bii)	-8.96%				
1	(22)					

4048/2/Sec4Prelim20

5	(a)	p=27,
		q = 54
	(b)	n = 15
	(c)	$V=\frac{1}{2}n^2+\frac{3}{2}n$
	(d)	$n = \frac{-3 \pm \sqrt{809}}{2}$
		Since n is not an integer, it is not possible.
6	(a)	$\angle COD = 50^{\circ}$ (vertically opp angles) $\angle CED = 0.5 (50) (\angle \text{ at centre} = 2 \angle \text{ at circumference})$ $= 25^{\circ}$
-	6(b)	$\angle BQE = 80^{\circ}$
	6(c)	$\angle BAE = 130^{\circ}$ $\angle DBA + \angle BAE = 65 + 130$ $= 195^{\circ}$ Since $\angle DBA + \angle BAE > 180^{\circ}$, they are not interior angles and BD is not parallel to AE .
7	(a)	B: (-2, -2)
	(b)	Shortest distance = 3.33 units
	(c)	Since Gradient of AC = Gradient of line L , the lines are parallel and will
		not intersect because their y-intercepts are different,
	(d)	8 units ²
8	(a)	527.189
	(b)	265.7
	(c)	78.2
9	(a)	485 m ²
ļ	(b)	4370m ³
	(c)	21.3°
10	(a)	0.7854 or $\frac{\pi}{4}$
	(b)	18
11	(a)	$(\frac{h}{2})^2 + r^2 = 7^2$ $r^2 = 49 - \frac{h^2}{4}$
	(bi)	565

BP~601

Sec 4 Preliminary Exam 2020 Math Paper 1 Mark Scheme

No.	Solution/Key Steps	Remarks	
1	By trial,		
	$x=1; \qquad \frac{x}{2} + \frac{2}{x} = 2.5$		Ì
	1		
	$x=2; \qquad \frac{x}{2}+\frac{2}{x}=2$		
	$x=3$ $\frac{x}{2} + \frac{2}{x} = 2\frac{1}{6}$		
	-		
	$x = 4$ $\frac{x}{2} + \frac{2}{r} = 2.5$		
	Min value = 2	B1	1
2	Mean is not a good indicator as there is an	B1 o.e.	4
	outlier.		_1_
3(a)	52 5	5x	
	$\left(16^{12x^2}\right)^{\frac{3}{48x}} = \left(2^4\right)^{\frac{12x^2}{48x}}$	M1 2^4 or $(16)^{\frac{5x}{4}}$ seen	
	Ans: 25x or 32x		
(b)	Ans: 4%	A1	_3_
4(i)	Ans: $2^2 \times 3 \times 7$	1	···
(ii)		B1 $2^4 \times 3^2 \times 7^2$ or $2 \div (3 \times 7)$ soi	
	$q = 2^2 \times 3^2 \times 2^3$ or $2 \div (3 \times 7)$	 B1	3
ļ	Ans: $q = 7056$ or $2/21$		
5	1.1 x = 900 000	B1 oe	
	$x = 818 \ 181.8$ Ans: 818 000		2
6	2 3		
	3x-1 $1+2x$		
	$=\frac{2(1+2x)-3(3x-1)}{(3x-1)(1+2x)}$	B1 single fraction	
		Di secont demo im	
	$= \frac{5-5x}{(3x-1)(1+2x)} \text{ or } \frac{5(1-x)}{(3x-1)(1+2x)}$	B1 accept deno. in expanded form	2
	$(3x-1)(1+2x) \qquad (3x-1)(1+2x)$	virtuinon roum	
		261 -14	
7	1-0.552	M1 alternative method	
	= 0.6975 Ans: 0.6975 or $\frac{279}{400}$	A1	_
	400		2
8(i)	$x^2y^4 - z^6$	B1 Diff of 2 sq seen	
	$= (xy^2)^2 - (z^3)^2$ = $(xy^2 - z^3)(xy^2 + z^3)$	B1 Diff of 2 sq seen	
(ii)	$= (xy^2 - z^3)(xy^2 + z^3)$ $15a^2 - 6a + 20ab - 8b$		
(**)	= 3a(5a-2) + 4b(5a-2)	B1 Use of grouping	
	=(3a+4b)(5a-2)	B1	
			4
	PartnerInLearning PartnerInLearning		<u> </u>
	www.testpapersfree.com		

No.	Solution/Key Steps		Remarks	
9(i)	Ans: $0.\dot{5} = \frac{5}{9}$	B1		
	9			
(ii)	$12.45 \le 12.5 < 12.55$	D1		•
	Ans: 12.45	B1	·	2
10	L			
10	$F = \frac{k}{d^2}$ $F_2 = \frac{k}{(0.9d)^2}$	B1	variation relation seen	
	- k	B1	1.1 ² seen	
	$F_2 = \frac{1}{(0.9d)^2}$	~	1,1 5001	
	$=1.23456 \frac{k}{d^2}$			
	~	B1		3
	Ans: % change = 23.5%	Di		
11	$4(2x-5)^2-105=0$			
	$4(2x-5)^2 - 105 = 0$ $(2x-5)^2 = 26.25$	M 1	$(2x-5)^2$ as subject or solve	
	(2x-5) = 26.25		by formula	
:	$(2x-5) = \pm \sqrt{26.25}$	A1	both	2
	x = 5.06 or -0.0617			. = _
12(i)				
(-)	A	B1	correct line with	
	+		constructions seen	
	1			
	R			
(ii)	P = AQ = BP = BQ	<u> </u>		
(11)	$\therefore AB$ and PQ are diagonals of a rhombus.	B1	"rhombus" seen	
	Diagonals of rhombus bisect each other at 90°.	Bl	"⊥ bisector" seen	3
		<u> </u>		
13	B(3, 7)			
	2			
	$\sqrt{45}$ $\sqrt{29}$ $C(3,5)$ 5			
Ė	A(1,0) $D(3,0)$			
	2		TX 1 . 4 1 1	
	$\tan BAD = \frac{7}{2}, \qquad \angle BAD = 74.05^{\circ}$	M1 M1	Using tangent ratio Finding angles	
	$\tan BAD = \frac{7}{2}, \qquad \angle BAD = 74.05^{\circ}$ $\tan CAD = \frac{5}{2} \qquad \angle CAD = 68.20^{\circ}$	B1	Clear presentation	
	$\tan CAD = \frac{5}{2} \qquad \angle CAD = 68.20^{\circ}$		_	
	4	A1	1 dp or better	Ì
	$\angle BAC = 74.05^{\circ} - 68.20^{\circ}$	7,1	ap or botter	
	= 5.9°			4
				. 4

PartnerInLearning

No.	Solution/Key Steps	Remarks	
14(a)	Jane is correct,	B1 with justification seen	
14(a)	because $T_n = 2^{n-1}$ could also be a general term.	B1 formula seen	
b (i)	$M \cap E \neq \emptyset$	B1 oe	
b (ii)	P⊂M	B1 oe	4
U (II)	1 C IVI		
15	(-7, 0) (-7, 0) (1, 0) x	B1 max pt B1 All intercepts C1 Symm curve	3
16(a)	Let one of the ext. angle be x°		
	x+2x+2x+3x+6(36)=360 x=18	M1 sum of exterior angle, oe.	,
	Largest int. angle =180°-18°=162° Ans: 162°	A1	
(b)	Area of triangle ACD Area of triangle ABC Area of triangle ABC Area of triangle $ACD = \frac{1}{4}(35) = 8\frac{3}{4}$ Ans: $8\frac{3}{4}$ or 8.75 cm ²	B1 Diagram soi B1	4
17(a)	$accn = -\frac{40}{0.5}$ Ans: -80 km/h ²	B1	
(b)	0800 to 0830 Dist travelled = $\left(\frac{100+60}{2}\right) \times 0.5 = 40 \text{ km}$ 0830 to 0930	M1	
	Dist travelled = $60 \times 1 = 60$ Ans: $p = 40$, $q = 100$	A1, A1	4
			<u> </u>

No.	Solution/Key Steps	Remarks	
18	$P\left(1+\frac{3}{100}\right)^5-P>10000$	B1 $P\left(1+\frac{3}{100\times4}\right)^{5\times4}$ seen	
	$P(1.03^5-1) > 10000$	Accept equation form	
	P > 62784.85713	B1	
	Ans: \$62800	B1	3
19(a)	$\angle PST = \angle QRT (\angle, \text{ same seg})$ $\angle SPT = \angle RQT (\angle, \text{ same seg})$ $\angle PTS = \angle QTR (\text{vert opp } \angle s)$ $\therefore \Delta PTS \text{ and } \Delta QTR \text{ are similar.}$	B2 for any 2 reasons seen B1 Statement seen. Only if 1st B2 awarded.	
(b)	From 1, $\frac{PT}{QT} = \frac{TS}{TR}$	B1 award only if connection to (a) seen	4
	Hence $QT \times ST = PT \times RT$		7
20(i)	Vol of water = $0.1 \times 0.03 \times 0.04 \times 90\%$ Ans: 108 litres	B1 conversion or 90% seen B1	
(ii)	108 ÷ 1.6 Ans: 67 fish	B1 their water vol vol per fish B1	
(iii)	$1600 + 200 \times 4$ Ans: 2 400 cm ³	B1	5
		B1 cube root seen	
21(i)	Height R: Height L = $\sqrt[3]{330}$: $\sqrt[3]{1500}$ Ans: 1:1.657		
(ii)	$= 1^2 : 1.657^2$ $= 1 : 2.744$	B1 Squaring seen	
	$\therefore \frac{x}{24} = \frac{2.744}{1}$ Ans: $x = 65.9 \text{ cm}^3$	B1 cao	4
22(a)	$ \begin{pmatrix} 2.5 & 3.5 \\ 2.8 & 3.2 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} $		
	Ans: $\begin{pmatrix} 8.5 \\ 8.8 \end{pmatrix}$	B1, B1	
(b)	The cost for two rice sets and one noodle set from Shop R and Shop S respectively.	B1 2 rice, 1 noodle seen B1 Shop R, Shop S seen	
(c)	Ans: 3 noodles, 3 rice	B1, B1	6
-(0)	,		

No.	Solution/Key Steps	Remarks	
23(i)	Ans: (13, 150)	B1	
(ii)	600 600 600 600 600 600 600 600	B1 (13, 150) seen B1 Smooth curve	
(iii)	Agree. The spread of timing for the bottom 10% is 0.5 min whereas the spread in timing for the top 10% is 3 min.	B1 (their value of t at f=60) - 8 & 18 - (their value of t at f=540) seen B1 Spread/variance/consistency of timing must be seen. Reject terms of description: "Difference" / "Range"	5
24(i)	$x^{2} - 4x = y - 6$ $x^{2} - 4x + 2^{2} = y - 6 + 2^{2}$ $(x - 2)^{2} = y - 2$ $x = 2 \pm \sqrt{y - 2}$	B1 + 2 ² seen B1, B1	
(ii)	$a^{6} - 4a^{3} - 32 = 0$ $(a^{3})^{2} - 4(a^{3}) - 32 = 0$ $(a^{3} - 8)(a^{3} + 4) = 0$ $a^{3} = 8 \text{ or } a^{3} = -4$ Ans: $a = 2, -1.59$	M1	6
	Ans. <i>u</i> = 2, -1.39	122,122	

Secondary 4 Mathematics Prelim 2020

Paper 2 Marking Scheme

Que No	stion	Solutions	Marks	Remarks
1	(a)	$\frac{12xy^2}{15} \times \frac{9x^2}{2xy^3}$	M1	Expand $(3x)^2$
		$=\frac{18x^2}{5y}$	A1	
	(b)	$\left(\frac{v}{3}\right)^2 = \frac{2s + v}{s - 3}$	M 1	Square both sides
		$sv^2 - 3v^2 = 18s + 9v$		
		$s(v^2 - 18) = 3v^2 + 9v$	Ml	Isolate 's'
		$s = \frac{3v^2 + 9v}{v^2 - 18}$	Al	
	(ci)	$\frac{3}{2x-1} = \frac{5}{x-2}$		
		3x-6=10x-5 $7x=-1$	M1	Remove fraction by cross
				multiplying
		$x=-\frac{1}{7}$	A1	
	(cii)	$x = -\frac{1}{7}$ $(x^{\frac{1}{2}} + y^{\frac{1}{2}})(x^{\frac{1}{2}} - y^{\frac{1}{2}})$		
		$=(x^{(\frac{1}{2})^2}-y^{(\frac{1}{2})^2})$	B1	
	(di)	$= (x - y)$ $2(9^{n+1}) + 3^{2n+3} - 9^n = 2(3^{2n+2}) + 3^{2n+3} - 3^{2n}$	B1	Base 3 seen
	(41)	$= 2(3^{2n})(3^2) + (3^{2n})(3^3) - 3^{2n}$	B1	throughout
		$= 2(3^{2n})(3^2) + (3^{2n})(3^3) - 3^{2n}$ $= (3^{2n})(18) + (3^{2n})(27) - 3^{2n}$ $= (3^{2n})(18 + 27 - 1)$	BI	Law of addition
		$= (3^{2n})(44)$ $= (3^{2n})(4)(11)$		Factorise
		$= (3^{2n})(4)(11)$ Since 11 is a factor of $2(9^{n+1}) + 3^{2n+3} - 9^n$, and 2^{3n}		
		Since 11 is a factor of $2(9^{n+1})+3^{n+2}-9^n$, and 2 is a whole number, $2(9^{n+1})+3^{2n+3}-9^n$ is a multiple	B1	Conclude
		of 11 for all positive integer values of n .		
			12 marks	
			12 marks	

Que No	estion	Solutions	Marks	Remarks
2	(ai)	b = 1, c = 3, d = 4, a = 0, e = 6	B1 B1 B1	Use median Use mode, both correct Use range, both correct
	(aii)	Interquartile range for female = 24 - 17.5 = 6.5mins The time taken by the male shoppers are more consistent than the female shopper because IQR for male shoppers is smaller than female shoppers.	B1 B1	Supported by comparison of IQR
	(aiii)	$4.53 = \sqrt{\frac{9050}{20} - mean^2}$	Mi	
		$mean^2 = 431.979$ mean = 20.78	A1 7 marks	
3	(a)	First draw $ \begin{array}{c} \frac{3}{5} & \text{Odd} \\ \hline \begin{pmatrix} \frac{3}{4} \\ \hline \end{pmatrix} & \text{Odd} \\ \hline \begin{pmatrix} \frac{1}{2} \\ \hline \end{pmatrix} & \text{Even} \end{array} $ Even	A2	o.e Deduct 1 mark for each error A1, A0
	(b)	$\left(\frac{3}{5} \times \frac{2}{4}\right) + \left(\frac{2}{5} \times \frac{3}{4}\right) = \frac{3}{5}$	A1	
	(c)	$\left(\frac{3}{5} \times \frac{2}{4}\right) + \left(\frac{2}{5} \times \frac{3}{4}\right) = \frac{3}{5}$ P(select 1 or 3) = $\left(\frac{2}{5} \times \frac{1}{4}\right) = \frac{1}{10}$ Disagree. The chance is exactly 10%, not more.	B1	
	(d)	1 3 4 6 7 1 × 4 5 7 8 3 4 × 7 9 10 4 5 7 × 10 II 6 7 9 10 × I3 7 8 10 II I3 ×	M1	Possibility diagram drawn
		P(Sum of two numbers drawn is a prime no.) = 0.5	A1 6 marks	

Que No	estion	Solutions	Marks	Remarks
4	(ai)	Let his salary be a 1.08 a = 1.05 a + 87 0.03a = 87	M1	Form eqn
	(aii)	$a = 2900 $(1.19 \times 10^5) \times \frac{4}{10}$	M1	
		$=4.76\times10^4$	A 1	
	(bi)	3500 ÷ 0.67 = \$5223.88	B 1	
	(bii)	Pay in 2019 = Their ci) ×0.61 = €3186.5668	MI	2019 pay with their
		Percentage change = $\frac{3500 - Their}{2019} = \frac{pay}{100} \times 100$	M1	ci)
		3500 = -8.96%	A1	
	-		8 marks	
5	(a)	p = 27, $q = 54$	B1 B1	
	(b)	$q = 54$ $270 = n^2 + 3n$		
		$n^2 + 3n - 270 = 0$		
		(n-15)(n+18) = 0	M1 A1	Solve
	(c)	$V = \frac{1}{2}n^2 + \frac{3}{2}n$	B1	
	(4)	$\begin{array}{c c} 2 & 2 \\ \hline 100 = S - V \end{array}$		
	(d)	$100 = n^2 - 3n - (\frac{1}{2}n^2 + \frac{3}{2})$	M1	Form eqn in n
		$100 = \frac{1}{2}n^2 + \frac{3}{2},$		
		$n^2 + 3n - 200 = 0$		
		$n = \frac{-3 \pm \sqrt{3^2 - 4(1)(-200)}}{2(1)}$	M1	Solve with quadratic formula
		$=\frac{-3\pm\sqrt{809}}{}$		
		Since <i>n</i> is not an integer, it is not possible.	A1	Conclude with reason
			8 marks	

Solutions	Marks	Remarks
$OB = OC$ $\angle OBC = 50^{\circ} \div 2(ext \angle \Delta)$	B1	With reason
$= 25^{\circ}$ $\angle CED = 25^{\circ}(\angle same\ seg)$	B 1	With reason
or	OR	
$\angle ABC = 90^{\circ}(\angle in \ semicircle)$ $\angle OBA = (180^{\circ} - 50^{\circ}) \div 2$	B1	:
=65°		
= 25°	B1	
Or	OR B1	
$\angle ABO = (180 - 50) + 2$ (Base angles of 1808) triangle OBA) = 65°		
$\angle CED = 180 - 90 - 65$ (angles in the opp. Seg) = 25	OR.	
or $\angle COD = 50^{\circ}$ (vertically opp angles) $\angle CED = 0.5 (50) (\angle \text{ at centre} = 2 \angle \text{ at}$	B1	
= 25°	B1	
$\angle BQO = 90^{\circ} - 50^{\circ}$	B1	
$\sin ce BQ = QE(\tan ext \ po int)$ $\angle BQE = 40^{\circ} \times 2$	B 1	
= 80°	B1	
$\angle DBA + \angle BAE = 65 + 130$	M1	Find I more relevant angle to explain
Since $\angle DBA + \angle BAE > 180^{\circ}$, they are not interior angles and BD is not parallel to AE .	A1	With reason related to parallel lines
OR	OR	
$\angle AOF = 180^{\circ} - 90 - 40$ (Angle sum of triangle) = 50°	M1	
	$OB = OC$ $\angle OBC = 50^{\circ} + 2(ext \angle \Delta)$ $= 25^{\circ}$ $\angle CED = 25^{\circ}(\angle same\ seg)$ or $\angle ABC = 90^{\circ}(\angle in\ semicircle)$ $\angle OBA = (180^{\circ} - 50^{\circ}) \div 2$ $= 65^{\circ}$ $\angle OBC = 90^{\circ} - 65^{\circ}$ $= 25^{\circ}$ $\angle CED = 25^{\circ}(\angle same\ segment)$ Or $\angle ABO = (180 - 50) \div 2\ (Base\ angles\ of\ isos\ triangle\ OBA)$ $= 65^{\circ}$ $\angle\ CED = 180 - 90 - 65\ (angles\ in\ the\ opp.\ Seg)$ $= 25$ or $\angle\ CED = 180 - 90 - 65\ (angles\ in\ the\ opp.\ Seg)$ $= 25^{\circ}$ or $\angle\ CDD = 50^{\circ}(\text{vertically\ opp\ angles})$ $\angle\ CED = 0.5\ (50)\ (\angle\ at\ centre = 2\angle\ at\ circumference)$ $= 25^{\circ}$ $\angle\ OBQ = 90^{\circ}(\tan\ 1\ rad)$ $\angle\ BQO = 90^{\circ} - 50^{\circ}$ $= 40^{\circ}$ $\sin\ ce\ BQ = QE(\tan\ ext\ po\ int)$ $\angle\ BQE = 40^{\circ} \times 2$ $= 80^{\circ}$ $\angle\ BAE = 130^{\circ}$ $\angle\ DBA + \angle\ BAE = 65 + 130$ $= 195^{\circ}$ Since $\angle\ DBA + \angle\ BAE = 65 + 130$ $= 195^{\circ}$ Since $\angle\ DBA + \angle\ BAE = 180^{\circ}$ $\angle\ DBA + \angle\ BAE = 180^{\circ}$ $ADBA + \angle\ BAE = 180^{\circ}$ OR $\angle\ OEQ = 90^{\circ}(Tgt\ perpendicular\ to\ radius)$ $\angle\ AOF = 180^{\circ} - 90 - 40\ (Angle\ sum\ of\ triangle)$ $= 50^{\circ}$	$OB = OC$ $\angle OBC = 50^{\circ} + 2(ext \angle \Delta)$ $= 25^{\circ}$ $\angle CED = 25^{\circ}(\angle same seg)$ OR $ABC = 90^{\circ}(\angle in semicircle)$ $\angle OBA = (180^{\circ} - 50^{\circ}) + 2$ $= 65^{\circ}$ $\angle OBC = 90^{\circ} - 65^{\circ}$ $= 25^{\circ}$ $\angle CED = 25^{\circ}(\angle same segment)$ OR Or $\angle ABO = (180 - 50) + 2 \text{ (Base angles of isos triangle } OBA)}$ $= 65^{\circ}$ $\angle CED = 180 - 90 - 65 \text{ (angles in the opp. Seg)}$ $= 25$ OR Or $\angle CED = 180 - 90 - 65 \text{ (angles in the opp. Seg)}$ $= 25$ OR Or $\angle CED = 0.5 \text{ (50) } (\angle \text{ at centre } = 2 \angle \text{ at } \text{ circumference)}$ $= 25^{\circ}$ $A0^{\circ}$ $= 40^{\circ}$ $\sin ce BQ = QE(\tan ext point)$ $\angle BQE = 40^{\circ} \times 2$ $= 80^{\circ}$ $A1$ $\angle BAE = 130^{\circ}$ $\angle DBA + \angle BAE = 65 + 130$ $= 195^{\circ}$ Since $\angle DBA + \angle BAE = 180^{\circ}, \text{ they are not interior angles and } BD \text{ is not parallel to } AE.$ OR $\angle OEQ = 90^{\circ}(\text{Tgt perpendicular to radius)}$ $\angle AOF = 180^{\circ} - 90 - 40 \text{ (Angle sum of triangle)}$ M1

Question		Solutions	Marks	Remarks
No		If $BD \parallel AE$, $\angle COD = \angle CAE$ (corresponding angles). Since the angles are not equal, BD and AE are not parallel.	A1	
	1		7 marks	
7	(a)	$\frac{y-7}{x-4} = \frac{3}{2}$ $2y-14 = 3x-12$ $2y = 3x+2 or y = \frac{3}{2}x+1$	M1	Find eqn of BC
		2y = 3 (-2) + 2 $y = -2$	M1	Sub $x = -2$ into their eqn
		B: (-2, -2)	A1	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	(b)	B: $(-2, -2)$ BC = $\sqrt{[7-(-2)]^2 + [4-(-2)]^2}$	M1	Find length of BC
		= $\sqrt{117}$ 0.5(6)(6) = 0.5(shortest distance) $\sqrt{117}$	M1	Use Area or trigo
		Shortest distance = 3.33 units	A1	
	(c)	Gradient of AC is $\frac{7-4}{4-(-2)} = \frac{1}{2}$.	Bl	
		Since Gradient of AC = Gradient of line L , the lines are parallel and will not intersect because their y -intercepts are different,	В1	
	(d)	$\frac{y-7}{x-4} = \frac{1}{2}$ Equation of AC: $y = \frac{1}{2}x+5$ y-intercept: 5	M1	Find y-intercept of AC.
		Overlapping area: $2 \times \frac{1}{2} \times 4 \times 2 = 8units^2$	A1	o.e
	_		11 marks	
		$\angle PQS = 180^{\circ} - 126^{\circ} = 54^{\circ}$	11 marks	
8	(a)	$\frac{QS}{\sin 68} = \frac{460}{\sin 54}$ $QS = 527.189$	M1	Apply sine rule
	(b)	$\angle RQS = 126 - 98 = 28$		
		$RS^2 = 562^2 + Their _QS^2 - 2(562)(their _QS)\cos 28$ RS = 265.7	M2 A1	Apply cos rule
	(c)	Let the distance be x $\angle XQR = 180 - 98 = 82$		
		$\cos 82 = \frac{x}{562}$	M1	Use cosine
		x = 78.2	Al	
	+		7 marks	l

Que No	stion	Solutions	Marks	Remarks
9	(a)	Height of trapezium = $\sqrt{21^2 - 14^2}$ = $\sqrt{245}$ = 15.652 units	M1	Find height of trapezium
		Floor area = $\frac{1}{2}(17+45) \times \sqrt{245}$	M1	
		= 485.226 = 485 m ²	A1	
	(b)	Volume		
		$= Their(a) \times 9$ $= 4367.04$	M1	× 9
		$=4370m^3$	A1	
-	(c)	$JC^2 = 245 + 17^2$ $JC = 23.1084$	M1	Find JC
		$\tan \angle GJC = \frac{9}{23.1084}$	M1	
	****	23.1084 $\angle GJC = 21.3^{\circ}$	A1	
40	7-5	(ODD (DDO	8 marks	
10	(a)	$\angle QPR = \angle PRO$ $\tan \angle PRO = 1$	•	
		$\angle PRO = 0.7854$ or $\frac{\pi}{4}$	B1	
	(b)	$PR = \sqrt{72}$	B1	
		Area of sector QPR $= \frac{1}{2} (\sqrt{72})^2 (\frac{\pi}{4})$	М1	Area of sector
		$= 9\pi \text{ cm}^2$ Shaded area $1 \pi 1 \pi$		
		$= 9\pi - \left[\frac{1}{2}(6)^2(\frac{\pi}{2}) - \frac{1}{2}(6)^2\sin(\frac{\pi}{2})\right]$ = 18	M1 A1	Area of segment
		- 10	5 marks	

Ques Vo	tion	Solutions	Marks	Remarks
	(a)	$(\frac{h}{2})^2 + r^2 = 7^2$ $r^2 = 49 - \frac{h^2}{4}$	B1	Pyt theorem seen
		$r^2 = 49 - \frac{h^2}{4}$	AG	
	(bi)	565	B1	
	(bii)		C1	2 points wrong P1
	(ci)	V max = Accept 820 to 840	B1	
	(cii)	$2400 = \pi h (196 - h^2)$ $600 = \frac{\pi h (196 - h^2)}{4}$ $600 = \pi h (49 - \frac{h^2}{4})$		
		Draw line $y = 600$	na	
	<u> </u>	h = 4.3 or 11.3 (+/-0.1)	B2	
	(d)	Tangent drawn, y -int =500 $k = \frac{870 - 500}{8.3}$	L1	
		k = 44.6	B1	Accept 43 to 45

uestion o	Solutions	Marks	Remarks
2 (a)	Principal = 0.8×25120 = \$20096 Monthly instalment = $\frac{(Their_P + Their_P \times 0.04 \times 3)}{36}$	B1 M1 A1	Correct P Find I = PRT
	= \$625.21	<u> </u>	
(bi)	3.785×3.7 = 14 <i>l</i>	B1	
(bii)	6l → 100km 13l → 216.67km It is not true because he travelled less than 216.67km. Fuel efficiency is lower than stated. or 190km → 13l 100km → 6.84l It is not true because it consumes more than 6 litres. Fuel efficiency is lower than stated. Or 100 km used 6 litres 190 km used 11.4 litres	B1	190km < 216.67km
	It is not true because he should have just used 11.4 litres, not 13 litres. Since he used up more than 11.4 litres, fuel efficiency is lower than stated. Or 13 litres travel 190km 6 litres travel 87.7km It is not true as he only travelled 87.7km instead of 100km with 6 litres. Fuel efficiency is lower than stated.		
	Or comparison for how much distance can be travelled per 1 litre: 13 litres travel 190km (actual) 1 litre travel 14.61km (actual) 6 litres travel 100km (as stated) 1 litre travel 16.67km (as stated) Since he can only travel 14.61km per litre of petrol instead of 16.67 km per litre of petrol as stated, fuel efficiency is actually lower.		

Question No	Solutions	Marks	Remarks
(c)	Front tyre: $h = 0.7 \times 120$ = 84 mm or 8.4 cm d=17(2.54)+2(their height) = 59.98 cm OR r = 17 (2.54)(0.5) + their height = 29.99 cm	B1	Find height using % of width Find diameter or radius in cm using their height
	Circumference (front tyre) = 2π (their radius) = 188.43 cm = 1.884 m = 0.001884 km	М1	Find circumference
	Number of complete revolutions = 6000 ÷ (their circumference) = 3184514	M1 A1	Find no. of revolutions using circumference
		11 marks	