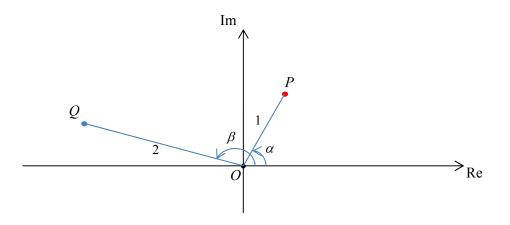
SRJC Paper 1

1 The complex numbers z and w satisfy the simultaneous equations iz + w = 2 + i and 2w - (1+i)z = 8 + 4i.

Find z and w in the form of a + ib, where a and b are real.

- 2 Solve the inequality $\frac{2x^2 + 2x 1}{x^2 + 2x} \le 1$. Hence, solve the inequality $\frac{2x^2 + 2|x| - 1}{x^2 + 2|x|} \le 1$. [6]
- **3** For $\alpha, \beta \in \mathbb{R}$ such that $2\alpha < \beta$, the complex numbers $z_1 = e^{i\alpha}$ and $z_2 = 2e^{i\beta}$ are represented by the points *P* and *Q* respectively in the Argand diagram below.



Find the modulus and argument of the complex numbers given by $\frac{i}{2}z_2$ and $\frac{z_1^2}{z_2}$. [4] Copy the given Argand diagram onto your answer script and indicate clearly the following

points representing the corresponding complex numbers on your diagram.

(i)
$$A: \frac{1}{2}z_2$$
 [1]

(ii)
$$B: \frac{z_1^2}{z_2}$$
 [1]

You are expected to indicate clearly the relevant moduli and arguments for parts (i) and (ii) on your Argand diagram.

If $\beta = \frac{11}{12}\pi$, find the smallest positive integer *n* such that the point representing the complex number $(z_2)^n$ lies on the negative real axis. [3]

4 The curve C has equation $4y^2 - 8y - x^2 - 4x - 4 = 0$.

(i) Using an algebraic method, find the set of values that *y* cannot take. [3]

(ii) Showing any necessary working, sketch *C* and indicate the equations of the asymptotes. [4]

[5]

5 The function f is defined by

$$f: x \mapsto \frac{\pi}{2} \tan\left(\frac{x}{2}\right), \quad x \in \mathbb{R}, -2\pi \le x \le 2\pi.$$

- (i) Explain why f^{-1} does not exist.
- (ii) The domain of f is restricted to $(-\pi, a)$ such that a is the largest value for which the inverse function f^{-1} exists. State the exact value of a and define f^{-1} in a similar form. [3] In the rest of the question, the domain of f is $(-\pi, a)$, where a takes the value found in

In the rest of the question, the domain of f is $(-\pi, a)$, where a takes the value found in part (ii).

- (iii) Sketch, in a single diagram, the graphs of y = f(x) and $y = f^{-1}(x)$, labelling each graph clearly.Write down the equation of the line in which the graph of y = f(x) must be reflected in order to obtain the graph of $y = f^{-1}(x)$ and draw this line on your diagram. [3]
- (iv) Verify that $x = \frac{\pi}{2}$ is a root of the equation x = f(x). Hence, explain why $x = \frac{\pi}{2}$ is also a solution to the equation $f(x) = f^{-1}(x)$. [2]
- 6 Referred to the origin *O*, the two points *A* and *B* have position vectors given by **a** and **b**, where **a** and **b** are non-zero vectors. The line *l* has equation $\mathbf{r} = 2\mathbf{a} + \lambda(\mathbf{a} + 2\mathbf{b})$, where $\lambda \in \mathbb{R}$. The point *E* is a general point on *l* and the point *D* has position vector $2\mathbf{a} \mathbf{b}$.

Given that vector **a** is a unit vector, vector **b** has a magnitude of $\sqrt{2}$ units and that $\mathbf{a} \cdot \mathbf{b} = 1$,

- (i) find the angle between vectors **a** and **b**, and, $[2] \rightarrow \rightarrow$
- (ii) by considering $DE \cdot DE$, find an expression for the square of the distance *DE*, leaving your answer in terms of λ . [3]

Hence or otherwise, find the exact shortest distance of *D* to *l*, and write down the position vector of the foot of the perpendicular from *D* to *l*, in the form $p\mathbf{a} + q\mathbf{b}$. [3]

- 7 (a) By considering the Maclaurin expansion for $\cos x$, show that the expansion of $\sec x$ up to and including the term in x^4 is given by $1 + \frac{1}{2}x^2 + \frac{5}{24}x^4$. Hence show that the expansion for $\ln(\sec x)$ up to and including the term in x^4 is given by $\left[\frac{1}{2}x^2 + Ax^4\right]$ where *A* is an unknown constant to be determined. [4] (b) The variables *x* and *y* satisfy the conditions (A) and (B) as follows:
 -) The variables x and y satisfy the conditions (A) and (B) as follows $\frac{1}{2}$

$$(1+x^2)\frac{dy}{dx} = 1+y$$
 ---(A)
 $y = 0$ when $x = 0$ ---(B)

- (i) Obtain the Maclaurin expansion of y, up to and including the term in x^3 .
- (ii) Verify that both conditions (A) and (B) hold for the curve $\ln(1+y) = \tan^{-1} x$.[2]
- (iii) Hence, without using a graphing calculator, find an approximation for $\int_{0}^{\frac{1}{2}} \left(e^{\tan^{-1}x} 1 \right) dx .$ [2]

[4]

[2]

8 (a) The fifth, ninth and eleventh terms of a geometric progression are also the seventh, twenty-fifth and forty-ninth terms of an arithmetic progression with a non-zero common difference respectively.

Show that $3R^6 - 7R^4 + 4 = 0$, where *R* is the common ratio of the geometric progression and determine if the geometric progression is convergent. [4]

- (b) A semicircle with radius 12 cm is cut into 8 sectors whose areas follow a geometric progression. The first sector, which is the largest, has an area of $A \text{ cm}^2$. The second sector has an area of $Ar \text{ cm}^2$, the third sector has an area of $Ar^2 \text{ cm}^2$, and so on, where r is a positive constant. Given also that the total area of the odd-numbered sectors is $10\pi \text{ cm}^2$ more than that of the even-numbered sectors, find the values of A and r. [5]
- (c) The production levels of a particular coal mine in any year is 4% less than in the previous year. Show that the total production of the coal mine can never exceed 25 times the production in the first year. [2]

(a) Using the substitution
$$u = 2x + 3$$
, find $\int \frac{x}{(2x+3)^3} dx$ in the for $-\frac{Px+Q}{R(2x+3)^2} + c$

9

where P, Q and R are positive integers to be determined. [3]

Hence find
$$\int \frac{x \ln(4x+3)}{(2x+3)^3} dx$$
. [3]

(b) Find
$$\sin 4x \cos 6x \, dx$$
. [2]

Hence or otherwise, find
$$\int e^x \sin 4e^x \cos 6e^x dx$$
. [1]

10 A particle is moving along a curve, C, such that its position at time t seconds after it is set into motion is given by the parametric equations

$$x = t + e^{-2t}, y = t - e^{-2t}.$$

- (i) State the coordinates of the initial position of the particle. [1]
- (ii) Explain what would happen to the path of the particle after a long time. [1]

At the time of 2 seconds after the particle was set into motion, an external force struck the particle resulting in the particle moving in a straight line along the normal to the path at the point of collision.

(iii) Find an equation for the normal to the curve C at the point t = 2, leaving your answer correct to 3 decimal places. [3]

After T seconds, where T > 2, the particle reaches point A, which lies on the x-axis, and stops moving.

- (iv) Find the coordinates of the point *A*. Hence, give a sketch of the path traced by the particle, indicating the coordinates of any axial intercepts. [4]
- (v) Find the total area bounded by the path of the particle in the first T seconds and the positive *x*-axis. [4]

A heavy wooden chest has a cross-sectional area made up of a rectangle and a semi-circle as shown in the diagram above. The wooden chest is constructed such that the perimeter of the cross-sectional area is 100 cm. It is given that the wooden chest is 2(a + b) cm long and the lengths of *AB* and *BC* are 2a cm and 2b cm respectively, where a < 70.

(i) Express b in terms of a.

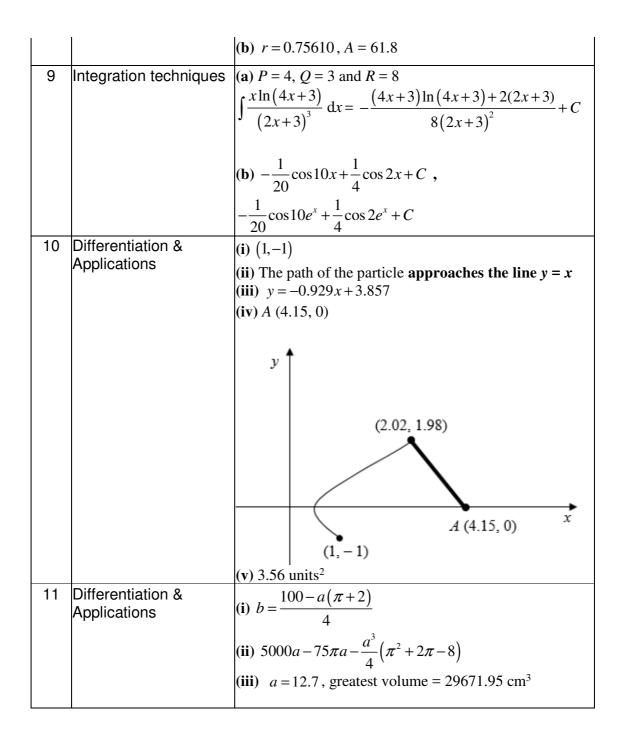
- (ii) Show that the cross-sectional area of the wooden chest is given by $S = 100a \frac{a^2}{2}(\pi + 4)$ and find the volume of the chest in terms of *a* and π . [4]
- (iii) As *a* varies, find the value of *a* such that the volume of this wooden chest is greatest and find this volume correct to 2 decimal places. [5]

ANNEX B

SRJC H2 Math JC2 Preliminary Examination Paper 1

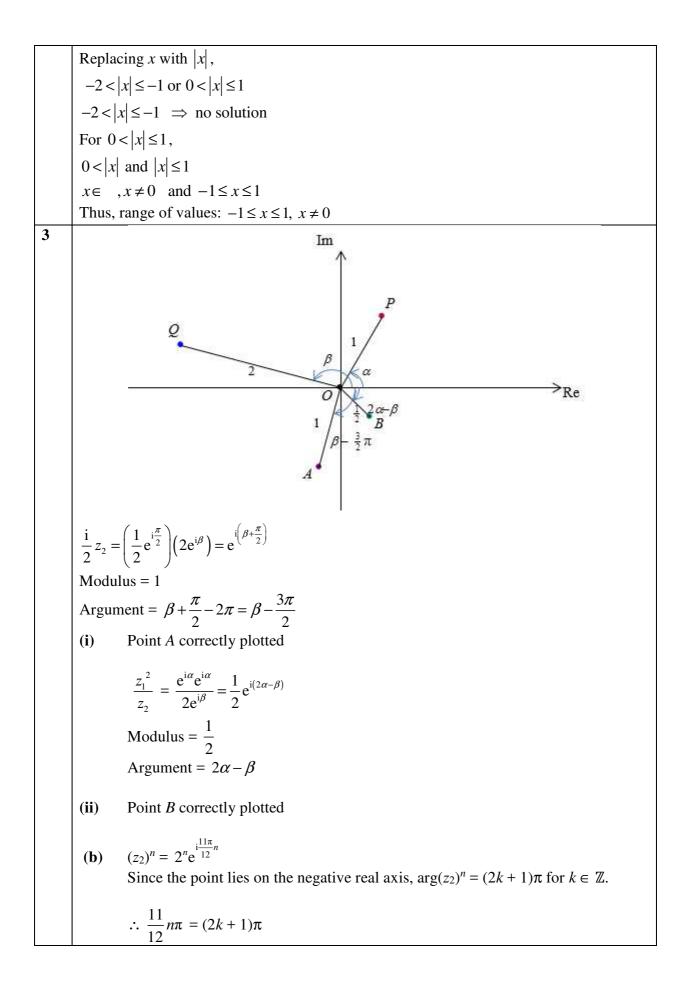
QN	Topic Set	Answers
1	Complex numbers	z = -1 + i and $w = 3 + 2i$
2	Equations and Inequalities	$-2 < x \le -1 \text{ or } 0 < x \le 1, -1 \le x \le 1, x \ne 0$
3	Complex numbers	$\begin{vmatrix} \frac{i}{2} z_2 \\ z_1^2 \\ z_2 \end{vmatrix} = 1, \arg\left(\frac{i}{2} z_2\right) = \beta - \frac{3\pi}{2}$ $\begin{vmatrix} \frac{z_1^2}{z_2} \\ z_2 \end{vmatrix} = \frac{1}{2}, \arg\left(\frac{z_1^2}{z_2}\right) = 2\alpha - \beta$ (i) & (ii) P Q
		Smallest <i>n</i> required = 12
4	Graphs and Transformation	(i) $0 < y < 2$ (ii) $\frac{(y-1)^2}{1} - \frac{(x+2)^2}{2^2} = 1$ y $y = \frac{x}{2} + 2$ $y = -\frac{x}{2}$

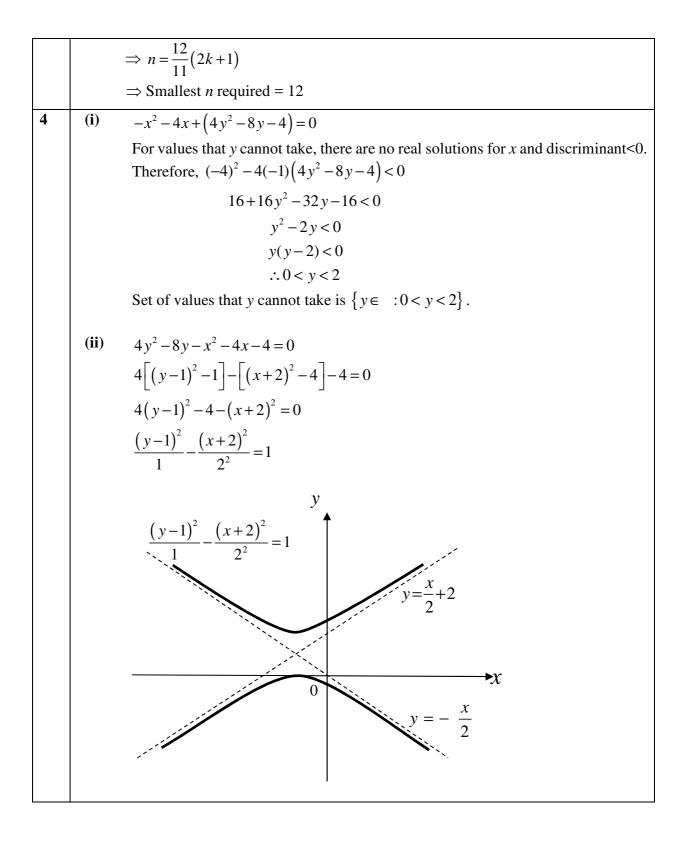
5	Functions	(ii) $a = \pi$, $f^{-1}: x \mapsto 2 \tan^{-1}\left(\frac{2x}{\pi}\right), x \in \mathbb{R}.$
		(iii)
		$4 \int_{-\infty}^{\infty} y = f(x)$
		3
		$y = \mathbf{f}^{-1}(x)$
		1-
		-2
		·
		$x = -\pi \qquad \qquad -4 - \qquad \qquad \qquad x = \pi$
		The line required is $y = x$.
		(iv)
		Since the graphs of $y = f(x)$ and $y = f^{-1}(x)$ intersect
		along the line $y = x$, and since $x = \frac{\pi}{2}$ is a root of the
		equation $x = f(x)$, thus, the graphs of $y = f(x)$ and
		$y = f^{-1}(x)$ must also intersect at the point $x = \frac{\pi}{2}$.
6	Vectors	(i) $\theta = 45^{\circ}$
		(ii) $13\lambda^2 + 10\lambda + 2$
		Exact shortest distance from <i>D</i> to l is $\frac{1}{\sqrt{13}}$ units
		$\overline{OF} = \frac{21}{13} \mathbf{a} - \frac{10}{13} \mathbf{b}$ (a) $\frac{1}{2} x^2 + \frac{1}{12} x^4$, $A = \frac{1}{12}$
7	Maclaurin series	
		(b) (i) $y = x + \frac{x^2}{2} - \frac{x^3}{6} + \dots$
		(iii) $\frac{55}{384}$
8	AP and GP	(a) $r = \pm \sqrt{2}$ so $ r > 1$
		Hence, the geometric progression is not convergent.

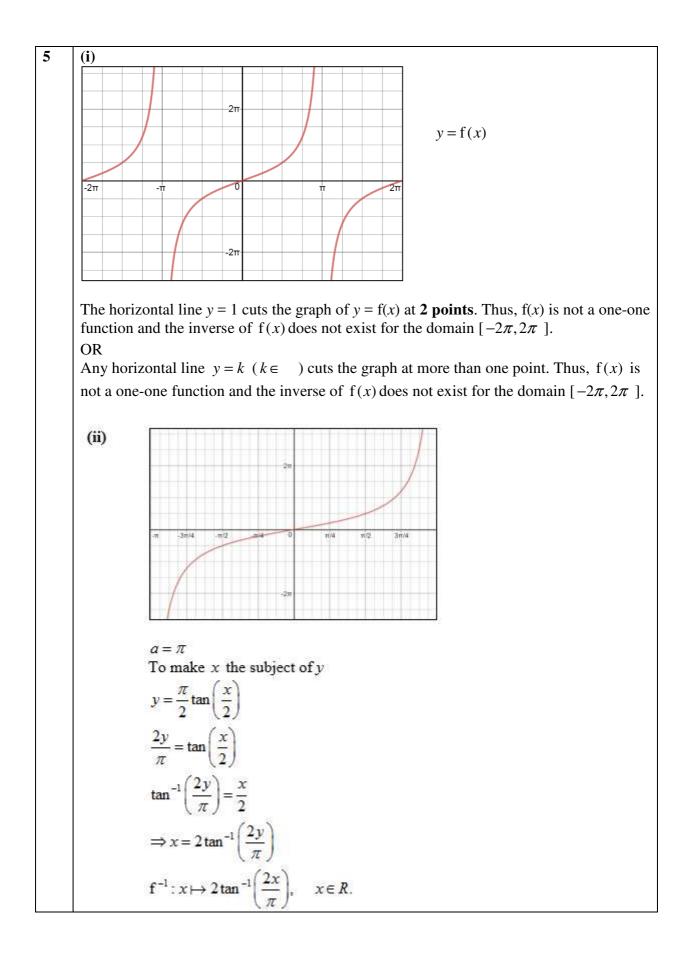


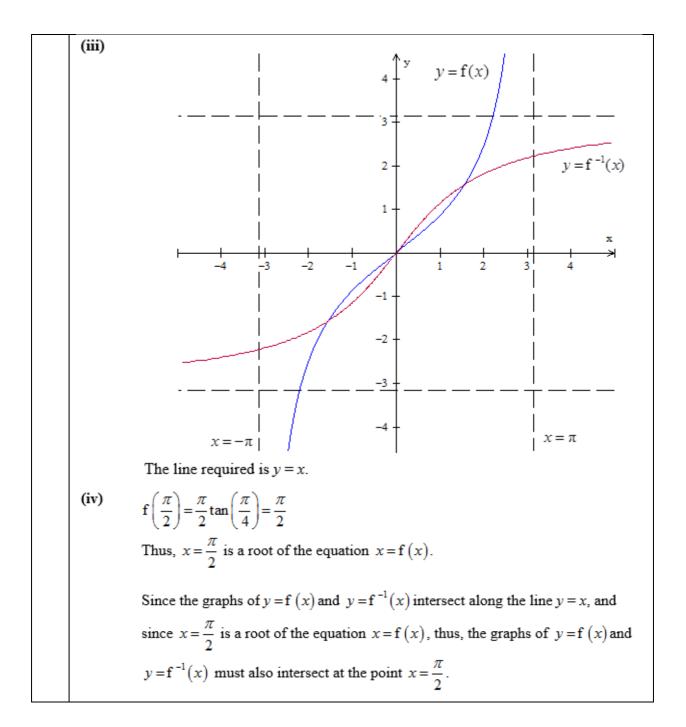
H2 Mathematics 2017 Prelim Exam Paper 1 Question Answer all questions [100 marks].

-				
1	iz + w = 2 + i (1)			
	$2w - 1 - iz = \frac{20}{2 - i}(2)$			
	Let $w = 2 + i - iz(3)$			
	Substitute eq (3) into eq (2)			
	2(2+i-iz) - z - iz = 8 + 4i			
	4 + 2i - 3iz - z = 8 + 4i(5)			
	Let $z = a + bi$			
	Substitute $z = a + bi$ into eq(5) 4 + 2i - 3i(a + bi) - (a + bi) = 8 + 4i			
	4+2i-3ai+3b-a-bi=8+4i			
	Comparing real and imaginary parts:			
	4 + 3b - a = 8(real parts) (6)			
	2-3a-b=4(imaginary parts)(7)			
	$Eq(6) \times 3 - eq(7)$ 10+10b = 20			
	10b = 10			
	b = 1			
	Since $b=1$, $4+3(1)-a=8 \Rightarrow a=-1$			
	$\therefore z = -1 + i$ Substituting $z = -1 + i$ into eq(3) to solve for w			
	Substituting $z = -1+i$ into eq(3) to solve for w w = 2+i+i+1=3+2i			
	Answer: $z = -1 + i$ and $w = 3 + 2i$			
2	$\frac{2x^2 + 2x - 1}{x^2 + 2x} \le 1$			
	$\frac{2x^2 + 2x - 1}{x^2 + 2x} - 1 \le 0$			
	$\frac{2x^2 + 2x - 1 - x^2 - 2x}{x^2 + 2x} \le 0$			
	$\Rightarrow \frac{x^2 - 1}{x(x+2)} \le 0$			
	(x+1)(x-1)			
	$\Rightarrow \frac{(x+1)(x-1)}{x(x+2)} \le 0$			
	+ + +			
	Thus, $-2 < x \le -1$ or $0 < x \le 1$			
1				









6
(i)
$$\mathbf{a} \cdot \mathbf{b} = |a| |b| \cos \theta \Rightarrow |1| |\sqrt{2}| \cos \theta$$

 $\mathbf{a} \cdot \mathbf{b} = 1$ $\therefore \cos \theta = \frac{1}{\sqrt{2}} \Rightarrow \theta = 45^{\circ}$ (by inspection)
(ii) $\overline{DE} = \overline{OE} - \overline{OD} = 2\mathbf{a} + \lambda(\mathbf{a} + 2\mathbf{b}) - (2\mathbf{a} - \mathbf{b}) = \mathbf{b} + \lambda(\mathbf{a} + 2\mathbf{b}), \ \lambda \in \mathbb{R}$
To find the square of the distance DE
 $DE^2 = [\mathbf{b} + \lambda(\mathbf{a} + 2\mathbf{b})] \cdot [\mathbf{b} + \lambda(\mathbf{a} + 2\mathbf{b})]$
 $= \mathbf{b} \mathbf{b} + \lambda^2 (\mathbf{a} + 2\mathbf{b}) \cdot (\mathbf{a} + 2\mathbf{b}) + 2\lambda \mathbf{b} \cdot (\mathbf{a} + 2\mathbf{b})$
 $= \mathbf{b} \mathbf{b} + \lambda^2 (\mathbf{a} + 4\mathbf{a} + 4\mathbf{b} \mathbf{b}) + 2\lambda (\mathbf{b} \cdot \mathbf{a} + 2\mathbf{b} \cdot \mathbf{b})$
 $= 2 + \lambda^2 (1 + 4(1) + 4(2)) + 2\lambda (1 + 2(2)) \text{ as } \mathbf{a} \cdot \mathbf{a} = 1, \ \mathbf{b} \cdot \mathbf{b} = 2 \text{ and } \mathbf{a} \cdot \mathbf{b} = 1$
 $= 2 + 13\lambda^2 + 10\lambda$
 $= 13\lambda^2 + 10\lambda + 2$
(iii) $\underline{Method One:}$
 $DE^2 = 13 \left[\lambda^2 + \frac{10}{13} \lambda \right] + 2$
 $= 13 \left(\lambda + \frac{10}{126} \right)^2 + 2 - \frac{25}{13} = 13 \left(\lambda + \frac{5}{13} \right)^2 + \frac{1}{13}$
 $DE = \sqrt{13} \left(\lambda + \frac{5}{13} \right)^2 + \frac{1}{13}$
The perpendicular distance from E to l occurs when D is closest to l , that is when DE is minimum or $\lambda = -\frac{5}{13}$.
Exact shortest distance from D to l is $\frac{1}{\sqrt{13}}$ units.

<u>Method Two:</u> DE is minimum when DE^2 is minimum: $\frac{d}{dx}(DE^2) = 26\lambda + 10$ To find stationary point: When $\frac{d}{dx}(DE^2) = 0$, $26\lambda + 10 = 0$ $\lambda = -\frac{5}{13}$ Since DE^2 is quadratic and coefficient of $\lambda^2 > 0$, DE^2 is minimum at $\lambda = -\frac{5}{12}$: perpendicular distance from D to l occur when $\lambda = -\frac{5}{13}$ $DE^2 = 13\lambda^2 + 10\lambda + 2 = 13\left(-\frac{5}{13}\right)^2 + 10\left(-\frac{5}{13}\right) + 2 = \frac{1}{13}$ Exact shortest distance from D to l is $\frac{1}{\sqrt{13}}$ units. (iv) Let F be the foot of the perpendicular from D to l. $\overrightarrow{OF} = 2\mathbf{a} - \frac{5}{13}(\mathbf{a} + 2\mathbf{b}) = \frac{21}{13}\mathbf{a} - \frac{10}{12}\mathbf{b}$ 7 (a) $\sec x = \frac{1}{\cos x}$ $=\left(1-\frac{1}{2}x^{2}+\frac{1}{24}x^{4}+...\right)^{-1}$ $=1+(-1)\left[-\frac{1}{2}x^{2}+\frac{1}{24}x^{4}\right]+\frac{(-1)(-2)}{2!}\left[-\frac{1}{2}x^{2}+\frac{1}{24}x^{4}\right]^{2}+\dots$ $=1+\frac{1}{2}x^2-\frac{1}{24}x^4+\frac{1}{4}x^4+...$ $=1+\frac{1}{2}x^2+\frac{5}{24}x^4$ (up to x^4) (shown) $\ln(\sec x) \approx \ln\left[1 + \frac{1}{2}x^2 + \frac{5}{24}x^4\right]$ $= \left[\frac{1}{2}x^{2} + \frac{5}{24}x^{4} + \dots\right] - \frac{1}{2}\left[\frac{1}{2}x^{2} + \frac{5}{24}x^{4} + \dots\right]^{2}$

From GC, $r = \pm \sqrt{2}$ so |r| > 1Hence, the geometric progression is not convergent. **(b)** Let a be the 1st term and r be the common ratio of the G.P. $S_8 = \frac{A(1-r^8)}{1-r} = 72\pi$ ----- (1) $S_{odd} - S_{even} = 10\pi$ $\Rightarrow \frac{A(1 - (r^2)^4)}{1 - r^2} - \frac{Ar(1 - (r^2)^4)}{1 - r^2} = 10\pi$ $\frac{A(1-r^8)}{(1-r)(1+r)} \left[1-r\right] = 10\pi \quad \dots \quad (2)$ $(1) \div (2)$: $\frac{1-r}{1+r} = \frac{10}{72}$ 72 - 72r = 10 + 10r82r = 62r = 0.75610Substituting into equation (1), A = 61.8 (to 3 s.f.) Let the production level in the first year be *a*. Total production of the coal mine = $\frac{a}{1-0.96} = 25a$ Thus, the total production of the coal mine can never exceed 25 times the production in the first year. 9 Given $u = 2x + 3 \Rightarrow \frac{du}{dx} = 2$ (a) $\int \frac{x}{(2x+3)^3} \, \mathrm{d}x = \int \frac{\frac{1}{2}(u-3)}{u^3} \cdot \frac{1}{2} \, \mathrm{d}u$ $=\frac{1}{4}\int \left[u^{-2}-3u^{-3}\right] \mathrm{d}u$ $=\frac{1}{4}\left[-u^{-1}+\frac{3}{2}u^{-2}\right]+C$ $= -\frac{1}{4(2x+3)} + \frac{3}{8(2x+3)^2} + C$ $=\frac{-2(2x+3)+3}{8(2x+3)^2}+C$

$$= -\frac{4x+3}{8(2x+3)^2} + C$$

$$P = 4, Q = 3 \text{ and } R = 8$$

$$\int \frac{\ln(4x+3)^{x}}{(2x+3)^{3}} dx$$

$$= \int \frac{x}{(2x+3)^{3}} \cdot \ln(4x+3) dx$$
Let $\frac{dv}{dx} = \frac{x}{(2x+3)^{3}}, u = \ln(4x+3)$

$$= -\frac{(4x+3)\ln(4x+3)}{8(2x+3)^{2}} - \int -\frac{(4x+3)}{8(2x+3)^{2}} \cdot \frac{4}{(4x+3)} dx + C$$

$$= -\frac{(4x+3)\ln(4x+3)}{8(2x+3)^{2}} + \frac{1}{2}\int (2x+3)^{-2} dx + C$$

$$= -\frac{(4x+3)\ln(4x+3)}{8(2x+3)^{2}} + \frac{1}{2}(2x+3)^{-1}(-\frac{1}{2}) + C$$

$$= -\frac{(4x+3)\ln(4x+3)}{8(2x+3)^{2}} + \frac{1}{2}(2x+3)^{-1} + C$$

$$= -\frac{(4x+3)\ln(4x+3)}{8(2x+3)^{2}} + \frac{1}{2}(2x+3)^{-1} + C$$
(b) $\int \sin 4x \cos 6x dx$

$$= \frac{1}{2}\int \sin 10x + \sin(-2x) dx$$

$$= \frac{1}{2}\int \sin 10x + \sin(-2x) dx$$

$$= \frac{1}{2}\int \sin 10x + \sin(-2x) dx$$

$$= \frac{1}{2}\left[-\frac{1}{10}\cos 10x + \frac{1}{2}\cos 2x\right] + C$$

$$= -\frac{1}{20}\cos 10x + \frac{1}{4}\cos 2x + C$$
10 (i) At the original position, $t = 0$
 $x = 0 + e^{0} = 1$ and $y = 0 - e^{0} = -1$
Thus the coordinates are $(1, -1)$.
(ii) As t tends to infinity, $e^{-2t} \to 0$ so $x \to t$ and $y \to t$
Thus, the path of the particle **approaches the line $y = x$**

(iii)
$$\frac{dy}{dt} = 1+2e^{-2t}$$
 and $\frac{dx}{dt} = 1-2e^{-2t}$
 $\frac{dy}{dx} = \frac{1+2e^{-2t}}{1-2e^{-2t}}$
At $t = 2$, $x = 2 + e^{-4} = 2.01832$, $y = 2 - e^{-4} = 1.98168$ and $\frac{dy}{dx} = \frac{1+2e^{-4}}{1-2e^{-4}}$
Gradient of normal $= \frac{2e^{-t}-1}{1+2e^{-4}} = -0.92933$
Thus, an equation for C_2 is $y = 1.98168 = -0.92933(x - 2.01832)$
i.e. $y = -0.92933x + 3.85737$
i.e. $y = -0.929x + 3.857$ (correct to 3 d.p.)
(iv) At point $A, y = 0$
 $0 = -0.929x + 3.857 \Rightarrow x = 4.15178$
Coordinates of A are (4.15, 0)
Sketch of motion of particle:
 $y = \frac{(2.02, 1.98)}{(1, -1)}$
(v) Consider the curve C_1 when $y = 0$,
 $t = e^{-2t}$ and solving by GC, $t = 0.4263$
Thus, $x = 0.85261$
Required area
 $= \int_{0.450}^{2.02} y \, dx + \int_{0.45}^{4.5} (-0.929x + 3.857) \, dx$
 $= 3.5576$ units²
 $= 3.556$ units²
11
(i) Perimeter of cross-sectional area $= 100 = (2a + 4b) + \frac{1}{2}(2\pi a)$
 $\Rightarrow 100 = 4b + a(\pi + 2)$

(**ii**)

$$\Rightarrow b = \frac{100 - a(\pi + 2)}{4}$$

$$= 100a - \frac{a^2}{2}(2\pi + 4 - \pi)$$

= $100a - \frac{a^2}{2}(\pi + 4)$ (shown)
Note that, $a + b = a + \frac{100 - a(\pi + 2)}{4}$
= $\frac{4a + 100 - a(\pi + 2)}{4}$

 $S = (2a)(2b) + \frac{1}{2}(\pi a^2)$

 $=4a\left[\frac{100-a(\pi+2)}{4}\right]+\frac{\pi}{2}a^{2}$

 $=100a-a^{2}(\pi+2)+\frac{\pi}{2}a^{2}$

$$=\frac{1}{4}\left[100+a(2-\pi)\right]$$

$$V = \left[100a - \frac{a^2}{2}(\pi + 4) \right] 2(a + b)$$
$$= \left[100a - \frac{a^2}{2}(\pi + 4) \right] \cdot \frac{2}{4} \left[100 + a(2 - \pi) \right]$$

$$= \frac{a}{2} \left[100 - \frac{a}{2} (\pi + 4) \right] \cdot \left[100 + a (2 - \pi) \right]$$
$$= 5000a - 75\pi a - \frac{a^3}{4} (\pi^2 + 2\pi - 8)$$

(iii)
$$\frac{\mathrm{d}V}{\mathrm{d}a} = 5000 - 150\pi a - \frac{3}{4}a^2(\pi^2 + 2\pi - 8)$$

When
$$\frac{dV}{da} = 0$$
, using the GC, $a = 12.70471$ or $a = 64.36321$

For $a = 12.70471$					
Α	<i>a</i> ⁻	а	a^+		
Sign	_	0	+		
$\frac{\mathrm{d}V}{\mathrm{d}a}$					

For $a =$	For <i>a</i> = 64.36321			
а	<i>a</i> ⁻	а	a^+	
sign	_	0	+	
dV				
d <i>a</i>			/	

Thus when a = 12.70471 = 12.7 (3 s.f.), volume is greatest. Using the GC, greatest volume is 29671.95154=29671.95 cm³. - End Of Paper -

SRJC Paper 2

1

(i) Prove that
$$\frac{\sin(A-B)}{\cos A \cos B} = \tan A - \tan B$$
. [1]

(ii) Hence, by considering a suitable expression of A and B, find

$$\sum_{r=1}^{N} \frac{\sin x}{\cos\left[(r+1)x\right]\cos(rx)}.$$
[3]

(iii) Using your answer to part (ii), find
$$\sum_{r=1}^{N} \left(\frac{\sqrt{3}}{2\cos\frac{r\pi}{3}\cos\frac{(r+1)\pi}{3}} \right)$$
, leaving your answer in terms of *N*. [2]

terms of N.

2 (i) Find
$$\int_2^n \frac{9x}{(x^2-1)^3} dx$$
, where $n \ge 2$ and hence evaluate $\int_2^\infty \frac{9x}{(x^2-1)^3} dx$. [3]

(ii) Sketch the curve
$$y = \frac{9x}{(x^2 - 1)^3}$$
 for $x \ge 0$. [2]

The region *R* is bounded by the curve, the line $y = \frac{2}{3}$ and the line x = 5. (iii)

Write down the equation of the curve when it is translated by $\frac{2}{3}$ units in the negative ydirection. [1]

Hence or otherwise, find the volume of the solid formed when R is rotated completely [2]

about the line
$$y = \frac{2}{3}$$
, leaving your answer correct to 3 decimal places.

(a) (i) Show that
$$\frac{d}{d\theta} \left(\sin \theta - \frac{1}{3} \sin^3 \theta \right) = \cos^3 \theta$$
. [1]

Find the solution to the differential equation cosec $x \frac{d^2 y}{dx^2} = -\cos^2 x$ in the form **(ii)**

$$y = f(x)$$
, given that $y = 0$ and $\frac{dy}{dx} = \frac{1}{3} + \frac{2}{\pi}$ when $x = 0$. [4]

(b) Show, by means of the substitution
$$v = x^2 y$$
, that the differential equation

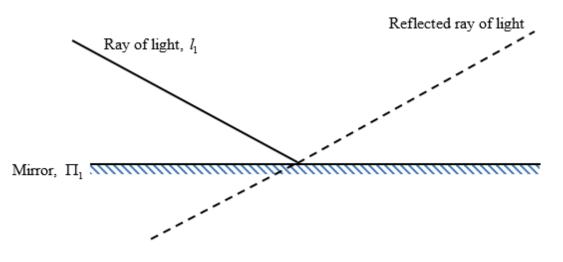
$$x\frac{\mathrm{d}y}{\mathrm{d}x} + 2y + 4x^2y = 0$$

can be reduced to the form

$$\frac{\mathrm{d}v}{\mathrm{d}x} = -4vx \; .$$

given that $y = \frac{1}{3}$ Hence find in of when y terms х, x = -3. [6] 4 In the study of light, we may model a ray of light as a straight line.

A ray of light, l_1 , is known to be parallel to the vector $2\mathbf{i} + \mathbf{k}$ and passes through the point *P* with coordinates (1,1,0). The ray of light hits a mirror, and is reflected by the mirror which may be modelled by a plane Π_1 containing the points *A*, *B* and *C* with coordinates (-1,1,0), (0,0,2) and (0,3,-3) respectively. This scenario is depicted in the diagram below:



- (i) Show that an equation for plane Π_1 is given by -x + 5y + 3z = 6. [3]
- (ii) Find the coordinates of the point where the ray of light meets the mirror. [2]
- (iii) Determine the position vector of the foot of the perpendicular from the point *P* to the mirror and hence, find an equation of the line that may be used to model the reflected ray of light.

A second ray of light which is parallel to the mirror may be modelled by the line l_2 , with

Cartesian equation $\frac{x-1}{2} = \frac{z-2}{\alpha}$, $y = \beta$. Given that the distance between l_2 and the mirror is $\frac{14}{\sqrt{35}}$ units, find the values of the positive constants α and β . [4]

5 A random variable X has the probability distribution given in the following table.

x	2	3	4	5
P(X=x)	0.2	а	b	0.45

Given that
$$E(|X-4|) = \frac{11}{10}$$
, find the values of *a* and *b*. [3]

Two independent observations of X are taken. Find the probability that one of them is 2 and the other is at most 4. [2]

6 In a large consignment of mangoes, 4.5% of the mangoes are damaged.

7

- (i) A total of 21 mangoes are selected at random. Calculate the probability that not more than 3 mangoes are damaged. [2]
- (ii) The mangoes are randomly selected and packed into boxes of 21. For shipping purposes, the boxes are packed into cartons, with each carton containing 12 boxes. A box containing more than 3 damaged mangoes is considered low standard. Calculate the probability that, in a randomly selected carton, there are at least 2 boxes which are of low standard.
 [3]
- (iii) Find the probability that a randomly chosen box that is of low standard contains no more than five damaged mangoes. [3]
- (a) Seven boys and five girls formed a group in a school orientation. During one of the game segments, they are required to arrange themselves in a row. Find the exact probability that
 (i) the girls are separated from one another, [2]
 - (ii) there will be exactly one boy between any two girls. [2]

In another game segment, they are required to sit at a round table with twelve identical chairs. Find the exact probability that one particular boy is seated between two particular girls. [2]

- (**b**) The events A and B are such that $P(A) = \frac{7}{10}$, $P(B) = \frac{2}{5}$ and $P(A | B) = \frac{13}{20}$.
 - (i) Find $P(A \cup B)$, [3]
 - (ii) State, with a reason, whether the events *A* and *B* are independent. [1]
- (c) A man plays a game in which he draws balls, with replacement, from a bag containing 3 yellow balls, 2 red balls and 4 black balls. If he draws a black ball, he loses the game and if he draws a red ball he wins the game. If he draws a yellow ball, the ball is replaced and he draws again. He continues drawing until he either wins or loses the game. Find the probability that he wins the game. [2]
- 8 A company manufactures bottles of iced coffee. Machines *A* and *B* are used to fill the bottles with iced coffee.
 - (i) Machine A is set to fill the bottles with 500 ml of iced coffee. A random sample of 50 filled bottles was taken and the volume of iced coffee (x ml) in each bottle was measured. The following data was obtained

$$\sum x = 24965 \quad \sum (x - \overline{x})^2 = 365$$

Calculate unbiased estimates of the population mean and variance. Test at the 2% level of significance, whether the mean volume of iced coffee per bottle is 500 ml. [6]

- (ii) The company claims that Machine *B* filled the bottles with μ_0 ml of iced coffee. A random sample of 70 filled bottles was taken and the mean is 489.1 ml with standard deviation 4 ml. Find the range of values of μ_0 for which there is sufficient evidence for the company to have overstated the mean volume at the 2% level of significance. [5]
- 9 An online survey revealed that 34.1% of junior college students spent between 3 to 3.8 hours on their mobile phones daily. Assuming that the amount of time a randomly chosen junior college student spends on mobile phones daily follows a normal distribution with mean 3.4 hours and standard deviation σ hours, show that σ = 0.906, correct to 3 decimal places. [3] Find the probability that

- (i) four randomly chosen students each spend between 3 to 3.8 hours daily on their mobile phones.
- the total time spent on their mobile phones daily by the three randomly chosen junior (ii) college students is less than twice that of another randomly chosen junior college student.
- (iii) State an assumption required for your calculations in (i) and (ii) to be valid.

N samples, each consisting of 50 randomly selected junior college students, are selected. It is expected that 15 of these samples will have a mean daily time spent on mobile phones greater than 3.5 hours. [4]

(iv) Estimate the value of *N*.

- In a medical study, researchers investigated the effect of varying amounts of calcium intake on 10 the bone density of Singaporean women of age 50 years. A random sample of eighty 50-year-old Singaporean women was taken.
 - (i) Explain, in the context of this question, the meaning of the phrase 'random sample'. [1]

The daily calcium intake (x mg) of the women was varied and the average percentage increase in bone density (y%) was measured. The data is as shown in the table below.

x (in mg)	700	800	900	1000	1050	1100
y (%)	0.13	0.78	1.38	1.88	2.07	2.10

(ii) Calculate the product moment correlation coefficient and suggest why its value does not necessarily mean that the best model for the relationship between x and y is y = a + bx. [2]

(iii) Draw a scatter diagram representing the data above. [2]

The researchers suggest that the change in bone density can instead be modelled by the equation $\ln(P-y) = a + bx.$

The product moment correlation coefficient between x and $\ln(P-y)$ is denoted by r. The following table gives values of r for some possible values of P.

Р	3	5	10
r		-0.993803	-0.991142

Calculate the value of r for P = 3, giving your answer correct to 6 decimal places. Use the (iv) table and your answer to suggest with reason, which of 3, 5 or 10 is the most appropriate value of P. [2]

The Healthy Society wants to recommend a daily calcium intake that would ensure an average of 1.8% increase in bone density.

- **(v)** Using the value of P found in part (iv), calculate the values of a and b and use your answer to estimate the daily calcium intake that the Health Society should recommend. Comment on the reliability of the estimate obtained. [4]
- (vi) Give an interpretation, in the context of the question, of the meaning of the value of Р. [1]

[3]

[1]

ANNEX B

QN	Topic Set	Answers
1	Sigma Notation and	(ii) $\tan(N+1)x - \tan x$
	Method of Difference	(iii) $\tan\left[\frac{(N+1)\pi}{3}\right] - \sqrt{3}$
2	Application of Integration	(i) $\frac{1}{4} - \frac{9}{4(n^2 - 1)^2}, \frac{1}{4}$
		(ii)
		У Т
		$\begin{array}{c c} 0 \\ x \\ x = 1 \end{array}$
		(iii) $y = \frac{9x}{(x^2 - 1)^3} - \frac{2}{3}$, 3.385 units ³
3	Differential Equations	(a) (ii) $y = \frac{1}{3} \left(\sin x - \frac{\sin^3 x}{3} \right) + \frac{2}{\pi} x$
		(b) $y = \frac{3e^{18-2x^2}}{x^2}$
4	Vectors	(ii) (5, 1, 2) (iii) $\overrightarrow{OF} = \begin{pmatrix} 33'_{35} \\ 9'_{7} \\ 9'_{35} \end{pmatrix}$, $l'_{1} : \mathbf{r} = \begin{pmatrix} 5 \\ 1 \\ 2 \end{pmatrix} + \gamma \begin{pmatrix} 72 \\ -10 \\ 29 \end{pmatrix}, \gamma \in \Box$
		$\alpha = \frac{2}{3}, \ \beta = 3$
5	DRV	a = 0.25 and $b = 0.1, 0.18$
6	Binomial Distribution	 (i) 0.987 (ii) 0.0106 (iii) 0.981
7	P&C, Probability	(a) (i) $\frac{7}{99}$ (ii) $\frac{1}{198}$, $\frac{1}{55}$ (b) 0.84 (c) $\frac{1}{3}$

SRJC H2 Math JC2 Preliminary Examination Paper 2

8	Hypothesis Testing	(i) $\overline{x} = 499.3$, $s^2 \approx 7.45$, <i>p</i> -value = 0.06974
		(ii) $\mu_0 \ge 490$
9	Normal Distribution	 (i) 0.0135 (ii) 0.0781 (iii) Assumption: The amount of time spent by a randomly chosen student on mobile phones is independent of the amount of time spent by another randomly chosen student.
		(iv) $N = 69$
10	Correlation & Linear Regression	 (i) The phrase 'random sample' means that every 50-year-old Singaporean woman has an <u>equal probability</u> of being included in the sample. (ii) n= 0.088
		(ii) $r = 0.988$
		(iii) 2.5 ↓
		2 (1100, 2.1) × ×
		×
		1.5 ×
		0.5
		0 X (100, 0.15) 0 √ 700 800 900 1000 1100 1200 x
		(iv) r = -0.995337
		(v) $a = 3.24$, $b = -0.00310$ The recommended daily calcium intake is 988 mg. Since the <i>r</i> value is -0.995 is close to -1 , there is a
		strong negative linear correlation between $\ln(P-y)$ and
		x. Also since the value of $y = 1.8$ is within the data range, thus, the estimate obtained is reliable.
		(vi) The value of P is the maximum percentage increase in bone density achievable as the daily calcium intake increases.

H2 Mathematics 2017 Prelim Exam Paper 2 Question Answer all questions [100 marks].

1 $\frac{\sin(A-B)}{\cos A \cos B} = \frac{\sin A \cos B - \cos A \sin B}{\cos A \cos B} = \frac{\sin A}{\cos A} - \frac{\sin B}{\cos B} = \tan A - \tan B$ (ii) $\sum_{r=1}^{N} \frac{\sin x}{\cos(r+1)x\cos rx} = \frac{\sin(2x-x)}{\cos 2x\cos x} + \frac{\sin(3x-2x)}{\cos 3x\cos 2x} + \frac{\sin(4x-3x)}{\cos 4x\cos 3x} + \dots + \frac{\sin((N+1)x-Nx)}{\cos(N+1)x\cos Nx}$ $= (\tan 2x - \tan x)$ + $(\tan 3x - \tan 2x)$ + $(\tan 4x - \tan 3x)$ $\frac{1}{1} + (\tan(N-1)x - \tan(N-2)x)$ + $(\tan Nx - \tan(N-1)x)$ + $(\tan(N+1)x - \tan Nx)$ $= \tan(N+1)x - \tan x$ (iii) When $x = \frac{\pi}{3}$, $\sum_{r=1}^{N} \frac{\sin x}{\cos(r+1)x\cos rx} = \sum_{r=1}^{N} \left(\frac{\sqrt{3}}{2\cos\frac{r\pi}{3}\cos\frac{(r+1)\pi}{3}} \right)$ Thus, required sum = $\tan\left[(N+1)\left(\frac{\pi}{3}\right)\right] - \tan\left(\frac{\pi}{3}\right) = \tan\left[\frac{(N+1)\pi}{3}\right] - \sqrt{3}$ 2 $\int_{2}^{n} \frac{9x}{\left(x^{2}-1\right)^{3}} dx = \frac{9}{2} \int_{2}^{n} \frac{2x}{\left(x^{2}-1\right)^{3}} dx$ $=\frac{9}{2}\left[-\frac{1}{2}(x^2-1)^{-2}\right]^n$ $=\frac{9}{2}\left|-\frac{1}{2(n^2-1)^2}+\frac{1}{18}\right|$ $=\frac{1}{4}-\frac{9}{4(n^2-1)^2}$

$$\lim_{n \to \infty} \left[\int_{2}^{a} \frac{9x}{(x^{2}-1)^{3}} dx \right] = \lim_{n \to \infty} \left[\frac{1}{4} - \frac{9}{4(n^{2}-1)^{2}} \right]$$

$$= \frac{1}{4}$$
(ii)
(iii) The equation of the transformed curve is $y = \frac{9x}{(x^{2}-1)^{3}} - \frac{2}{3}$.
Volume of revolution $= \pi \int_{2}^{3} \left(\frac{9x}{(x^{2}-1)^{3}} - \frac{2}{3} \right)^{2} dx = 3.385 \text{ units}^{3} (\text{to 3 d.p.})$

3 (a) (i) $\frac{d}{d\theta} \left(\sin \theta - \frac{1}{3} \sin^{3} \theta \right)$

$$= \cos \theta - \sin^{2} \theta \cos \theta$$

$$= \cos \theta (1 - \sin^{2} \theta)$$

$$= \cos \theta (\cos^{2} \theta) = \cos^{3} \theta$$

$$\frac{d^{2}y}{dx^{2}} = -\sin x \cos^{2} x$$

$$\frac{d^{2}y}{dx^{2}} = (-\sin x)(\cos x)^{2}$$

$$\frac{dy}{dx} = \frac{(\cos x)^{3}}{3} + C$$

$$= \frac{1}{3} (\cos x \cdot \cos^{2} x) + C$$

$$= \frac{1}{3} (\cos x \cdot (1 - \sin^{2} x)) + C$$

$$= \frac{1}{3} (\cos x - \cos x \cdot \sin^{2} x) + C$$

$$y = \frac{1}{3} \left(\sin x - \frac{\sin^3 x}{3} \right) + Cx + D$$

When $x = 0$ and $y = 0$, $D = 0$
When $x = 0$ and $\frac{dy}{dx} = \frac{1}{3} + \frac{2}{\pi}$, $C = \frac{2}{\pi}$
 $y = \frac{1}{3} \left(\sin x - \frac{\sin^3 x}{3} \right) + \frac{2}{\pi} x$
(b) $v = x^2 y$ -------(1)
 $\frac{dv}{dx} = 2xy + x^2 \frac{dy}{dx}$ ------ (2)
 $x \frac{dy}{dx} + 2y + 4x^2 y = 0$ ----- (3)
(3) $\times x$, $x^2 \frac{dy}{dx} + 2xy + 4x^2 y(x) = 0$ ------ (4)
 $\frac{dv}{dx} + 4x(x^2 y) = 0$
 $\frac{dv}{dx} + 4xx = 0$
 $\frac{dv}{dx} = -4vx$ (Shown)
 $\frac{dv}{dx} = -4vx$ (Shown)
 $\frac{dv}{dx} = -4vx$
 $\int \frac{1}{v} dv = -4\int x dx$
 $\ln |v| = -2x^2 + c$
 $v = 4e^{-2x^2}$, where $A = \pm e^c$
 $x^2 y = Ae^{-2x^2}$
Given that $y = \frac{1}{3}$ when $x = -3$,
 $(-3)^2 \left(\frac{1}{3}\right) = Ac^{-18}$
 $A = 3e^{18}$

$$\overline{OF} = \begin{pmatrix} \frac{14}{3} \\ \frac{12}{3} \\$$

P(requi	ired) =P($X_1 = 2, X_2 = 2$) + 2[P($X_1 = 2, X_2 = 3$) + P($X_1 = 2, X_2 = 4$)] = 0.2×0.2+2[0.2×0.25+0.2×0.1]
	= 0.18
(i)	Let X be the random variable "number of damaged mangoes out of 21 mangoes". $X \sim B(21, 0.045)$ $P(X \le 3) = 0.98673 = 0.987$ (3 s.f.)
(ii)	Let <i>Y</i> be the random variable "number of boxes of mangoes out of 12 boxes which are of low standard". $Y \sim B(12, 1-0.98673) \Rightarrow Y \sim B(12, 0.013268)$
	$P(Y \ge 2) = 1 - P(Y \le 1)$ = 1 - 0.98936 = 0.01064 = 0.0106 (3 s.f.)
(iii)	P(required) = P(X ≤ 5 box is of low standard) =P(X ≤ 5 X > 3) = $\frac{P(X ≤ 5 \cap X > 3)}{P(X > 3)}$ = $\frac{P(X = 4) + P(X = 5)}{1 - P(Y \le 3)}$ = $\frac{0.011219 + 0.0017975}{1 - 0.98673}$ = 0.981
(a)(ii) Require	ed probability = $\frac{7! \times {}^{8}C_{5} \times 5!}{12!}$ = $\frac{7}{99}$ ed probability = $\frac{7! \times 4 \times 5!}{12!}$ = $\frac{1}{198}$ ed probability = $\frac{(10-1)! \times 2!}{(12-1)!}$ = $\frac{1}{55}$
	(i) (ii) (iii) (a)(i) Require (a)(ii) Require

(b)(i) $P(A \mid B) = \frac{13}{20}$ $\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)} = \frac{13}{20}$ $P(A \cap B) = \frac{13}{20} \left(\frac{2}{5}\right) = \frac{13}{50}$ (or 0.26) $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $=\frac{7}{10}+\frac{2}{5}-\frac{13}{50}$ $=\frac{21}{25}$ (or 0.84) (b)(ii) Since $P(A|B) \neq P(A)$, therefore events A and B are not independent. Alternatively, Since $P(A \cap B) = \frac{13}{50}$ and $P(A) \times P(B) = \frac{7}{10} \times \frac{2}{5} = \frac{7}{25} \neq P(A \cap B)$, therefore events A and B are not independent. (c) Probability of winning the game $=\frac{2}{9}+\frac{2}{9}\left(\frac{3}{9}\right)+\frac{2}{9}\left(\frac{3}{9}\right)^{2}+...$ $=\frac{\frac{2}{9}}{1-\frac{3}{9}}$ 8 (i) Let X be the random variable denoting volume of the randomly chosen iced coffee bottle in ml from Machine A. $\overline{x} = \frac{24965}{50} = 499.3$ Unbiased estimate of population variance $s^{2} = \frac{1}{n-1} \sum (x-\bar{x})^{2} = \frac{50}{49} \left(\frac{365}{50}\right) = \frac{365}{49} = 7.4489 \approx 7.45$ $H_0: \mu = 500$ $H_1: \mu \neq 500$ Two tailed Z test at 2% level of significance Under H_0 , since the sample size of 50 is large, by Central Limit Theorem

 $\overline{X} \sim N(500, \frac{7.4489}{50})$ approx. From GC, *p*-value = 0.06974> 0.02

Conclusion: Since the *p*-value is more than the level of significance, we do not reject H_0 and conclude that there is insufficient evidence at 2% that the mean volume is not 500ml.

(ii) Let *Y* be the random variable denoting the volume of a randomly chosen iced coffee bottle in ml from Machine *B*.

Unbiased estimate for population variance = $\frac{70}{69} (4^2) = 16.232$

 $H_0: \mu = \mu_0$

 $H_1: \mu < \mu_0$

One tailed Z test at 2% level of significance

Under H_0 , since the sample size of 70 is large, by Central Limit Theorem

$$\overline{Y} \sim N\left(\mu_0, \frac{16.232}{70}\right)$$
 approx.

Value of test statistic, $z_{\text{test}} = \frac{489.1 - \mu_0}{16.232}$

$$\frac{10.23}{70}$$

For H_0 to be rejected,

p-value ≤ 0.02

$$\frac{489.1 - \mu_0}{\sqrt{\frac{16.232}{70}}} \le -2.053748911$$

$$\mu_0 \ge 490 \text{ (to 3 s.f.)}$$

9 Let X denote the random variable representing the amount of time a randomly chosen junior college student spends on mobile phones each day. $V = N(24 - \sigma^2)$

P(3 < X < 3.8) = 0.341
P(
$$\frac{3-3.4}{\sigma} < Z < \frac{3.8-3.4}{\sigma}$$
) = 0.341
P($\frac{-0.4}{\sigma} < Z < \frac{0.4}{\sigma}$) = 0.341
 $\Rightarrow P(Z < \frac{-0.4}{\sigma}) = \frac{1-0.341}{2} = 0.3295$
From GC, $\frac{-0.4}{\sigma} = -0.4412942379$
 $\Rightarrow \sigma = 0.90642 = 0.906 (3 \text{ dp})$
(i) Probability required = (0.341)⁴
= 0.0135 (3 sf)

	(ii)	Probability required = $P(X_1 + X_2 + X_3 < 2X_4)$ $P(X_1 + X_2 + X_3 < 2X_4)$			
		$= P(X_1 + X_2 + X_3 - 2X_4 < 0)$ X ₁ + X ₂ + X ₃ - 2X ₄ ~ N(3.4×3 - 2×3.4, 0.90642 ² ×3 + 2 ² ×0.90642 ²)			
		i.e. $X_1 + X_2 + X_3 - 2X_4 \sim N(3.4, 5.75118)$			
		: From GC, $(X_1 + X_2 + X_3 - 2X_4 < 0) = 0.0781$ (3 sf)			
	(iii)	Assumption: The amount of time spent by a randomly chosen student on mobile phones is independent of the amount of time spent by another randomly chosen student.			
	(iv)	$\overline{X} \sim N\left(3.4, \frac{0.90642^2}{50}\right)$			
		From GC, $P(\overline{X} > 3.5) = 0.217663$			
		Since expected number of samples with mean time exceeding 3.5 hours = 15, then $0.217663 \times N = 15$ $\Rightarrow N = 68.9 \approx 69$			
10	(i)	The phrase 'random sample' means that every 50-year-old Singaporean woman			
		has an equal probability of being included in the sample .			
	(ii)	r = 0.988 (to 3 s.f.)			
		Although the r -value = 0.988 is close to 1, the value is not 1 so there may be			
		another model with $ r $ closer to 1.			
		Hence a linear model may not be the best model for the relationship between x			
		and y.			
	(iii)	v			
		↑ ¹			
	2.5	(1100, 2.1) × ×			
	2	× × ×			
	1.5				
	1	×			
	1	×			
	0.5				
	0	$\bigwedge_{\nabla} \times (700, 0.13) \longrightarrow x$			
		0 ^V 700 800 900 1000 1100 1200			
	(iv)	Using the GC, when $P = 3$, $r = -0.995337$ (to 6 d.p.)			
		When $P = 3$, $ r $ is closest to 1 and thus, $P = 3$ is the most appropriate value.			
	(v)	When $P = 3$, using the GC, $a = 3.2446 = 3.24$ (to 3 s.f.)			

	b = -0.0030988 = -0.00310 (to 3 s.f.)
	When $y = 1.8$, and $P = 3$,
	$\ln(3-1.8) = 3.2446 - 0.0030988x$
	x = 988
	Thus, the recommended daily calcium intake is 988 mg.
	Since the r value is -0.995 is close to -1 , there is a strong negative linear
	correlation between $\ln(P-y)$ and x. Also since the value of $y = 1.8$ is within the
	data range, thus, the estimate obtained is reliable.
(vi)	The value of P is the maximum percentage increase in bone density achievable
	as the daily calcium intake increases.

– End Of Paper –