· ·	
	ANGLICAN HIGH SCHOOL
	SECONDARY FOUR
W 197	PRELIMINARY EXAMINATIONS 2021

S4

CLASS: 4 (

MATHEMATICS

4048

Paper 1

NAME:

26 August 2021

Candidates answer on the Question Paper.

2 hours

READ THESE INSTRUCTIONS FIRST

Write your name, index number and class in the space at the top of this page.

Write in dark blue or black pen.

You may use a HB pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters and glue or correction fluid.

Answer all the questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 80.

For Exami	iners' l	Use							
Question	1	2	3	4	5	6	7	8	9
Marks			-		7				
Question	10	11	12	13	14	15	16	17	18
Marks						<u></u>			
Question	19	20	21	22	23	24	25		
Marks			-						
Table of P	enaltie	<u> </u>	Units		Clarit	y / Logic	Precisio	on / Accuracy	
Parent's N	Vame ar	nd							
Signature									
			Total						<u>L</u>
Date:			\dashv						

This document consists of 19 printed pages.

Mathematical Formulae

Compound Interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone = πrl

Surface area of a sphere = $4\pi r^2$

Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere =
$$\frac{4}{3}\pi r^3$$

Area of triangle
$$ABC = \frac{1}{2}ab \sin C$$

Arc length = $r\theta$, where θ is in radians

Sector area =
$$\frac{1}{2}r^2\theta$$
, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics

$$\mathbf{Mean} = \frac{\sum fx}{\sum f}$$

Standard deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

3 | Page

1(a) Given that $3^{27} \div 27^3 = 3^k$, find k.

Answer	k =	:	1	l

(b) Simplify $\frac{4x^{-4}}{-\frac{4}{18}} \times \frac{y^{\frac{2}{3}}}{18} \div \frac{1}{27}$, leaving your answers in positive indices.

Answer		[2]
Answer	·	[2

The curve below has an equation $y = x^n + c$. State a possible value of n and the value of c.

3	Jasmin has 240 two-centimetre cubes. She arranges all of the cubes into a cuboid. The perimeter
3	of the base of the cuboid is 40 cm. Each side of the cuboid has a length greater than 4 cm.
	Find the height of the cuboid.

Answer	cm	[2]
--------	----	-----

Violet intends to arrange n regular pentagons in a ring. The diagram shows the partially 4. completed ring. Find n.

The bar chart shows the number of traffic accidents resulting in injury from 2014 to 2018. (https://www.budgetdirect.com.sg/car-insurance/research/road-accident-statistics-insingapore)

Number of Accidents Resulting in Injuries (2014 – 2018)

State how this bar chart can be misleading to the reader.

[1]

6 (a) Given that

 $\zeta = \{ \text{all triangles} \}$

 $R = \{ \text{right-angled triangles} \}$

 $S = \{ \text{triangles with three unequal sides} \}$

A is a triangle with 45°, 45° and 90°.

B is a triangle with 7 cm, 7 cm and 3 cm.

C is a triangle with sides 9 cm, 12 cm and 15 cm.

Represent the above information on a Venn Diagram in the space below.

[2]

(b) Write down the sets represented by the following shaded region

Answer

[1]

The speed of light is 3×10⁸ m/s. Earth is 150 million km from the sun. How long does light take to travel from the sun to the earth. Round your answer to the nearest minute.

4	minutes	roi
Angwer .	minutes	121

7 | Page

A maximum quadratic curve with the equation $y = -x^2 + bx + c$ has a turning point at (3,7), find the value of b and of c.

9 Solve the equation $\frac{1}{x+1} - \frac{6x^2 - 10}{1 - x^2} = 4$.

$$Answer x = \underbrace{\qquad \text{or } x = \underbrace{\qquad } [4]$$

10 Simplify
$$\frac{27-12x^2}{-3-2x^2+5x} \times \frac{1-x}{-2x-3}$$
.

,]	
	3]

In the diagram below, XZ is the chord of a circle. XY is the diameter of the circle, centre O. Given that XZ = 9 cm and $YZ = \sqrt{63}$ cm, calculate

(a) the length of XY,

Answer XY =	1
-------------	---

(b) $\angle YXZ$,

9 Pag	; e			
	(c)	∠YOZ in radian,		
			Answer ∠YOZ=	rad [2]
((d)	the area of the major segment YZ.		
			Answer =	cm ² [3]

12

$y = x^3 - 4$	$y = -3(4)^x$	$y = 4 - x^2$	$y = 4x^{-2}$
$y = -2x^{-4}$	$y = 4 - x^3$	$y = -3(-4)^x$	$y = x^2 + 4$

Write down a possible equation for each of the sketch graphs below. In each case select one of the equations from the box above.

(b)

11 | Page

13 Make x the subject in the equation $y = \sqrt{x^2 - 8x + 16 - y^2}$.

Answer	[3]
--------	-----

In the diagram shown below, it is given that AP = 5 cm, BP = 2 cm and AR = 3 cm. ARC, ABP and RQP are straight lines.

Show, with clear reasons, that triangle ABC is congruent to triangle ARP.

[2]

A lake has an actual area of 2.5 km². The area of the lake on the map is 40 cm². The distance between two towns on the map is 45 cm. Find the actual distance, in kilometres, between the two towns.

			Answer	km [3]
16	(a)	Solve the inequalities $\frac{8x-12}{2} \le 3x+1 < \frac{17x}{2}$.		
10	(α)	2 3		

Answer_____[3]

(b) Hence, write down all the prime numbers that satisfy $\frac{8x-12}{2} \le 3x+1 < \frac{17x}{3}$.

Answer_____[1]

13 | Page

Factorise completely $4x^2 - 12xy + 9y^2 - 1$.

Answer	Γ	2

18 The Venn diagram shows the elements of ξ and three sets A, B and C. $\xi = \{x: x \text{ is a positive integer such that } 0 < x < 14\}$

- (a) Describe in words the elements in set C.
- (b) Use one of the symbols below to complete each statement.

$$\emptyset \subset \not\subset \not\in \in \xi$$

(i)
$$A' \cap (B \cap C) = \dots$$

19	The time taken to assemble a car is inversely proportional to the number of workers involved. 4 workers can complete the assembly in x days. If 6 more workers are involved, the assembly can be completed 3 days in advance.			
	(a)	Find the value of x.		
			$Answer x = \underline{\qquad} [2$	2]
	(b)	Find the number of workers required if the a	ssembly is to be completed in 2 days.	
			Answer[1	2]
20	of ang Refle	e figure, $ABCD$ is a quadrilateral. The point X is gle ABC and angle ADC respectively. Example $BCD = 200^{\circ}$ and reflex angle $BXD = 100$ and 100 and 10		rs
			Answer	[4]
		PartnerInLearning 108		

15 F	age)
--------	------

21 (a) An open container in a shape of an inverted cone has radius of 10 cm and height of 30 cm. Water is poured into the container at a constant rate of 5π cm³/s until it is completely filled to the brim.
 Find the time taken for the container to be completely filled.

Answer	S	ſ	1	1

(b) Sketch the graph of the water-level against time below.

Height (cm)

[1]

A popular drink is produced in two similar bottle sizes. The height of the large bottle A is 18 cm while the height of the smaller bottle B is 12 cm.

If the selling prices of bottles A and B are \$24.90 and \$6.90 respectively, which bottle provides better value for money? Justify your answer clearly. [3]

The cumulative frequency diagram shows the times taken by 200 girls from school A running 2.4 km test. The box-and-whisker pot shows the times for another group of girls from school B.

Timing in minutes

(a) 75% of the girls in school B failed the test. Find the number of girls who passed in school A.

Answer	۲1	ĭ

(b) 30% of the girls in school A took longer than t minutes. Find t. [2]

Answer	[2]

(c) Find the proportion of girls in school A who took between 14.5 minutes and 17 minutes to complete the run.

Anguan	LO.
Answer	12

24 (a) Construct kite ABCD. AD = CD = 9 cm. AB and BC have already been drawn. Measure and state the length of the longest diagonal.

Answer

- (b) Construct the perpendicular bisector BC. [1]
 (c) Construct the bisector of the angle ABC. [1]
- (d) ABCD represents a plot of land which is to be used for a park. A café is to be built in park, nearer to A than to D and nearer to AD than AB. Shade the region where the café is to be built.

19 j	19 Page		
25	1C a	ad and Beng Hai want to rent lockers in school. The lockers are in two levels. Lockers 1A to re on the lower level and Lockers 2A to 2C are on the next level. Lockers are assigned to student randomly.	
	(e)	Using a possibility diagram, represent the two lockers that the two boys can be allocated such that they are next to each other on the same level.	
		[2]	
	(b)	Find the probability that Ahmad and Beng Hai are randomly allocated lockers next to each other on Level 2.	
	(c)	Answer[1] Find the probability that Ahmad and Beng Hai are randomly allocated lockers on different levels.	
		Answer [1]	
	(d)	If the lockers 2C was not available. Find the probability that the friends will be allocated lockers next to each other at any level.	
		Answer[2] End of paper	

Qn			
1	A sequence is given by the formula $P_{n+1} = (P_n)^2 + mP_n$, where m is a constant.		
1a	Given that $P_1 = 3$, show that $P_2 = 3m + 9$.		
1b	Given that $P = -\frac{3}{4}$, find the value of m ,		
1ci	By using the answer in (b), find P_3 , P_4 and P_5 .		
1cii	By considering the terms of P_1 , P_2 , P_3 , P_4 and P_5 or otherwise, find the value of P_{2016} .		
į			
		-	

2a	The diagram shows a pyramid $ABCDEFG$. The base of the pyramid is a regular pentagon of side 6 cm. The tip F is vertically above the centre of the pentagon, G , and $AF = 14$ cm. Calculate the angle AGB .	
2b	Show that $AG = 5.1039$ cm, correct to five significant figures.	[2]
	A = 3 cm	
2c	Calculate the height of the pyramid, FG.	[2]
2d	The pyramid is the model for a paper weight that is to be gold plated. To reduce costs the pyramid is made smaller such that the smaller pyramid remains geometrically similar to the original pyramid but its height is reduced by 35%. The surface area of the large pyramid is $S \text{ cm}^3$. Express the surface area of the new pyramid as a percentage of S .	[3]

3i	Given that the points $P(3,k)$, $Q(1,-2)$ and $R(-4,-6k)$ lie on a	
	straight line, find the value of k .	
	Gradient of AB = Gradient of AC	
	1	
3ii	Find the length of the line segment PQ.	
4	Quadrilateral ABCD is a field with $AB = 90 \text{ m}$ and $BC = 78 \text{ m}$ and	
ĺ	A is due north of D. The bearing of B from A is 100° , the bearing	
	of B from C is 025° and the bearing of D from C is 278° .	
	A .	
	90 m	
	В	
		j
	78 m	
	\checkmark_{c}	
	C	

		
4ai	Show that angle $ABC = 75^{\circ}$.	
}		
ļ		
4aii	Calculate the bearing of C from D,	
*****	,	
4 44	C. L. J. L. A. S. A.C.	
4aii	Calculate the length of AC.	
	1	
4bi	A drone hovers at a height of 70 m above D. A man of height 1.751	
401	walks along path	
	AC. He stopped at E to take a picture of the drone when the	ļ
	maximum angle of	
	depression from the drone to the top of the man's head was 58°.	
	Calculate the length of DE.	
ļ		
		<u> </u>
4bii	Calculate the area of the field ABCD.	
	1	
		*
<u> </u>	Adam runs a drink stall franchise in 4 locations. The number of	
5		
	cups for	
1	each type of drink sold a day is shown in the table below.	
		<u> </u>

a F	Penresent the choice inf	formation as a 4 × 3 matrix P.	F17
	cepresent the above in	ormation as a 4 × 3 matrix P.	[1]
1			
) T	he price of drinks are s	hown in the table below.	
	_		į.
	Drink	Price (SGD\$)	
	Coffee	1.50	
	Tea	1	
	Fruit Juice	2	
R	enresent the above info	ormation as a 3 × 1 matrix N.	
تتــا	-product the above line	Amazion as a 5 × 1 marix 14.	
E	Evaluate the matrix $T =$	PN.	[1]
			L*J
l St	tota what as ab afthe al		
1 34	ate what each of the en	ements of matrix T represents.	

5ei The cost of all the ingredients per day for Branch A, B, C and D is shown in the table below.

[2]

<u> </u>	All in	ngredients for drinks
Branch	In USD	In SGD
Ā	p	27
В	12	16.20
\overline{C}	16	21.60
\overline{D}	23	q

Find the value of p and q.

5eii The rental and operating cost per day for Branch A, B, C and D is shown in the table below.

[2]

Branch	Rental & Operating Cost (SGD)
\overline{A}	40
В	45
\overline{C}	50
D	60

6	44 hove ran	boys ran the 2.4 km and their timings are shown in the table.					
v	14 00ys 1211	table.					
	(minutes)	8 ≤ <i>t</i> < 9	$9 \le t < 10$	$10 \le t < 11$	11≤ t < 12	12 ≤ <i>t</i> < 1	$3 \mid 13 \le t < 14$
	Frequenc	1	h	12	11	k	6
6a	The estimate	ted mean t	iming is 11.	477 minutes	s. Estimate to	the	
	nearest inte	ger the val	lue of h and	the value of	k.		L']
	٦					۲	
6b	Estimate the	e standard	deviation.		_		[1]
							<u> </u>
						ı	
6c	Evaloia valo	i 41-i	41				
oc	measure of	y in unis ca central ten	ise, the mea dency.	n is better th	an the media	an as a	[1]
							<u>,</u>
6d	Another oro	un of 25 h	orra ron tha	2.4.1cm and	41		TO3
vu	Anomer gro	standar	dys ram me 1	2.4 km and	their mean a	na	[2]
	deviation w	еге 11.7 m	inutes and	2.10 minutes	respectively	7.	
	the timings	Comme		fhorm			
	the tillings	of these tw	o groups o	i boys.			
						Ì	
			· · · · · · · · · · · · · · · · · · ·				
-7	Te in air of		12				
7	It is given th	at point A	lies on the	v-axis while	point B lies	on the x-	[3]
7	OB = 2OA, v	such that	the origin.] -	3]

8	In the diagram, line AB and line CD are tangents to point A and point D respectively on the circumference of the circle with centre	
i 	O. Angle $DAE = 33^{\circ}$, angle $ECD = 59^{\circ}$ and AEC is a straight line. E, F , and G are points on the circumference of the circle.	
8a	Find angle EOD.	[1]
8b	Find angle EFD	
8c	Find angle EGD	
8d	A circle is drawn with the line AC as its diameter. Explain why point D will not lie on the circumference of the circle.	[2]

8e Line AB and CD are extended and meet at T. Find the ar	ngle ATD.
8e Line AB and CD are extended and meet at T. Find the ar	ngle ATD.
8e Line AB and CD are extended and meet at T. Find the ar	ngle ATD.
Date 125 and 015 and out of the and and most at 1.1 mile and an	igic AID.
9 Mr Chan driving a car at 50 km/h passes a lamppost A a	and stops
at lamppost B, one hour later. When Mr Chan passes the	e lamppost
A, Mr Lim, on a motorcycle, starts from A and overtake	_
Chan. The motorcycle has uniform acceleration of 80 k	
speed-time graphs of Mr Chan and Mr Lim are shown in diagram.	1 the
Gragiani.	
Speed (km/h)	
50	
Mr Chan	
Mr Lim	
20	
0700 0720 0745 080)
Time (h)	,
9ai Find the speed of the car at 0715 h.	[2]

9ai	Find the speed of the motorcycle at 0745 h.	[1]
i		
	·	
9ai	Find the time, to the nearest minute, the motorcycle overtakes the	[4]
ii	car, given that it was between 0720 h and 0745 h	
	Let t minutes be the time taken by Mr. Lim to overtake Mr. Chan	
i		
į		
		:

[2]

- 10 The diagram below shows a rectangle with breadth (x+15) cm. The circle with centre at A has a radius of
 - 10 cm. The semicircle with centre at B and the semicircle with centre C are congruent and each has a radius
 - of x cm. The small circle with centre A touches the semicircles at point D and E. The line AO bisects the
 - length of the rectangle and is a tangent to both of the semicircles.

		
	Page 11 Page 11 Representation of the second	cm +15)
10a	Write down an expression, in terms of x , for the length AC .	[1]
		F17
10b	Write down an expression, in terms of x , for the length OA .	[1]
ļ I	·	
		[2]
10c	Hence, write down an equation and show that it simplifies to	[3]
	$x^2 - 10x - 75 = 0.$	
10d	Solve the equation $x^2 - 10x - 75 = 0$.	[2]
10e	Hence, find the shaded area.	[2]
		<u> </u>
	1 : 4 . 1 - 4	<u></u>
11	A couple intends to purchase a HDB flat and they intend to take a loan from a	
	financial institution. The formula to calculate the monthly	
	mortgage payment is	
	given by	

				ļ
				·
11 a	the total inter	takes a \$100000 est paid as a perc f 2% per annum.	loan to be repaid in 10 years, fin entage of the loan, assuming an	d [3]

	·			
11	The couple in	tends to take a lo	an from a financial institution. s	o [3]
b	they will need down-paymen	to pay 25% of the third to	ne price as down payment. For the pay up to \$50000.	ne
			mation in the tables below.	
		HDB BTO	Prices in Singapore HDB BTO	
		Flats (Non- Mature	Flats	
}	Туре	Estates)	(Mature Estates) Resale Flats	6
	Two-Room (Flexi)	\$90,000 to \$162,000	\$137,000 to \$277,000 —	

www.testpapersfree.com

The couple intends to take a loan from a financial institution, so they will need to pay 25% of the price as down-payment. For the down-payment, they intend to pay up to \$50000.

An online search yielded information in the tables below.

	2021 Proper	ty Prices in Singapore	The state of the s
Type	HDB BTO Flats (Non- Mature Estates)	HDB BTO Flats (Mature Estates)	Resole Flats
Iwo-Room (Flexi)	\$90,000 to \$162,000	\$137,000 to \$277.000	Align
Three-Room	\$164,000 to \$248,000	\$205,000 to \$421,000	\$350,000 to \$380,000
Four-Room	\$253,000 to \$381,000	5311,000 to \$617,000	\$420,000 to \$550,000
Five-Room	\$405,000 to \$516,000	\$423,000 to \$725,000	\$520,000 to \$700,000

Source: https://www.singsaver.com.sa/blog/costs-of-bto-flat-resule-flat-ec-and-condo-in-singapore

11DB Flat Types	2-Room Flexi	3-Ruum	4-Roem	5-Room
Approx. floor area (square metres)	36 and 45	60 to 65	90	110
Total no. of bedrooms	1	2	3	3
Total no. of bathrooms	1	2	2	.2

(b) Determine all the types of flats that the couple can consider purchasing.

Answer

Three-Room	\$164,000 to	\$205,000 to	\$350,000 to
	\$248,000	\$421,000	\$380,000
Four-Room	\$253,000 to	\$311,000 to	\$420,000 to
	\$381,000	\$617,000	\$550,000
Five-Room	\$405,000 to	\$423,000 to	\$520,000 to
	\$516,000	\$725,000	\$700,000

Source: https://www.singsaver.com.sg/blog/costs-of-bto-flat-resale-flat-ec-and-condo-in-singapore

(Source: https://www.hdb.gov.sg/residential/buying-a-flat/resale/getting-started/types-of-flats)
Determine all the types of flats that the couple can consider

purchasing.

Based on the information given in the tables only, give the type of flat that gives the best value for the money spent. State one assumption that the couple could have made.

	Based on the price per sq m criterion, the first choice is a HDB BT
	Flats (Non-Mature Estates) Two-Room (Flexi) 45 sq m in the lowe
	price range.
	Assumption, only one is needed:
	1. The prices of the different types of housing remains stable
	regardless of region.
	2. All the different types of flats are available.
	3. Without detailed information, the couple assumes that for
	each floor area, there can be the full range of prices, e.g. for a
	45 m ² flat, the prices can range from \$90,000 to \$162,000.
	4. Without detailed information, either the range of minimum to
	maximum, or the midpoint can be used for calculation.
	In each category, the lowest price corresponds to the smallest floor
	area, and the higher price corresponds to the larger floor area.
12	The variables of x and y are connected by the equation
	$y = \frac{x^2}{1 + x^2} + \frac{2}{1 + x^2} - 3$.
	$y = \frac{1}{6} + \frac{1}{x} - 3$.
	Some corresponding values of x and y, correct to two decimal
	places, are given in the table below.
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
10	
12 a	Find the value of p . [1]
12	Use a scale of 2 cm to represent 1 unit, draw a horizontal x-axis [3]
b	from $0 \le x \le 6$. Use a scale of 4 cm to represent 1 unit, draw a
	vertical y-axis from $-2 \le y \le 4$.
	On your axes, plot the points given in the table and join them with
	a smooth curve.
į	

12c	Use your graph to find the solutions of $\frac{x^2}{6} + \frac{2}{x} - 2 = 0$.	[2]
		• •
12 d	By drawing a tangent, find the gradient of the curve at (3,-0.83).	[2]
·		
12e i	On the same axes, draw the line of with gradient -0.5 that passes through the point with coordinates $(4,-1)$.	[1]

12e ii	Write down the equation of this line.	[1]
12e iii	Write down the x-coordinates of the points where the line intersects the curve.	[2]
12e iv	These values of x are the solutions of the equation $x^3 + Ax^2 - 24x + B = 0$. Find the value of A and of B.	[2]

NAME:	()	CLASS: 4 (
	ANGLICAN HIGH SCHOOL	
		1 8

ANGLICAN HIGH SCHOOL SECONDARY FOUR PRELIMINARY EXAMINATIONS 2021

MATHEMATICS

4048

Paper 1

26 August 2021

Candidates answer on the Question Paper.

2 hours

READ THESE INSTRUCTIONS FIRST

MARKING SCHEME

Write your name, index number and class in the space at the top of this page.

Write in dark blue or black pen.

You may use a HB pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters and glue or correction fluid.

Answer all the questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 80.

ror	Examiners'	Use

1	2	3	4	5	6	7	8	9
10	11	12	13	14	15	16	17	18
19	20	21	22	23	24	25		
Table of Penalties Units				Clarity	y / Logic	Precision	on / Accuracy	у
lame ar	ıd							
		Total			<u> </u>			
Date:		_		{	SU			
	10 19 Penaltie	10 11 19 20	10 11 12 19 20 21 Penalties Units Tame and	10 11 12 13 19 20 21 22 Penalties Units Tame and	10 11 12 13 14 19 20 21 22 23 Penalties Units Clarity	10 11 12 13 14 15 19 20 21 22 23 24 Penalties Units Clarity / Logic	10 11 12 13 14 15 16 19 20 21 22 23 24 25 Penalties Units Clarity / Logic Precision	10 11 12 13 14 15 16 17 19 20 21 22 23 24 25 Penalties Units Clarity / Logic Precision / Accuracy

This document consists of 19 printed pages.

Secondary Four Preliminary Mathematics Examination 2021

Turn over

PartnerInLearning

135 www.testpapersfree.com

Mathematical Formulae

Compound Interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone = $\pi r l$

Surface area of a sphere = $4\pi r^2$

Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere =
$$\frac{4}{3}\pi r^3$$

Area of triangle
$$ABC = \frac{1}{2}ab \sin C$$

Arc length = $r\theta$, where θ is in radians

Sector area =
$$\frac{1}{2}r^2\theta$$
, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

1(a) Given that $3^{27} \div 27^3 = 3^k$, find k.

$$3^{27} \div 3^9 = 3^k$$

$$3^{27-9} = 3^k$$

$$k = 18$$

Answer k = [1]

(b) Simplify $\frac{4x^{-4}}{\frac{-4}{3}} \times \frac{y^{\frac{2}{3}}}{18} \div \frac{1}{27}$, leaving your answers in positive indices.

Answer_____[2]

The curve below has an equation $y = x^n + c$. State a possible value of n and the value of c.

 $y = x^{n} + c$ n = -1 c = 1

Answer n =_____[2]

Secondary Four Preliminary Mathematics Examination 2021

Turn Over

Jasmin has 240 two-centimetre cubes. She arranges all of the cubes into a cuboid. The perimeter of the base of the cuboid is 40 cm. Each side of the cuboid has a length greater than 4 cm. Find the height of the cuboid.

Dimension of cuboid is $2l \times 2b \times 2h = 2^3 \times lbh$ = $2^3 \times 240$ $240 = 2^4 \times 3 \times 5$ 40 = 4l + 4b10 = l + b $10 = 2 + 2^3$ (rej), $10 = 2^2 + (2 \times 3)$ $2^4 \times 3 \times 5 = (2^2)(2 \times 3)h$ h = 10Height is 20 cm

Answer	·cm	[2	2]	
		•	-	

Violet intends to arrange n regular pentagons in a ring. The diagram shows the partially completed ring.
Find n.

Interior angle of the regular pentagon = $\frac{180(5-2)}{5}$ = 108
Interior angle of the regular *n*-side polygon form

Interior angle of the regular *n*-side polygon form
in the centre of the ring =
$$360-2(108)$$

= 144
$$144 = \frac{180(n-2)}{n}$$
$$144n = 180n - 360$$
$$36n = 360$$
$$n = 10$$

$$Answer n = [3]$$

The bar chart shows the number of traffic accidents resulting in injury from 2014 to 2018. (https://www.budgetdirect.com.sg/car-insurance/research/road-accident-statistics-insingapore)

Number of Accidents Resulting in Injuries (2014 - 2018)

State how this bar chart can be misleading to the reader.

[1]

The bars in the bar chart do not start from zero. The relative heights of the bars can mislead the reader into thinking the differences are larger than what is actually given. For example, The frequency for 2016 is 8304 and the frequency for 2017 is 7726, so the difference is 578, but the height of the 2016 bar is twice that for the 2017 bar.

Secondary Four Preliminary Mathematics Examination 2021

[Turn Over]

Given that 6 (a)

 $\zeta = \{ \text{all triangles} \}$

 $R = \{ \text{ right-angled triangles} \}$

 $S = \{ \text{triangles with three unequal sides} \}$

A is a triangle with 45°, 45° and 90°.

B is a triangle with 7 cm, 7 cm and 3 cm.

C is a triangle with sides 9 cm, 12 cm and 15 cm.

Represent the above information on a Venn Diagram in the space below.

[2]

Write down the sets represented by the following shaded region (b)

[1] Answer $(A \cup B)' \cup (A \cap B)$

The speed of light is 3×10^8 m/s. Earth is 150 million km from the sun. How long does light take 7 to travel from the sun to the earth. Round your answer to the nearest minute.

150000000 = 500 s3×10⁵ = 8.33 minutes = 8 minutes (nearest minute) Answer

minutes [2]

A maximum quadratic curve with the equation $y = -x^2 + bx + c$ has a turning point at (3,7), find the value of b and of c.

$$y = -(x-3)^{2} + 7$$

$$y = -(x^{2} - 6x + 9) + 7$$

$$y = -x^{2} + 6x - 9 + 7$$

$$y = -x^{2} + 6x - 2$$
Therefore, $b = 6$ and $c = -2$.

9 Solve the equation $\frac{1}{x+1} - \frac{6x^2 - 10}{1 - x^2} = 4$.

$$\frac{1}{x+1} - \frac{6x^2 - 10}{1 - x^2} = 4$$

$$\frac{1}{x+1} - \frac{6x^2 - 10}{(1 - x)(x+1)} = 4$$

$$\frac{1 - x}{(1 - x)(x+1)} - \frac{6x^2 - 10}{(1 - x)(x+1)} = 4$$

$$\frac{1 - x - 6x^2 + 10}{(1 - x)(x+1)} = 4$$

$$\frac{-6x^2 - x + 11}{(1 - x)(x+1)} = 4$$

$$-6x^2 - x + 11 = 4 - 4x^2$$

$$-6x^2 - x + 11 + 4x^2 - 4 = 0$$

$$-2x^2 - x + 7 = 0$$

$$x = \frac{1 \pm \sqrt{(-1)^2 - 4(-2)(7)}}{2(-2)}$$

$$x \approx 1.6375 \text{ or } x \approx -2.1375$$

$$x \approx 1.64 \text{ or } x \approx -2.14$$

10 Simplify
$$\frac{27-12x^2}{-3-2x^2+5x} \times \frac{1-x}{-2x-3}$$
.

$$\frac{27 - 12x^2}{-3 - 2x^2 + 5x} \times \frac{1 - x}{-2x - 3}$$

$$= \frac{3(9 - 4x^2)}{(-2x + 3)(x - 1)} \times \frac{1 - x}{-2x - 3}$$

$$= \frac{3(3 - 2x)(3 + 2x)}{(-2x + 3)(x - 1)} \times \frac{-(x - 1)}{-(2x + 3)}$$

$$= 3$$

Answer____[3]

In the diagram below, XZ is the chord of a circle. XY is the diameter of the circle, centre O. Given that XZ = 9 cm and YZ = 63 cm, calculate

(a) the length of XY,

(a) By using Pythagoras Theorem,

$$XY = \sqrt{9^2 + (63)^2}$$

$$= \sqrt{44}$$

$$= 12$$

Answer XY = [1]

(b) $\angle YXZ$,

(b)
$$\angle YXZ = \tan^{-1} \left(\frac{63}{9} \right)$$

= 41.4°(1d.p)

Answer ∠YXZ =_____° [1]

(c) $\angle YOZ$ in radian,

$$\Delta OXZ$$
 is an isosceles triangle.
(c) $\angle YOZ = 2 \times \angle YXZ$
(1 ext angle = sum of int. opp. angle)
= 82.8192°
= 1.45 rad (3sf)
OR
 ΔOXZ is an isosceles triangle.
 $\angle XOZ = 180^{\circ} - (2 \times 41.4096)^{\circ}$
= 97.1807° (\angle on a str. line)
 $\angle YOZ = \pi - \left(\frac{97.1807}{180}\right)\pi$
= 1.45 rad (3s.f)

Answer $\angle YOZ = \underline{\hspace{1cm}} rad [2]$

(d) the area of the major segment YZ.

(d) Area of the major segment YZ = area of major sector YZ + area of triangle YOZ $= \frac{1}{2}(6)^2(2\pi - 1.445469) + \frac{1}{2}(6)^2 \sin(1.445469)$ $= 105 \text{ cm}^2(3\text{s.f})$ OR

OR
Area of major sector $YOZ = \frac{360 - 82.8192}{360} \times \pi(6)^2$ $= 87.0789 \text{ cm}^2$ Area of triangle $YOZ = \frac{1}{2} \times (6)^2 \times \sin(82.8192)$ $= 17.8168 \text{ cm}^2$ Area of major segment $YZ = 105 \text{ cm}^2(3s.f)$

 $Answer = \underline{\qquad \qquad cm^2 [3]}$

12

$y = x^3 - 4$	$y = -3(4)^x$	$y = 4 - x^2$	$y = 4x^{-2}$
$y = -2x^{-4}$	$y = 4 - x^3$	$y = -3(-4)^x$	$y = x^2 + 4$

Write down a possible equation for each of the sketch graphs below. In each case select one of the equations from the box above.

(a)
$$y = 4 - x^3$$

(b)

(b)
$$y = -3(4)^x$$

13 Make x the subject in the equation $y = \sqrt{x^2 - 8x + 16 - y^2}$.

$$y = \sqrt{x^2 - 8x + 16 - y^2}$$

$$y^2 = x^2 - 8x + 16 - y^2$$

$$2y^2 = x^2 - 8x + 16$$

$$2y^2 = (x - 4)^2$$

$$x - 4 = \pm \sqrt{2}y$$

$$x = 4 \pm 2y$$

Answer____[3]

In the diagram shown below, it is given that AP = 5 cm, BP = 2 cm and AR = 3 cm. ARC, ABP and RQP are straight lines.

Show, with clear reasons, that triangle ABC is congruent to triangle ARP.

[2]

In triangle ABC and triangle ARP,

Angle A is common.

Angle ABC = Angle ARP = 90° (given)

AB = 5 - 2 = 3 cm = AR

Therefore triangle $ABC \equiv \text{triangle } ARP \text{ (AAS)}$

A lake has an actual area of 2.5 km². The area of the lake on the map is 40 cm². The distance between two towns on the map is 45 cm. Find the actual distance, in kilometres, between the two towns.

Area Scale = $40 \text{ cm}^2 : 2.5 \text{ km}^2$

 $= 40 \text{ cm}^2 : 2.5 \times 100000 \times 100000 \text{ cm}^2$

= 1:625000000

Linear Scale = 1:25000

= 1 cm : 0.25 km

= 45 cm : 11.25 km

OR

Secondary Four Preliminary Mathematics Examination 2021

[Turn Over]

 $40 \text{ cm}^2 \text{ on the map} = 2.5 \text{ km}^2 \text{ on the ground}$ $\sqrt{40}$ cm on the map = $\sqrt{2.5}$ km on the ground $1 \text{ cm} = \frac{\sqrt{2.5}}{\sqrt{40}} \text{ km}$ $45 \text{ cm} = 45 \times \frac{\sqrt{2.5}}{\sqrt{40}} = 11.25 \text{ km}$ Let the distance between the two towns be d km.

$$\left(\frac{4d}{d}\right) = \frac{70}{2.5}$$

$$\frac{2025}{d^2} = 16$$

$$d^2 = \frac{2025}{16}$$

$$d = \frac{45}{4} (d > 0)$$

Answer

km [3]

Solve the inequalities $\frac{8x-12}{2} \le 3x+1 < \frac{17x}{3}$. (a) 16

Hence, write down all the prime numbers that satisfy $\frac{8x-12}{2} \le 3x+1 < \frac{17x}{3}$. (b)

The prime numbers are 2, 3, 5 and 7 [1]

Answer

17 Factorise completely $4x^2 - 12xy + 9y^2 - 1$.

$$4x^{2} - 12xy + 9y^{2} - 1 = (2x - 3y)^{2} - 1^{2}$$
$$= (2x - 3y - 1)(2x - 3y + 1)$$

Answer_____[2]

The Venn diagram shows the elements of ξ and three sets A, B and C. $\xi = \{x: x \text{ is a positive integer such that } 0 < x < 14\}$

(a) Describe in words the elements in set C.

(a) The elements in set C are the prime numbers between 0 and 14. OR The set C is the set of prime numbers.

(b) Use one of the symbols below to complete each statement.

$$\emptyset \subset \not\subset \not\in \in \xi$$

(i)
$$A' \cap (B \cap C) = \dots$$

(b) (i) Ø (ii) ∈

- The time taken to assemble a car is inversely proportional to the number of workers involved. 4 workers can complete the assembly in x days. If 6 more workers are involved, the assembly can be completed 3 days in advance.
 - (a) Find the value of x.

```
Let W = number of works, D = number of days required
x = \frac{k}{4}
k = 4x
x - 3 = \frac{k}{10}
k = 10x - 30
10x - 30 = 4x
x = 5
```

 $Answer x = \underline{\hspace{1cm}} [2]$

- (b) Find the number of workers required if the assembly is to be completed in 2 days.
- (b) When x = 5, $5 = \frac{k}{4}$ k = 20 $D = \frac{20}{W}$ When D = 2 days, W = 10 workers.

Answer [2]

In the figure, ABCD is a quadrilateral. The point X is such that XB and XD are the angle bisectors of angle ABC and angle ADC respectively.

Reflex angle $BCD = 200^{\circ}$ and reflex angle $BXD = 225^{\circ}$. Calculate angle BAD.

Obtuse angle $BCD = 360^{\circ} - 200^{\circ} = 160^{\circ}$ (Angles at a point)

Obtuse angle $BXD = 360^{\circ} - 225^{\circ} = 135^{\circ}$ (Angles at a point)

Angle CBX + angle CDX = 360° – 160° – 135° = 65° (angle sum of quadrilateral BCDX)

Since XB and XD bisect angle ABC and angle ADC respectively.

Angle ABC + angle $ADC = (\angle CBX + \angle CDX) \times 2$

$$=65^{\circ} \times 2 = 130^{\circ}$$

Angle $BAD = 360^{\circ}-130^{\circ}-160^{\circ} = 70^{\circ}$ (angle sum of quadrilateral ABCD)

Answer_____[4]

21 (a) An open container in a shape of an inverted cone has radius of 10 cm and height of 30 cm. Water is poured into the container at a constant rate of 5π cm³/s until it is completely filled to the brim.

Find the time taken for the container to be completely filled.

*nswer*_____s [1]

(b) Sketch the graph of the water-level against time below.

A popular drink is produced in two similar bottle sizes. The height of the large bottle A is 18 cm while the height of the smaller bottle B is 12 cm.

If the selling prices of bottles A and B are \$24.90 and \$6.90 respectively, which bottle provides better value for money? Justify your answer clearly. [3]

Secondary Four Preliminary Mathematics Examination 2021

[Turn Over]

$$\frac{\text{Volume of A}}{\text{Volume of B}} = \left(\frac{18}{12}\right)^3 = \frac{5832}{1728} = \frac{27}{8}$$

Cost of 1 unit³ of volume for
$$A = \frac{$24.90}{27}$$

Cost of 1 unit³ of volume for
$$B = \frac{$6.90}{8}$$

Since 1 unit³ of liquid in bottle B cost lesser than 1 unit³ of liquid in bottle A, bottle B is more value for money.

Note: Only award first method mark if student use 1cm3 instead of 1unit3

The cumulative frequency diagram shows the times taken by 200 girls from school A running 2.4 km test. The box-and-whisker pot shows the times for another group of girls from school B.

Timing in minutes

Timing in minutes

(a) 75% of the girls in school B failed the test. Find the number of girls who passed in school A.

(a) From school B , $Q_1 = 14$ mins, which is the passing time.
Hence, number of girls in school A who passed the test
= 60 (from curve)

Answer	F 1	1	1
TIM INCI		1	ł

(b) 30% of the girls in school A took longer than t minutes. Find t.

[2]

30% of the girls =
$$\frac{30}{100} \times 200 = 60$$

From the curve, 140 girls took 16 minutes or less. So $t = 16$

(c) Find the proportion of girls in school A who took between 14.5 minutes and 17 minutes to complete the run.

t=14.5 Cumulative Frequency = 80
t=17 Cumulative Frequency = 177
Proportion of girls =
$$\frac{177-80}{200} \times 100 = 48.5\%$$

Answer	[2]

24 (a) Construct kite ABCD. AD = CD = 9 cm. AB and BC have already been drawn. Measure and state the length of the longest diagonal.

Answer

(b) Construct the perpendicular bisector BC.

[1] [1]

- (c) Construct the bisector of the angle ABC.
 - (b) / (c) See diagram
- (d) ABCD represents a plot of land which is to be used for a park. A café is to be built in park, nearer to A than to D and nearer to AD than AB. Shade the region where the café is to be built.
 - (d) See diagram

- Ahmad and Beng Hai want to rent lockers in school. The lockers are in two levels. Lockers 1A to 1C are on the lower level and Lockers 2A to 2C are on the next level. Lockers are assigned to each student randomly.
 - (e) Using a possibility diagram, represent the two lockers that the two boys can be allocated such that they are next to each other on the same level.

 Answer

	Ahma	d	• • • • • • • • • • • • • • • • • • • •				
Beng Hai		1 A	1B	1C	2A	2B	2C
Hai	1A		1	1	1	1	1
	1B	1	270 E 240 C)	1	1	1	1
	1C	1	1		1	1	1
	2A	1	1	1	Market	1	1
	2B	1	1	1	1		1
	2C	1	1	1	1	1	

[2]

(b) Find the probability that Ahmad and Beng Hai are randomly allocated lockers next to each other on Level 2.

Total number of possible outcomes = 30
P(Ahmad and Beng Hai have lockers on Level 2) $= \frac{4}{30} = \frac{2}{15}$

Answer_____[1]

(c) Find the probability that Ahmad and Beng Hai are randomly allocated lockers on different levels.

Total number of possible outcomes = 30
P(Ahmad and Beng Hai have lockers on different levels) $= \frac{18}{30} = \frac{3}{5}$ Answer______[1]

(d) If the lockers 2C was not available. Find the probability that the friends will be allocated lockers next to each other at any level.

Total number of possible outcomes = 20
P(Ahmad and Beng Hai have lockers next to each other) $= \frac{6}{20} = \frac{3}{10}$

nswer_____[2]

End of paper

Secondary Four Preliminary Mathematics Examination 2021

[Turn Over]

Qn	Solutions
1	A sequence is given by the formula $P_{n+1} = (P_n)^2 + mP_n$, where m is a constant.
1a	Given that $P_1 = 3$, show that $P_2 = 3m + 9$.
	$P_2 = (P_1)^2 + m(P_1)$
	$=3^2+m(3)$
	=3m+9 (shown)
1b	Given that $P = -\frac{3}{4}$, find the value of m ,
	$\frac{P_2 = -\frac{3}{4}}{2}$
	$3m+9=-\frac{3}{4}$
	$3m+9 = -\frac{3}{4}$ $m = \left(-\frac{3}{4} - 9\right) \div 3 = -3\frac{1}{4}$ 13.
l:	$(\text{accept} - 3.25, -\frac{13}{4})$
4 •	
1ci	By using the answer in (b), find P_3 , P_4 and P_5 .
	$P_{3} = \begin{pmatrix} 3 & 4 & 13 & 1 & 3 \\ -4 & 4 & 4 & 4 \end{pmatrix} = 3$ $P_{4} = (3)^{2} + \begin{pmatrix} -13 & 1 & 3 \\ -4 & 4 & 4 \end{pmatrix} = 3$ $P_{4} = (3)^{2} + \begin{pmatrix} -13 & 1 & 3 \\ -4 & 4 & 4 \end{pmatrix} = 3$
	$P_5 = \left(\frac{3}{4}\right)^2 + \left(\frac{13}{4}\right) \left(\frac{3}{4}\right) = 3$
1cii	By considering the terms of P_1 , P_2 , P_3 , P_4 and P_5 or otherwise, find
	the value of P_{2016} .
	$P_1=3$
	$P = -\frac{3}{4}$
	· · · · · · · · · · · · · · · · · · ·
	$P_3=3$
	$P_3=3$ $P=-\frac{3}{4}$
	$P_{5}=3$ $P_{2016}=3(-\frac{13}{4})+9=-\frac{3}{4}$

2a	The diagram shows a pyramid ABCDEFG. The base of the	
	pyramid is a regular pentagon of side 6 cm. The tip F is vertically	
	above the centre of the pentagon, G , and $AF = 14$ cm. Calculate	
	the angle AGB .	
	\mathbf{F}	
	$A = \frac{360}{100} = 72^{\circ}$	
	5 5	
-		
2b	Show that $AG = 5.1039$ cm, correct to five significant figures.	[2]
	$\frac{3}{}=\sin 36^{\circ}$	
	\overline{AG}	
	$AG = \frac{3}{100} = 5.10390485$	
	$AG = \frac{1}{\sin 36^{\circ}} = 3.10390483$	
	= 5.1039 cm	
	- 3.1039 Cm	
	$A \nearrow 3 \text{ cm} $	
2c	Calculate the height of the pyramid, FG.	[2]
	$FG^2 = AF^2 - AG^2$	
	$FG^2 = 14^2 - 5.10390485^2 = 169.9501553$	
	FG = 13.03649321 = 13.0 cm	
2d	The pyramid is the model for a paper weight that is to be gold plated. To reduce costs the pyramid is made smaller such that the smaller pyramid remains geometrically similar to the original pyramid but its height is reduced by 35%.	[3]
	The surface area of the large pyramid is S cm ³ . Express the	1
	surface area of the new pyramid as a percentage of S .	
	FG = 13.03649321cm	
	New height = 0.65×13.03649321	
	= 8.473720587 cm	
	Į	

Page 2 of 18

	$\frac{\text{Surface of small pyramid}}{S} = \frac{8.473720587^2}{13.03649321^2} = 0.4225$
	$S = \frac{13.03649321^2}{13.03649321^2} = 0.4223$
	Surface of small pyramid = 0.4225S
	bullion of billion pyromine of land
	S - 0.4225S
	The percentage = $\frac{S - 0.4225S}{S} \times 100$
	= 57.75%
	·
3i	$G' = A + A + \cdots + B(2A) + O(1-2)$ and $B(A-(b))$ lie on A
31	Given that the points $P(3,k)$, $Q(1,-2)$ and $R(-4,-6k)$ lie on a
	straight line, find the value of k.
	Gradient of AB = Gradient of AC
	$\frac{-2-k}{1-3} - \frac{-6k-k}{-4-3}$
	-7(-2-k) = -2(-7k)
	14 + 7k = 14k
	k=2
1	
3ii	Find the length of the line segment PQ.
ЭЦ	That the length of the line segment? Q.
	(a 1) ² (a (a) ²
	Length of line segment $PQ = \sqrt{(3-1)^2 + (2-(-2))^2}$
	$=\sqrt{4+16}$
	= 20
	= 4.47 unit (3s.f)
-	7.77 unit (35.1)
4	Quadrilateral $ABCD$ is a field with $AB = 90$ m and $BC = 78$ m and
**	A is due north of D. The bearing of B from A is 100° , the bearing
	of B from C is 025° and the bearing of D from C is 278° .
	of B from C is 025 and the bearing of B from C is 276.
	A
	90 m
	B
	78 m
	D
L	

Page 3 of 18

4ai	Show that angle $ABC = 75^{\circ}$.
	Draw a north line on point B . Label due south point as E .
	$\angle EBA = 100^{\circ} (alt. \angle, BE // DA)$
	$\angle EBC = 25^{\circ}$ (alt. \angle to bearing of B from C)
	$\angle ABC = 75^{\circ}$
4aii	Calculate the bearing of C from D ,
	Draw a north line on point C . Label due south point as F .
	$\angle FCD = 278^{\circ} - 180^{\circ}$
	= 98°
	The bearing of C from $D = 098^{\circ}$
4aii	Calculate the length of AC.
	Using cosine rule,
	$AC^2 = 90^2 + 78^2 - 2(90)(78)\cos 75^\circ$
	$AC = \sqrt{0550.18061}$
	$AC = 102.714 \mathrm{m}$
	AC = 103 m (3s.f)
4bi	A drone hovers at a height of 70 m above D. A man of height 1.75r
	walks along path
	AC. He stopped at E to take a picture of the drone when the maximum angle of
	depression from the drone to the top of the man's head was 58°.
	Calculate the length of DE.
	Vertical height of the drone from man = $(70 - 1.75)$ m
	= 68.25m
	$\tan 58^\circ = \frac{68.25}{DE}$
	DE = 42.647 m
	DE = 42.6 m (3s.f)
	Note: If student didnt consider the height of the man in the
	calculation, zero mark.
4bii	Calculate the area of the field ABCD.
	Area of $ABCD = \frac{1}{2}(102.714)(42.647) + \frac{1}{2}(90)(78) \sin 75$
	= 5580.621m ²
	$= 5580 \text{ m}^2 \text{ (3s.f)}$
5	Adam runs a drink stall franchise in 4 locations. The number of
	cups for
	each type of drink sold a day is shown in the table below.

Page 4 of 18

		Types of Drink				
			Coffee	Tea	Fruit	
					Juice	
	Location	Branch A	60	42	5	
		Branch B	24	30	0	
		Branch C	30	35	14	
		Branch D	30	40	20	
5a		ne above info	rmation as	a 4 × 3 ma	trix P.	[1]
	$\mathbf{P} = \begin{pmatrix} 60 & 42 \\ 24 & 30 \\ 30 & 35 \\ 30 & 40 \end{pmatrix}$	0 14				
	30 10		· -		<u> </u>	
5b	The price of	drinks are sl	nown in the	table belov	w.	
	Drink	<u> </u>		rice (SGD\$		-
	Coffe	ee		.50		
1	Tea		1			
	Fruit	Juice	2			
	Represent th	e above info	rmation as	a 3 × 1 ma	trix N.	
	$N=\begin{bmatrix}1\\2\end{bmatrix}$					
5c		e matrix T =	PN.			[1]
	$\mathbf{T} = \begin{pmatrix} 60 & 42 & 5 \\ 24 & 30 & 0 \\ 30 & 35 & 1 \\ 30 & 40 & 2 \\ 42 & 66 \\ 108 & 125 \end{pmatrix}$	$\begin{bmatrix} 1.5 \\ 4 \\ 2 \end{bmatrix}$				
5d	State what e	each of the el	ements of r	natrix T re	presents.	
	The elemen	nts of matrix om all the di	T represent	the total a	mount of money	
	Or					
The elements of matrix T represent the total amount of money collected from all the drinks from each branch respectively.						

Page 5 of 18

	Or			
	The elements of mat collected from all the respectively.			
	Or			
	The elements of mate collected from all the			
5ei	The cost of all the ing shown in the table be	redients per day for Branch Alow.	A, B, C and D is	[2]
<u> </u>		All ingredient	s for drinks	
	Branch	In USD	In SGD	
	A		27	
	B	12 P	16.20	
	$\frac{B}{C}$	16	· · · · · · · · · · · · · · · · · · ·	
	$\frac{c}{D}$	23	21.60	
-		23	q	
j	Find the value of p an	d a		
	$\frac{1 \text{ ind the value of } p \text{ and } p}{p = 20}$	u q.		
l 1.	•			
	q = 31.05			
F - 12	Th 1 1 1 1			
5eii	The rental and operati	ng cost per day for Branch A	B, C and D is	[2]
	shown in the table bel	ow.		
			_	
	Branch	Rental & Operating		·
		Cost (SGD)		
	A	40		
	В	45	ĺ	
	C	50		
	D	60	1	
			J	
	Using matrix operation	ns, calculate the total amount	of profit in	
	SGD Adam made that	day.	-	
	(142) (40) (27)	75		
	66 45 16.20) 4.8		
	_ _[<u> </u>		
	100 50 50	al = ac a		
	108 50 21.6			
	$\begin{vmatrix} 108 \\ 125 \\ \end{vmatrix} \begin{vmatrix} 50 \\ 60 \\ \end{vmatrix} \begin{vmatrix} 21.6 \\ 31.0 \end{vmatrix}$			
	$\begin{pmatrix} 125 \end{pmatrix} \begin{pmatrix} 60 \end{pmatrix} \begin{pmatrix} 31.0 \end{pmatrix}$			
	$\begin{pmatrix} 125 \\ \end{pmatrix} \begin{pmatrix} 60 \\ \end{pmatrix} \begin{pmatrix} 31.0 \\ \end{pmatrix}$			
	$ \begin{bmatrix} 125 \\ \end{bmatrix} \begin{bmatrix} 60 \\ \end{bmatrix} \begin{bmatrix} 31.0 \\ 4.8 \end{bmatrix} $	5 \ \ \ (33.95 \)		
	$ \begin{bmatrix} 125 \\ 1 \end{bmatrix} \begin{bmatrix} 60 \\ 60 \end{bmatrix} \begin{bmatrix} 31.0 \\ 36.4 \end{bmatrix} $ $ = (150) $	5 \ \ \ (33.95 \)		
	$\begin{pmatrix} 125 \\ \end{pmatrix} & \begin{pmatrix} 60 \\ \end{pmatrix} & \begin{pmatrix} 31.0 \\ 4.8 \\ \end{pmatrix} = (150)$	5 \ \ \ (33.95 \)		
	$ \begin{pmatrix} $).15)		
	$ \begin{pmatrix} $	5 \ \ \ (33.95 \)		

Page **6** of **18**

6	44 boys ran the 2.4 km and their timings are shown in the table.							
	t (minutes)	$8 \le t < 9$	9≤ <i>t</i> <10	10 ≤ t < 11	11≤t<12	$12 \le t < 1$	3 13≤ <i>t</i>	<14
	Frequenc y	1	h	12	11	k	6	
6a	nearest inte	ger the val	lue of h and	.477 minutes I the value of	s. Estimate to	the	[4]	
	1+h+12+1							
	1(0.5) 1(1	h+k=		5) . L(12.5)	\ . 6(12.5)			
•	$\frac{1(8.5) + h(9)}{1(8.5)}$	9.5) +12(1)		(.5) + k (12.5))+0(13.3) =	11.477		
			44	c	0.5h + 12.5k =	= 162.988		
	9.5(14-k)	$\pm 12.5k = 1$	62.988	,		102.500		
	9.5(14-16)		29.988					
			29.966 9.996					
	So $h = 4$	=1	l U					
	BO n = 4							
			, , , , , , , , , , , , , , , , , , ,				,	
6b	Estimate th	ne standard	deviation.				[1]	
	Standard D	eviation =	$\sqrt{\frac{5867}{44}} - (1$	$(1.477)^2 = 1$.2701minutes			
6c	Explain wl	hy in this c	ase, the me	an is better t	han the med	ian as a	[1]	
	There are n							
					1 ,1 ,		[0]	
6d	Another gr	roup of 35 standa	boys ran th	e 2.4 km and	their mean	ana	[2]	
	deviation v			1 2.10 minut	es respective	ly.		
		Comm	ent on		-			
	the timings	s of these t	wo groups	of boys.	of 11 477 r	ninutes		
ŀ	The first gr	oup of boy	ys is taster a of the seco	as their mear nd group wit	h mean 11.7	minutes.		
	The timing deviation of 2.10 minut	of 1.27 min	rst group is utes is less	more consist than that for	stent as their the second	standard group at		
-	2.10 mmu	<u>v.</u>	·····		····			
7	OB = 2OA	s such that , where O	is the origin	e y-axis whiln, given that			[3]	
	thro	ough the po	oint				L	

Page 7 of 18

	$\left(\frac{4,\frac{5}{2}}{2}\right)$, find the equation of the line AB.	
	Gradient of line $AB = -\frac{1}{2}$	
	$\overline{2}$	
	Equation of line AB is in the form $y = mx + c$ and using the given	
	point $(4, \frac{5}{2})$,	
	5 1	
	$\frac{5}{2} = -\frac{1}{2}(4) + c$	
	$c = \frac{9}{}$	
	$c = \frac{1}{2}$ $\therefore y_{AB} = -\frac{1}{2}x + \frac{9}{2}$	
	$\therefore y = -\frac{1}{4B} + \frac{1}{2}$	
	2 2	
8	In the diagram, line AB and line CD are tangents to point A and	
:	point D respectively on the circumference of the circle with centre	
	O. Angle $DAE = 33^{\circ}$, angle $ECD = 59^{\circ}$ and AEC is a straight line. E, F , and G are points on the circumference of the circle.	
	into. 2, 1, and 6 are points on the circumstence of the circle.	
	$B \longrightarrow A$	
8a	Find angle EOD.	[1]
	Angle $EOD = 66^{\circ}$ (angle at centre = 2 angle at circumference)	[1]
8b	Find angle EFD	
	Angle $EFD = 33^{\circ}$ (angle in same segment)	~~~
8c	Find angle EGD	
	Angle $EGD = 147^{\circ}$ (angle in opp segment)	
8d	A circle is drawn with the line AC as its diameter Frank.	[0]
ou	A circle is drawn with the line AC as its diameter. Explain why point D will	[2]
	not lie on the circumference of the circle.	7

Page **8** of **18**

	Angle $ADC = 180^{\circ} - 59^{\circ} - 33^{\circ} = \underline{88}^{\circ}$, and is <u>not 90°</u> , <u>angle in semicircle property does not apply</u> and hence A will not lie on the circumference of the circle.	
8e	Line AB and CD are extended and meet at T. Find the angle ATD. Angle $ADC = 180^{\circ} - 33^{\circ} - 59^{\circ} = 88^{\circ}$ Angle $ODA = \text{angle } OAD = 90^{\circ} - 88^{\circ} = 2^{\circ}$. (tan perpendicular to rad, base of isosceles triangle) Angle $BAD = 90^{\circ} - 2^{\circ} = 88^{\circ}$ (tan perpendicular to rad) Angle $ATD = 180^{\circ} - 88^{\circ} - 88^{\circ} = 4^{\circ}$ (angle sum of triangle)	
9	Mr Chan driving a car at 50 km/h passes a lamppost A and stops at lamppost B, one hour later. When Mr Chan passes the lamppost A, Mr Lim, on a motorcycle, starts from A and overtakes Mr Chan. The motorcycle has uniform acceleration of 80 km/h ² . The speed-time graphs of Mr Chan and Mr Lim are shown in the diagram. Speed (km/h)	
	50 Mr Chan Mr Lim 20 0700 0720 0745 0800	
9ai	Find the speed of the car at 0715 h. Speed (km/h) $ \frac{50-s}{\left(\frac{15}{60}\right)} = \frac{30}{\left(\frac{20}{60}\right)} $ $ s = \frac{55}{2} = 27\frac{1}{2} \text{ km/h} $ $ 0 $ 0 0	2]

Page 9 of 18

PartnerInLearning

 		
9ai i	Find the speed of the motorcycle at 0745 h.	[1]
<u> </u>	Speed (km/h)	
	v−0 Mr Lim	
	$\left \frac{v-0}{(45)} \right = 80$	
	$\left(\overline{60} \right)$	
}	v = 60 km/h	
:	0 0700 771 0745	
	Time (h)	
0 - 1		
9ai ii	Find the time, to the nearest minute, the motorcycle overtakes the car, given that it was between 0720 h and 0745 h	[4]
	Let t minutes be the time taken by Mr. Lim to overtake Mr. Chan	
	Speed (km/h)	
	†	
	50 Mr Chan	
	Mr Lim	
	20	
	0	
	0700 0720 0745 0800	
	Time (h)	
į	Distance travelled by Mr Chan from 0700 to 0720	
	·	
	$= \frac{1}{2} (50 + 20) \times \frac{20}{60} = \frac{35}{3} \text{ km}$	
	Distance travelled by Mr Chan from 0720 until overtaken	
	$=\left(\frac{t-20}{60}\right) \times 20 = \frac{t-20}{3} \text{ km}$	
	Distance travelled by Mr Lim from 0700 until overtaking Mr Chan	
	$= \frac{1}{2} \times \frac{t}{60} \times \left(80 \times \frac{t}{60}\right) = \frac{t^2}{90} \text{ km}$	T in constant

Page 10 of 18

	At the overtaking time, Distance travelled by Mr Chan = Distance travelled by Mr Lim				
	$\frac{35}{3} + \frac{t - 20}{3} = \frac{t^2}{90}$				
	3 3 90				
	$t^2 = 90\left(\frac{35}{13} + \frac{t - 20}{3}\right)$				
	=1050+30t-600				
	$t^2 - 30t - 450 = 0$				
	$t = \frac{-(-30) \pm \sqrt{(-30)^2 - 4(1)(-450)}}{2(1)}$				
	2(1)				
	= 40.9808 or -10.9808(NA)				
	The time is 0741 h.				
	I I I I I I I I I I I I I I I I I I I				
9b	Sketch the acceleration time graph for Mr. Chan.	[2]			
yb	Acceleration from $0700 \text{ to } 0720 = \frac{50-20}{20} = -90 \text{ km/h}^2$	[2]			
Ì	Acceleration from $0/00$ to $0/20 = \phantom{00000000000000000000000000000000000$				
	$-\frac{20}{60}$				
	Acceleration from 0745 to 0800 = $\frac{-\frac{20}{60}}{\frac{15}{15}}$ = -40 km/h ²				
	Acceleration from $U/45$ to $U800 = {15} = -40 \text{ km/n}$				
	$-\frac{15}{60}$				
	00				
	A academation (Irm/h²)				
	Acceleration (km/h²)				
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
	0 00 0 20 07 5 0800				
	_80	:			
	-90				
	1 21 1 24 (45) 774	oirolo vrith			
10	The diagram below shows a rectangle with breadth $(x+15)$ cm. The	circle with			
	centre at A has a radius of	es Care			
	10 cm. The semicircle with centre at B and the semicircle with centre congruent and each has a radius	C alc			
	of x cm. The small circle with centre A touches the semicircles at po	oint D and E .			
	The line AO bisects the				
	length of the rectangle and is a tangent to both of the semicircles.				
		cm			

	Page 11 (x+15)	
10a	Write down an expression, in terms of x , for the length AC .	[1]
,	AC = (x+10) cm	
101	W	
10b	Write down an expression, in terms of x , for the length OA .	[1]
	OA = (x+15)-10	
	OA = (x+5) cm	
10c	Hance write down an equation and show that it is a U.S.	r23
100	Hence, write down an equation and show that it simplifies to $x^2 - 10x - 75 = 0$.	[3]
	$AC^2 = QA^2 + QC^2$	
	$(x+10)^2 = (x+5)^2 + x^2$	
	$x^2 + 20x + 100 = x^2 + 10x + 25 + x^2$	
	$-x^2 + 10x + 75 = 0$	
	$x^2 - 10x - 75 = 0$	
10d	Solve the equation $x^2 - 10x - 75 = 0$.	[2]
	$x^2 - 10x - 75 = 0$	
	(x-15)(x+5)=0	
	x = 15 or x = -5	
4.0		
10e	Hence, find the shaded area.	[2]
	Shaded area = $\pi R^2 + \pi r^2 = \pi \left(15^2 + 10^2 \right)$	
	≈ 1021.01	
	$\approx 1020 \text{ cm}^2$	
11	A couple intends to purchase a HDB flat and they intend to take a loan from a financial institution. The formula to calculate the monthly	
	mortgage payment is given by	

Page 12 of 18

		P	$\left[\frac{i}{100}\left(1+\frac{i}{100}\right)^n\right]$		
		M = -	$ \left(\frac{i}{100} \left(1 + \frac{i}{100}\right)^n\right) \\ \left(1 + \frac{i}{100}\right)^n - 1\right) $		
	loan amount, i of months requ (Source: https://to-calculate-me	e monthly mortalis the monthly is the monthly is ired to repay the www.businessisted ortgage- ct=If%20you%20	gage payment, P is nterest rate, and n is	s the number -finance/how-	
11 a	If the couple ta	kes a \$100000 lost paid as a perce	oan to be repaid in 1 entage of the loan, as	0 years, find suming an	[3]
	$P = 100000$ $M = \frac{P\left(\frac{i}{100}\right)}{\left(1 + \frac{i}{100}\right)}$ $= \frac{100000}{\left(1 + \frac{i}{100000}\right)}$ $= 920.1345$	$-\frac{1}{600}\Big)^{120}-1$	$n = 10 \times 12 = 120$		
11 b	they will need down-paymen	to pay 25% of the total to just they intend to just the contraction of	an from a financial in price as down pay pay up to \$50000. The mation in the tables in Singapore	ment. For the	[3]
	Type	HDB BTO Flats (Non- Mature Estates)	HDB BTO Flats (Mature	esale Flats	
	Two-Room (Flexi)	\$90,000 to \$162,000	\$137,000 to \$277,000	_	

Page 13 of 18

Three-Room	\$164,000 to	\$205,000 to	\$350,000 to
	\$248,000	\$421,000	\$380,000
Four-Room	\$253,000 to	\$311,000 to	\$420,000 to
	\$381,000	\$617,000	\$550,000
Five-Room	\$405,000 to	\$423,000 to	\$520,000 to
	\$516,000	\$725,000	\$700,000

Source: https://www.singsaver.com.sg/blog/costs-of-bto-flat-resale-flat-ec-and-condo-in-singapore

(Source: https://www.hdb.gov.sg/residential/buying-a-flat/resale/getting-started/types-of-flats)

Determine all the types of flats that the couple can consider purchasing.

25%	6 of the 2021 Prop	erty Prices in Sir	gapore
Two-Room (Flexi)	\$22,500 to \$40,500	\$34,250 to \$69,250	_
Three- Room	\$41,000 to \$62,000	\$51,250 to \$105,250	Past the \$50000 limit
Four-Room	Past the \$50000 limit	Past the \$50000 \$ limit	Past the 50000 limit

From the table, the following flats are within the couple's means:

- 1. HDB BTO Flats (Non-Mature Estates) Two-Room (Flexi),
- 2. Some HDB BTO Flats (Mature Estates) Two-Room (Flexi) in the lower price range
- 3. Some HDB BTO Flats (Non-Mature Estates) Three-Room in the lower price range.

Т	
	Alternatively, since 25% is \$50000, the full price is budgeted at \$200000.
	From the table, the following flats are within the couple's means:
	1. HDB BTO Flats (Non-Mature Estates) Two-Room (Flexi),
	2. Some HDB BTO Flats (Mature Estates) Two-Room (Flexi)
	in the lower price range
	3. Some HDB BTO Flats (Non-Mature Estates) Three-Room
11.	in the lower price range. Based on the information given in the tables only, give the type of [3]
11c	flat that gives the best value for the money spent. State one
	assumption that the couple could have made.
	Since there is a range of prices, use the midpoint for each range to .
	calculate price per sq m.
	1. HDB BTO Flats (Non-Mature Estates) Two-Room (Flexi), Midpoint = \$126000,
	For 36 sq m, price per sq m is \$126000 / 36 = \$3500
	For 45 sq m, price per sq m is \$126000 / 45 = \$2800
	2. HDB BTO Flats (Mature Estates) Two-Room (Flexi)
	Midpoint = \$207000,
	For 36 sq m, price per sq m is \$207000 / 36 = \$5750 For 45 sq m, price per sq m is \$207000 / 45 = \$4600
	For 45 sq m, price per sq m is \$20,000 / 15 \$ \$ \$ \$ \$ \$ \$
	3. HDB BTO Flats (Non-Mature Estates) Three-Room in the
	lower price range
	Midpoint = \$206000. Midpoint = 62.5 sq m
	Price per sq m is \$206000 / 62.5 = \$3296
	Based on the price per sq m criterion, the first choice is a HDB BT Flats (Non-Mature Estates) Two-Room (Flexi) 45 sq m.
	Flats (Non-Mature Estates) 1 wo Room (1 10M) 10 Eq M
	OR Property (Florida
	4. HDB BTO Flats (Non-Mature Estates) Two-Room (Flexi),
	For 36 sq m, price per sq m is \$2500 to \$4500 For 45 sq m, price per sq m is \$2000 to \$\$3600
	For 43 sq m, price per sq m is \$2000 to \$\$
	5. Some HDB BTO Flats (Mature Estates) Two-Room (Flexi)
	in the lower price range
	For 36 sq m, price per sq m is \$3805.56 to \$7694.44
	For 45 sq m, price per sq m is \$3044.44 to \$6155.56
	6. Some HDB BTO Flats (Non-Mature Estates) Three-Room in
	the lower price range
	For 60 sq m, price per sq m is \$2733.33 to \$4133.33
	For 65 sq m, price per sq m is \$2523.08 to \$3815.38

Page **15** of **18**

	Deceded to			····		
	Based on the price	per sq m criterion,	the first cl	noice is a l	HDB BT	
	price range.	Estates) Two-Roor	n (Flexi) 2	sq m in	the lowe	
	Assumption, only of	ne is needed:				
		he different types of	f housing :	remaine et	ahle	
	regardless of re	egion.	i nousing	Cilitainis st	uoic	
	2. All the differen		available.			
	3. Without detaile	ed information, the	couple ass	umes that	for	
	each floor area	, there can be the fu	ill range of	f prices, e.	g. for a	
	45 m ² flat, the	prices can range fro	m \$90,00	0 to \$162,	000.	
	4. Without details	ed information, eith	er the rang	ge of mini	mum to	
	maximum, or t	he midpoint can be	used for c	alculation		
	In each category, th	le lowest price corr	esponds to	the small	est floor	
	area, and the higher	price corresponds	to the larg	ger moor an	ea.	
12	The variables of x a	and v are connected	hy the ear	nation		
- -	$\frac{1}{x^2}$ $\frac{1}{2}$	J COINICOLOG	of and odi	MALLOII		
	$y = \frac{x^2}{6} + \frac{2}{x} - 3.$					
		a volume of		4 4	1	
	Some corresponding places, are given in	g values of x and y, the table below	correct to	two decir	nai	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 1.5	2	2.5	3	
	y p	-0.83 -1.29	-1.33	-1.16	-0.83	
12	Find the value of p .	Annual Control of the	1.55	1.10	0.05	[1]
a						[±]
•	Sub x = 0.5 and y = $p = \frac{0.5^2}{6} + \frac{2}{0.5} - 3 \approx$	$y = \frac{100}{6} + \frac{1}{x}$ $= 1.04$		<u>.</u>		
12	Use a scale of 2 cm	to represent 1 vmit	deaver a la			ГЭТ
b	from $0 \le x \le 6$. Use vertical y-axis from- On your axes, plot to a smooth curve.	a scale of 4 cm to $x = 2 \le y \le 4$.	epresent l	unit, dra	w a	[3]
					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
					★ .:	
					*	
					*	

Page **16** of **18**

T		
12c	x 2 = o	[2]
	Use your graph to find the solutions of $\frac{x}{6} + \frac{z}{x} - 2^{=0}$.	
	x 2 =	
	$\frac{x^{2} + \frac{2}{6} - 2}{6} = 0$ $\frac{x^{2} + \frac{2}{2} - 2}{6} = 0$ $\frac{x^{2} + \frac{2}{3} - 2}{6} = 0$ $\frac{x^{2} + \frac{2}{3} - 2}{6} = 0$ $\frac{x^{2} + \frac{2}{3} - 2}{6} = 0$	
	$\frac{x^2}{x^2} + \frac{2}{x^2} = \frac{1}{x^2} = \frac{1}{x^2}$	
	$\frac{1}{6} \frac{1}{x}$	
	$\frac{x^2+2}{2}-\frac{2}{3}=-\frac{1}{3}$	
	$\frac{6}{6}$ x	
	y = -1	
	From the graph, when $y = -1$,	
	$x \approx 1.116(\pm 0.2)$ or $x \approx 2.769(\pm 0.2)$	
	1 × 1.110(±0.2) of 2 × 2.705(±0.2)	
12 d	By drawing a tangent, find the gradient of the curve at (3,-0.83).	[2]
	Draw a tangent at (3,-0.83)	
	Therefore gradient ≈ 0.878 ± 0.2	
		F13
12e	On the same axes, draw the line of with gradient -0.5 that passes	[1]
i	through the point with coordinates $(4,-1)$.	
	x 0 1 3	

PartnerInLearning 170 www.testpapersfree.com

12e ii	Write down the equation of this line.	[1]
	From the graph, $y = -0.5x + 1$	
12e iii	Write down the x-coordinates of the points where the line intersects the curve.	[2]
	$x \approx 0.544(\pm 0.2)$ or $x \approx 3.29(\pm 0.2)$	
12e iv	These values of x are the solutions of the equation $x^3 + Ax^2 - 24x + B = 0$. Find the value of A and of B.	[2]
	The values of x are the solutions for the pair of simultaneous equations	
	$y = \frac{x^2}{6} + \frac{2}{x} - 3$ and $y = -0.5x + 1$	
	$\frac{x^2}{6} + \frac{2}{x} - 3 = -0.5x + 1$	
	$x^3 + 12 - 18x = -3x^2 + 6x$	
	$x^3 + 12 - 18x + 3x^2 - 6x = 0$	
	$x^3 + 3x^2 - 24x + 12 = 0$	