
1	Withou	It using a graphic calculator, solve the inequality $\frac{4x^2 + 7x + 1}{3x + 1} \le x + 2$.	[3]				
1			[3]				
	Hence	solve the inequality $\frac{4x+7\sqrt{x}+1}{3\sqrt{x}+1} \le \sqrt{x}+2$.	[2]				
		$5\sqrt{x+1}$					
2	(i)	Find $\int n \cos^{-1}(nx) dx$, where <i>n</i> is a positive constant.	[3]				
		e 1					
	(ii)	Hence find the exact value of $\int_{0}^{\frac{1}{2n}} n \cos^{-1}(nx) dx$.	[2]				
		• 0					
3	The ve	ctors p and q are given by $\mathbf{p} = 2\mathbf{i} + \mathbf{j} + a\mathbf{k}$ and $\mathbf{q} = b\mathbf{i} + \mathbf{j}$, where a and	h are				
5		ro constants.					
	(i)	Find $(2\mathbf{p}-5\mathbf{q})\times(2\mathbf{p}+5\mathbf{q})$ in terms of <i>a</i> and <i>b</i> .	[2]				
	Given that the i - and j - components of the answer to part (i) are equal, find the value						
	of <i>b</i> .	and the r and J components of the answer to put (r) are equal, this the	[1]				
	Use the	e value of b you have found to solve parts (ii) and (iii).					
	(ii)	Given that the magnitude of $(2\mathbf{p}-5\mathbf{q})\times(2\mathbf{p}+5\mathbf{q})$ is 80, find the post	ssible				
		exact values of <i>a</i> .	[2]				
	(iii)	Given instead that $2\mathbf{p} - 5\mathbf{q}$ and $2\mathbf{p} + 5\mathbf{q}$ are perpendicular, find the	exact				
		value of $ \mathbf{p} $.	[3]				
4	A gran	hic calculator is not to be used in answering this question.					
	(a)	The equation $w^3 + pw^2 + qw + 30 = 0$, where p and q are real constants	s, has				
		a root $w = 2 - i$. Find the values of p and q, showing your working.	[3]				
	(b)	The equation $z^{2} + (-5+2i)z + (21-i) = 0$ has a root $z = 3 + ui$, where	e <i>u</i> is				
		real constant. Find the value of u and hence find the second root of					
		equation in cartesian form, $a + bi$, showing your working.	[5]				

5 A sequence
$$u_1, u_2, u_3, ...$$
 is such that
 $u_n = \frac{1}{2n^2(n-1)^2}$ and $u_{n+1} = u_n - \frac{2}{n(n-1)^2(n+1)^2}$, for all $n \ge 2$.
(i) Find $\sum_{n=2}^{N} \frac{2}{n(n-1)^2(n+1)^2}$. [3]
(ii) Explain why $\sum_{n=2}^{\infty} \frac{2}{n(n-1)^2(n+1)^2}$ is a convergent series, and state the
value of the sum to infinity. [2]
(iii) Using your answer in part (i), find $\sum_{n=1}^{N} \frac{2N}{(n+1)n^2(n+2)^2}$. [2]
6 (i) The variables x and y are related by
 $(x+y)\frac{dy}{dx} + ky = 2$ and $y = 1$ at $x = 0$,
where k is a constant. Show that $(x+y)\frac{d^2y}{dx^2} + (1+k)\frac{dy}{dx} + (\frac{dy}{dx})^2 = 0$. [1]
By further differentiation of this result, find the Maclaurin series for y, up
to and including the term in x^3 , giving the coefficients in terms of k. [4]
(ii) Given that x is small, find the series expansion of $g(x) = \frac{1}{\sin^2(2x+\frac{\pi}{2})}$ in
ascending powers of x, up to and including the term in x^2 .
If the coefficient of x^2 in the expansion of $g(x)$ is equal to twice the
coefficient of x^2 in the Maclaurin series for y found in part (i), find the value
of k. [4]

7	A population of a certain organism grows from an initial size of 5. After 5 days, the						
	size of the population is 20, and after t days, the size of the population is M . The	e rate					
	of growth of the population is modelled as being proportional to $(100^2 - M^2)$.						
	(i) Write down a differential equation modelling the population growth and						
	find M in terms of t . [6]						
	(ii) Find the size of the population after 15 days, giving your answer correct to						
	the nearest whole number. [2]						
	(iii) Find the least number of days required for the population to exceed 80	. [2]					
8	It is given that $f(x) = \begin{cases} 2x-1 & 0 \le x \le 2, \\ 2-(x-3)^3 & 2 < x \le 4, \\ 1 & \text{otherwise.} \end{cases}$						
	It is given that $f(x) = \{2 - (x - 3)^3 \\ 2 < x \le 4, \}$						
	1 otherwise.						
	Sketch, on separate diagrams, for $0 \le x \le 8$, the graphs of						
	(i) $y = f(x)$ and state the range of f,	[5]					
	(ii) $y = \frac{1}{f(x)}$.	[4]					
	In each graph, indicate clearly the coordinates of the end points, points of intersed	ction					
	with the axes and stationary point, if any. State clearly the equation of any asymp	otote.					
	►-4						
	(iii) Deduce the value of $\int_{-6}^{-4} f(-x) dx$.	[1]					
9	(iii) Deduce the value of $\int_{-6}^{-6} f(-x) dx$. Given that $f(x) = \sin 2x + \cos 2x$, express $f(x)$ as $R\sin(2x+\alpha)$, where R						
9							
9	Given that $f(x) = \sin 2x + \cos 2x$, express $f(x)$ as $R\sin(2x+\alpha)$, where R	>0, [2]					
9	Given that $f(x) = \sin 2x + \cos 2x$, express $f(x)$ as $R\sin(2x+\alpha)$, where R $0 < \alpha < \frac{\pi}{2}$ and R and α are constants to be found.	>0, [2]					

The snowball is being removed from the container and it starts to melt under room temperature.

(iii) Assuming that the snowball remains spherical as it melts, find the rate of decrease of its volume at the instant when the radius of the sphere is 2.5 m, given that the surface area is decreasing at 0.75 m² per minute at this instant. [5]

ANNEX B

IICI	H2 Math	IC2 Pr	aliminary	Examination	Panar 1
IJ U I	LIZ IVIALII	JC4 I I			I aper I

QN	Topic Set	Answers
1	Equations and Inequalities	Answers $x \le -1 \text{ or } -\frac{1}{3} < x \le 1;$
2	Integration techniques	$\frac{0 \le x \le 1}{(i)(nx)\cos^{-1}(nx) - \sqrt{(1 - n^2x^2)} + C}$
		$(ii)\frac{\pi}{6} - \frac{\sqrt{3}}{2} + 1$
3	Vectors	$(i) 20 \begin{pmatrix} -a \\ ab \\ 2-b \end{pmatrix}$ $b = -1$ $(ii) \pm \frac{\sqrt{14}}{2}$ $(iii) \frac{5\sqrt{2}}{2}$
4	Complex numbers	(a) $p=2$, $q=-19$ (b) $u = -5$, $z = 2 + 3i$
5		(b) $u = -5$, $z = 2 + 3i$ (i) $\frac{1}{8} - \frac{1}{2N^2(N+1)^2}$ (ii) $\frac{1}{8}$ (iii) $\frac{N}{8} \left[1 - \frac{4}{(N+1)^2(N+2)^2} \right]$
6		(i) $y = 1 + (2 - k)x + \left(\frac{3k - 6}{2}\right)x^2 + \left(k^2 - 6k + 8\right)x^3 + \dots$ (ii) $1 + 4x^2 + \dots; k = \frac{10}{3}$
7	Differential Equations	(i) $\frac{dM}{dt} = k \left(100^2 - M^2 \right)$, $k > 0$

		$M = \frac{100 \left[\frac{21}{19} \left(\frac{19}{14} \right)^{\frac{t}{5}} - 1 \right]}{\frac{21}{19} \left(\frac{19}{14} \right)^{\frac{t}{5}} + 1}$ (ii) $M \approx 47$ (iii) 35
8	Graphs and Transformation	(i) $R_f = [-1,3]$ (iii) 2
9	Application of Integration	f (x) = $\sqrt{2} \sin\left(2x + \frac{\pi}{4}\right)$ (i) A: A translation of $\frac{\pi}{4}$ units in the negative x-direction B: A scaling/stretch with scale factor $\frac{1}{2}$ parallel to the x-axis. C: A scaling/stretch with scale factor $\sqrt{2}$ parallel to the
		y-axis. (iii) 0.6506
10	Vectors	(i) $r = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$ (ii) $\theta = 18.4^{\circ}$ (iii) $p = -\frac{2}{3}; q = -\frac{1}{3}$ (iv) $\frac{5\sqrt{2}}{3}$ cm (v) $\left(-\frac{20}{9}, -\frac{20}{9}, \frac{8}{9}\right)$
11	Differentiation & Applications	(ii) $h = 12$; $r = \frac{6}{\sqrt{2}}$; $V = 72\pi \text{ m}^3$ (iii) 0.9375 m ³ per minute

$$\frac{4x^{2} + 7x + 1}{3x + 1} \le x + 2$$

$$\frac{4x^{2} + 7x + 1 - (x + 2)(3x + 1)}{3x + 1} \le 0$$

$$\frac{4x^{2} + 7x + 1 - (3x^{2} + x + 6x + 2)}{3x + 1} \le 0$$

$$\frac{x^{2} - 1}{3x + 1} \le 0$$

$$\frac{x^{2} - 1}{3x + 1} \le 0$$

$$\frac{x - 1}{3x + 1} \le \sqrt{x} + 2$$
Replace *X* with \sqrt{x} ,
 $\therefore \sqrt{x} \le -1$ or $-\frac{1}{3} < x \le 1$

$$\frac{4x + 7\sqrt{x} + 1}{3\sqrt{x} + 1} \le \sqrt{x} + 2$$
Replace *X* with \sqrt{x} ,
 $\therefore \sqrt{x} \le -1$ or $-\frac{1}{3} < \sqrt{x} \le 1$
(rejected as $\sqrt{x} \ge 0$)
Since $\sqrt{x} \ge 0$,
 $-\frac{1}{3} < \sqrt{x} \le 1$

$$0 \le \sqrt{x} \le 1$$

$$2$$
(i)
n $\cos^{-1}(nx) dx$

$$= (nx) \cos^{-1}(nx) - \int (nx) \left(-\frac{n}{\sqrt{1 - (nx)^{2}}}\right) dx$$

$$= (nx) \cos^{-1}(nx) - \frac{1}{2} \int (-2n^{2}x)(1 - n^{2}x^{2})^{-1/2} dx$$

$$= (nx) \cos^{-1}(nx) - \frac{1}{2} \times \frac{(1 - n^{2}x^{2})^{1/2}}{\frac{1}{2}} + C$$

$$= (nx) \cos^{-1}(nx) - \sqrt{(1 - n^{2}x^{2})} + C$$

(ii) $\int_{0}^{\frac{1}{2n}} n \cos^{-1}(nx) dx$ = $\left[(nx) \cos^{-1}(nx) - \sqrt{(1 - n^2 x^2)} \right]_{0}^{\frac{1}{2n}}$ = $\left[\frac{1}{2} \cos^{-1} \frac{1}{2} - \sqrt{1 - \frac{1}{4}} \right] - (0 - 1)$ $=\frac{\pi}{6}-\frac{\sqrt{3}}{2}+1$ or $\frac{\pi}{6}+\frac{2-\sqrt{3}}{2}$ 3 (i) $(2\mathbf{p} - 5\mathbf{q}) \times (2\mathbf{p} + 5\mathbf{q}) = 4\mathbf{p} \times \mathbf{p} + 10\mathbf{p} \times \mathbf{q} - 10\mathbf{q} \times \mathbf{p} - 25\mathbf{q} \times \mathbf{q}$ $= 20\mathbf{p} \times \mathbf{q}$ $= 20 \begin{pmatrix} 2\\1\\a \end{pmatrix} \times \begin{pmatrix} b\\1\\0 \end{pmatrix}$ $= 20 \begin{pmatrix} -a \\ ab \\ 2-b \end{pmatrix}$ Alternative: $(2\mathbf{p} - 5\mathbf{q}) \times (2\mathbf{p} + 5\mathbf{q}) = \begin{pmatrix} 2 \\ 1 \\ a \end{pmatrix} - 5 \begin{pmatrix} b \\ 1 \\ 0 \end{pmatrix} \times \begin{pmatrix} 2 \\ 2 \\ 1 \\ a \end{pmatrix} + 5 \begin{pmatrix} b \\ 1 \\ 0 \end{pmatrix} \end{pmatrix}$ $= \begin{pmatrix} 4-5b\\ -3\\ 2a \end{pmatrix} \times \begin{pmatrix} 4+5b\\ 7\\ 2a \end{pmatrix}$ $= \begin{pmatrix} -6a - 14a \\ -(8a - 10ab - 8a - 10ab) \\ 28 - 35b + 12 + 15b \end{pmatrix}$ $= \begin{pmatrix} -20a \\ 20ab \\ 40 & 20b \end{pmatrix} = 20 \begin{pmatrix} -a \\ ab \\ 2 & b \end{pmatrix}$ Given that the **i**- and **j**- components of the vector $20 \begin{pmatrix} -a \\ ab \\ 2-b \end{pmatrix}$ are equal, -a = abab + a = 0a(b+1) = 0Since $a \neq 0$, thus b = -1

(ii)

$$|(2\mathbf{p} - 5\mathbf{q}) \times (2\mathbf{p} + 5\mathbf{q})| = 80$$

$$|20 \begin{pmatrix} -a \\ ab \\ 2-b \end{pmatrix}| = 80$$

$$| \begin{pmatrix} -a \\ -a \\ 2+1 \end{pmatrix}| = 4$$

$$2a^{2} + 9 = 16$$

$$a^{2} = \frac{7}{2}$$

$$a = \pm \sqrt{\frac{7}{2}} \text{ or } \pm \frac{\sqrt{14}}{2}$$
(iii)
Since $2\mathbf{p} - 5\mathbf{q}$ and $2\mathbf{p} + 5\mathbf{q}$ are perpendicular,

$$(2\mathbf{p} - 5\mathbf{q})\Box(2\mathbf{p} + 5\mathbf{q}) = 0$$

$$4|\mathbf{p}|^{2} - 25|\mathbf{q}|^{2} = 0$$

$$|\mathbf{p}|^{2} = \frac{25}{4}|\mathbf{q}|^{2}$$

$$= \frac{25}{4}((-1)^{2} + 1^{2})$$

$$= \frac{25}{2}$$

$$|\mathbf{p}| = \frac{5\sqrt{2}}{2}$$
Alternative:

$$(2\mathbf{p} - 5\mathbf{q})\Box(2\mathbf{p} + 5\mathbf{q}) = \begin{pmatrix} 4+5 \\ -3 \\ 2a \end{pmatrix} \begin{pmatrix} 4-5 \\ 7 \\ 2a \end{pmatrix}$$

$$= 16 - 25 - 21 + 4a^{2}$$

$$= 4a^{2} - 30$$
Since $2\mathbf{p} - 5\mathbf{q}$ and $2\mathbf{p} + 5\mathbf{q}$ are perpendicular,

$$(2\mathbf{p} - 5\mathbf{q})\Box(2\mathbf{p} + 5\mathbf{q}) = 0$$

$$4a^{2} - 30$$
Since $2\mathbf{p} - 5\mathbf{q}$ and $2\mathbf{p} + 5\mathbf{q}$ are perpendicular,

$$(2\mathbf{p} - 5\mathbf{q})\Box(2\mathbf{p} + 5\mathbf{q}) = 0$$

$$4a^{2} - 30 = 0$$

$$a^{2} = \frac{15}{2}$$

$$|\mathbf{p}| = \sqrt{2^{2} + 1 + a^{2}} = \sqrt{5 + \frac{15}{2}} = \sqrt{\frac{25}{2}} = \frac{5\sqrt{2}}{2}$$

4 (a) Method 1 Since the coefficients are real, w = 2 + i is another root of the equation. $(w-2+i)(w-2-i) = (w-2)^{2} - (i)^{2}$ $= w^2 - 4w + 4 + 1$ $= w^2 - 4w + 5$ $w^3 + pw^2 + qw + 30 = 0$ $(w^2-4w+5)(w+6)=0$ (By inspection) Comparing coefficients of w^2 , p=6-4=2Comparing coefficients of w, q=-24+5=-19Method 2 Substitute w = 2 - i (or w = 2 + i) into the given eqn, $(2-i)^{3} + p(2-i)^{2} + q(2-i) + 30 = 0$ (3-4i)(2-i) + p(3-4i) + q(2-i) + 30 = 0(6-3i-8i-4) + p(3-4i) + q(2-i) + 30 = 0(32+3p+2q)+(-11-4p-q)i=03p+2q=-32...(1)Comparing the real parts, Comparing the imaginary parts, 4p+q=-11....(2) (1) - (2) $\times 2$: $3p - 8p = -32 + 11 \times 2$ -5p = -10p=2From (2): $q = -11 - 4 \times 2 = -19$ $\therefore p=2, q=-19$ (b) Substitute z=3+ui into the given eqn, $(3+ui)^{2}+(-5+2i)(3+ui)+(21-i)=0$ $9 + 6ui - u^2 - 15 - 5ui + 6i - 2u + 21 - i = 0$ $(15-2u-u^2)+(u+5)i=0$ Compare imaginary coefficient: u+5=0u = -5 $\therefore z = 3 - 5i$ [Note: if using $15-2u-u^2=0$, need to reject u=3] Method 1 Let the other root be *w*. $z^{2} + (-5+2i)z + (21-i) = (z-3+5i)(z-w)$ Comparing coefficients of z, -5 + 2i = -w - 3 + 5iw = 2 + 3i

Method 2 Let the other solution be a+bi, $z^{2} + (-5 + 2i)z + (21 - i)$ =(z-(3-5i))(z-(a+bi)) $= z^{2} - (a + bi)z - (3 - 5i)z + (3 - 5i)(a + bi)$ $= z^{2} - [a + 3 + (b - 5)i]z + (3 - 5i)(a + bi)$ Compare the z term: -(a+3) = -5 = a = 2 $-(b-5) = 2 \implies b = 3$ $\therefore z = 2 + 3i$ is another root. 5 (i) $\sum_{n=2}^{N} \frac{2}{n(n-1)^2 (n+1)^2}$ $=\sum_{n=2}^{N} [u_n - u_{n+1}]$ $= \begin{bmatrix} (u_{2} - u_{3}) \\ + (u_{3} - u_{4}) \\ + (u_{4} - u_{5}) \\ \dots \\ + (u_{N-1} + u_{N}) \\ + (u_{N} - u_{N+1}) \end{bmatrix}$ $= u_2 - u_{N+1}$ $=\frac{1}{2(2^{2})(2-1)^{2}}-\frac{1}{2(N+1)^{2}((N-1)+1)^{2}}$ $=\frac{1}{8}-\frac{1}{2N^2(N+1)^2}$ (ii) As $N \to \infty$, $\frac{1}{2N^2 (N+1)^2} \to 0$ $\sum_{n=2}^{\infty} \frac{2}{n(n-1)^2 (n+1)^2} \to \frac{1}{8}$ which is a constant, hence it is a convergent series. $\sum_{n=2}^{\infty} \frac{2}{n(n-1)^2 (n+1)^2} = \frac{1}{8} - 0$ $=\frac{1}{8}$

(iii)

$$\frac{Method 1}{\sum_{n=1}^{N} \frac{2N}{(n+1)n^{2}(n+2)^{2}}} = N \sum_{n=1}^{N} \frac{2}{(n+1)n^{2}(n+2)^{2}}$$

$$= N \sum_{n=2}^{N+1} \frac{2}{(n)(n-1)^{2}(n+1)^{2}}$$

$$= N \left[\frac{1}{8} - \frac{1}{2(N+1)^{2}(N+2)^{2}} \right]$$

$$= \frac{N}{8} \left[1 - \frac{4}{(N+1)^{2}(N+2)^{2}} \right]$$

$$\frac{Method 2}{8} By listing the terms$$

$$\sum_{n=2}^{N} \frac{2}{n(n-1)^{2}(n+1)^{2}}$$

$$= \frac{2}{2(1)^{2}(3)^{2}} + \frac{2}{3(2)^{2}(4)^{2}} + \dots + \frac{2}{N(N-1)^{2}(N+1)^{2}}$$

$$\sum_{n=1}^{N} \frac{2N}{(n+1)n^{2}(n+2)^{2}}$$

$$= N \left[\frac{2}{2(1)^{2}(3)^{2}} + \frac{2}{3(2)^{2}(4)^{2}} + \dots + \frac{2}{N(N-1)^{2}(N+1)^{2}} \right]$$

$$= N \sum_{n=1}^{N+1} \frac{2N}{n(n-1)^{2}(n+1)^{2}}$$

$$= N \left[\frac{1}{8} - \frac{1}{2(N+1)^{2}(N+2)^{2}} \right]$$

$$= \left[\frac{1}{8} \left[1 - \frac{4}{(N+1)^{2}(N+2)^{2}} \right] \right]$$

$$= \left[\frac{1}{8} \left[1 - \frac{4}{(N+1)^{2}(N+2)^{2}} \right] \right]$$

$$= \left[\frac{1}{8} \left[1 - \frac{4}{(N+1)^{2}(N+2)^{2}} \right]$$

$$= \left[\frac{1}{8} \left[1 - \frac{4}{(N+1)^{2}(N+2)^{2}} \right] \right]$$

$$= \left[\frac{1}{8} \left[1 - \frac{4}{(N+1)^{2}(N+2)^{2}} \right] \right]$$

$$= \left[\frac{1}{8} \left[1 - \frac{4}{(N+1)^{2}(N+2)^{2}} \right]$$

$$= \left[\frac{1}{8} \left[1 - \frac{4}{(N+1)^{2}(N+2)^{2}} \right] \right]$$

Differentiating (2) w.r.t. x:

$$(x + y)\frac{d^{3}y}{dx^{2}} + \left(1 + \frac{dy}{dx}\right)\frac{d^{2}y}{dx^{2}} + (1+k)\frac{d^{2}y}{dx^{2}} + 2\left(\frac{dy}{dx}\right)\left(\frac{d^{2}y}{dx^{2}}\right) = 0$$

$$(x + y)\frac{d^{3}y}{dx^{2}} + \left(2 + 3\frac{dy}{dx} + k\right)\frac{d^{2}y}{dx^{2}} = 0$$

$$x = 0, \quad y = 1: \quad \frac{dy}{dx} = 2 - k$$

$$\frac{d^{2}y}{dx^{2}} = 3k - 6$$

$$\frac{d^{3}y}{dx^{3}} = 6k^{2} - 36k + 48 = 6\left(k^{2} - 6k + 8\right)$$

$$\therefore y = 1 + (2-k)x + \left(\frac{3k - 6}{2!}\right)x^{2} + \left(\frac{6\left(k^{2} - 6k + 8\right)}{3!}\right)x^{3} + \dots$$

$$= 1 + (2-k)x + \left(\frac{3k - 6}{2}\right)x^{2} + (k^{2} - 6k + 8)x^{3} + \dots$$

$$(ii)$$

$$\sin\left(2x + \frac{\pi}{2}\right) = \sin 2x \cos\frac{\pi}{2} + \cos 2x \sin\frac{\pi}{2} = \cos 2x$$

$$\frac{1}{\sin^{2}\left(x + \frac{\pi}{2}\right)} = \frac{1}{\cos^{2} 2x}$$

$$\approx \left(1 - \frac{(2x)^{2}}{2}\right)^{-2}$$

$$= (1 - 2x^{2})^{-2}$$

$$= 1 + 4x^{2} + \dots$$

$$4 = 2\left(\frac{3k - 6}{2}\right)$$

$$k = \frac{10}{3}$$

$$7$$

$$(i) \frac{dM}{dt} = k\left(100^{2} - M^{2}\right), \quad k > 0$$
Since $\frac{dM}{dt} > 0$ and $M > 0, \Rightarrow (100^{2} - M^{2}) > 0$ and $0 < M < 100$

$$\int \frac{1}{(100^{2} - M^{2})} dM = \int k dt$$

$$\frac{1}{200} \ln\left(\frac{100 + M}{100}\right) = kt + C$$

 $\ln\left(\frac{100+M}{100-M}\right) = 200kt + C'$ $\frac{100+M}{100-M} = Ae^{200kt}$, where $A = e^{C'}$ When t = 0, $M = 5 \implies A = \frac{105}{95} = \frac{21}{10}$ When t = 5, $M = 20 \implies \frac{3}{2} = \frac{21}{10} e^{1000k}$ $e^{1000k} = \frac{19}{14}$ or $200k = \frac{1}{5} \ln\left(\frac{19}{14}\right)$ Thus $\frac{100+M}{100-M} = \frac{21}{19} \left(e^{1000k} \right)^{\frac{t}{5}} = \frac{21}{19} \left(\frac{19}{14} \right)^{\frac{t}{5}}$ $100 + M = \frac{21}{19} \left(\frac{19}{14}\right)^{\frac{1}{5}} (100 - M)$ $M \left| \frac{21}{19} \left(\frac{19}{14} \right)^{\frac{t}{5}} + 1 \right| = 100 \left| \frac{21}{19} \left(\frac{19}{14} \right)^{\frac{t}{5}} - 1 \right|$ $M = \frac{100\left[\frac{21}{19}\left(\frac{19}{14}\right)^{\frac{t}{5}} - 1\right]}{\frac{21}{10}\left(\frac{19}{14}\right)^{\frac{t}{5}} + 1} \quad OR \quad \frac{100\left[21\left(\frac{19}{14}\right)^{\frac{t}{5}} - 19\right]}{21\left(\frac{19}{14}\right)^{\frac{t}{5}} + 19} \quad OR \quad \frac{100\left[\left(\frac{19}{14}\right)^{\frac{t}{5}} - \frac{19}{21}\right]}{\left(\frac{19}{14}\right)^{\frac{t}{5}} + \frac{19}{21}}$ (ii) When t = 15, $M = \frac{100 \left[\frac{21}{19} \left(\frac{19}{14} \right)^3 - 1 \right]}{\frac{21}{21} \left(\frac{19}{14} \right)^3 + 1} = 46.847$ $M \approx 47$ (nearest whole number) (iii) Method 1: Graphical Method Sketch the graphs of M=f(t) and M=80From the graph, when t > 34.336397, M > 80Least number of days required is 35. Method 2: Use GC table When t = 34, M = 79.627 < 80 $\Rightarrow t \geq 35$ When t = 35, M = 80.718 > 80When t = 36, M = 81.756 > 80Thus least number of days required is 35.

(iii)

$$\int_{-6}^{4} f(-x) dx = \int_{4}^{6} f(x) dx$$
= area of rectangle
= 2
9

$$f(x) = \sin 2x + \cos 2x$$

$$R = \sqrt{l^{2} + l^{2}} = \sqrt{2}$$

$$\tan \alpha = 1 \implies \alpha = \frac{\pi}{4}$$

$$f(x) = \sin 2x + \cos 2x = \sqrt{2} \sin\left(2x + \frac{\pi}{4}\right)$$
(i)
Transforming $y = \sin x$ to $y = \sqrt{2} \sin\left(2x + \frac{\pi}{4}\right)$
Sequence of Transformation:
Either
A: A translation of $\frac{\pi}{4}$ units in the negative x-direction
B: A scaling/stretch with scale factor $\frac{1}{2}$ parallel to the x-axis.
C: A scaling/stretch with scale factor $\frac{\sqrt{2}}{2}$ parallel to the y-axis.
Acceptable sequence: ABC, ACB, CAB.
OR $y = \sqrt{2} \sin\left[2\left(x + \frac{\pi}{8}\right)\right]$
D: A scaling/stretch with scale factor $\frac{1}{2}$ parallel to the x-axis.
E: A translation of $\frac{\pi}{8}$ units in the negative x-direction.
F: A scaling/stretch with scale factor $\sqrt{2}$ parallel to the y-axis.
Acceptable sequence: DEF, DFE, FDE
(ii)
Max point occurs when $\sin\left(2x + \frac{\pi}{4}\right) = 1$
 $\Rightarrow \left(2x + \frac{\pi}{4}\right) = \frac{\pi}{2}$
 $\Rightarrow x = \frac{\pi}{8}, y = \sqrt{2}$

$$\cos 45^{\circ} = \frac{1}{\sqrt{2}} = \frac{\begin{pmatrix} -\frac{2}{3} \\ p \\ q \end{pmatrix}}{\sqrt{2}} = \frac{2}{3} - q = 1$$

$$q = -\frac{1}{3}$$

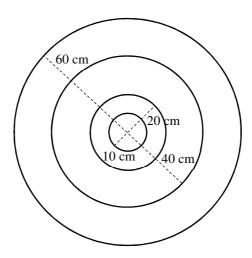
$$\begin{pmatrix} -\frac{2}{3} \\ p \\ q \end{pmatrix} \perp \underline{m} \Rightarrow \begin{pmatrix} -\frac{2}{3} \\ p \\ -\frac{1}{3} \end{pmatrix} \square \begin{pmatrix} 2 \\ -1 \\ -2 \end{pmatrix} = 0$$

$$-\frac{4}{3} - p + \frac{2}{3} = 0 \Rightarrow p = -\frac{2}{3}$$
(iv)
Glass upper surface is $x + z = 2$
Glass bottom surface is $3x + 3z = -4 \Rightarrow x + z = -\frac{4}{3}$
Distance between two planes $= \frac{\left| 2 - \left(-\frac{4}{3} \right) \right|}{\sqrt{2}} = \frac{10}{3\sqrt{2}} = \frac{5\sqrt{2}}{3}$
Thickness of the glass object is $\frac{5\sqrt{2}}{3}$ cm
(v)
Let the point at which the light ray leaves the glass object be *F*.
Method 1:
 $l_{BF}: \underline{r} = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} = \frac{4}{3} + \frac{2}{3} = -4$ OR
 $\begin{bmatrix} \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ 1 \\ 2 \\ 1 \end{pmatrix} = 0$
 $f = \frac{10}{3} = -4$ OR
 $\begin{bmatrix} \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix} + \mu \begin{pmatrix} -\frac{2}{3} \\ -\frac{3}{3} \\ -\frac{3}{3} \end{bmatrix} = \begin{pmatrix} 3 \\ 0 \\ -\frac{2}{3} \\ -\frac{3}{3} \\ -\frac{3}{3} \end{bmatrix} = \begin{pmatrix} 3 \\ 0 \\ -\frac{2}{3} \\ -\frac{3}{3} \\ -\frac{10}{3} \\ -\frac{10}{3} \\ -\frac{10}{3} \end{bmatrix}$
The coordinates of *F* are
 $\begin{pmatrix} -\frac{20}{9}, -\frac{20}{9}, \frac{8}{9} \\ -\frac{5\sqrt{2}}{BF} \Rightarrow |BF| = \frac{5\sqrt{2}}{3} \times \sqrt{2} = \frac{10}{3}$
(or using Pythaeoras' theorem)

$$\vec{BF} = \frac{10}{3} \left(-\frac{2}{3} \\ -\frac{2}{3} \\ -\frac{1}{3} \right) = -\frac{10}{9} \left(\frac{2}{2} \\ 1 \\ + 0 \\ 0 \\ 2 \\ -20 \\ 1 \\ -20 \\ 2 \\ -20 \\ 8 \\ -20$$

1	The c	complex number z is such that $ z = 1$ and $\arg z = \theta$, where $0 < \theta < \frac{\pi}{4}$.		
	(i)	Mark a possible point A representing z on an Argand diagram. Hence, mark the		
		points <i>B</i> and <i>C</i> representing z^2 and $z+z^2$ respectively on the same Argand diagram corresponding to point <i>A</i> . [2]		
	(ii) State the geometrical shape of OACB.			
	(;;;)	State the geometrical shape of <i>OACB</i> . [1] Express $z + z^2$ in polar form, $p\cos(q\theta) \left[\cos(k\theta) + i\sin(k\theta)\right]$, where p, q and k		
	(111)			
		are constants to be determined. [2]		
2	The f	function f is given by $f: x \mapsto 3 + \frac{1}{x-2}$ for $x \in \mapsto, x > 2$.		
	(i)	Find $f^{-1}(x)$ and state the domain of f^{-1} . [3]		
	(ii)	Explain why the composite function f^2 exists. [1]		
	(iii) Find the value of x for which $f^2(x) = x$. Explain why this value of x satisfies the			
	equation $f(x) = f^{-1}(x)$. [3]			
3	It is g	given that a curve C has parametric equations		
		$x = t^2 - t$, $y = \frac{1}{t^2 + 1}$ for $-2 \le t < 2$.		
	(i)	Sketch <i>C</i> , indicating clearly the coordinates of the end points and the points where		
		C cuts the y-axis. [4]		
	(ii)	Find the equation of the tangent to C that is parallel to the y-axis. [4]		
	(iii)	Express the area of the region bounded by C , the tangent found in part (ii) and both axes, in the form		
		$\int_a^b f(t) dt,$		
		where the function f and the constants a and b are to be determined. Hence find this area, leaving your answer in exact form. [5]		

4	A farmer owns a plot of farmland. To prepare for wheat planting, the farmer has to					
	plough the farmland before sowing wheat seeds. At the start of the first week, 300 m^2					
	of the farmland is ploughed. The farmer ploughs another 100 m^2 of the farmland at the beginning of each subsequent week. To sow wheat seeds, the farmer is considering two different options.					
	(a) In the first option, the farmer sows wheat seeds on 60% of the unsown ploughed land at the end of each week.					
	(i) Find the area of unsown ploughed land at the end of the second week. [1]					
	(ii) Show that the area of unsown ploughed land at the end of the <i>n</i>th week is given by					
	$\left[0.4^{n}(300)+k(1-0.4^{n-1})\right] m^{2},$					
	where k is an exact constant to be determined. [3]					
	(iii) Find the number of complete weeks required for the area of unsown ploughed					
	land to first fall below 70 m^2 . [3]					
	(b) In the second option, the farmer sows 80 m^2 of the unsown ploughed land at the					
	end of the first week. At the end of each subsequent week, he sows 20 m^2 of the unsown ploughed land more than in the previous week. This means that the area of					
	sown ploughed land is 100 m^2 in the second week, 120 m^2 in the third week, and so on.					
	(i) Find, in terms of <i>n</i>, the area of unsown ploughed land at the end of the <i>n</i>th week.					
	(ii) Find the number of complete weeks required for the farmer to finish sowing all the ploughed farmland in this option. Deduce the area of ploughed land to be sown in the final week. [4]					
5	A group of twelve people consists of six married couples. Each couple consists of a husband and a wife.					
	(i) The twelve people are to stand in a straight line. Find the number of different arrangements if each husband must stand next to his wife. [2]					
	(ii) The group of twelve people finds a round table with ten chairs. Assuming only ten people are to be seated, find the probability that five married couples are seated such that each husband sits next to his wife and husbands and wives alternate.[3]					


Seven red counters and two blue counters are placed in a bag. All the counters are 6 indistinguishable except for their colours. Clark and Kara take turns to draw a counter from the bag at random with replacement. The first player to draw a blue counter wins the game and the game ends immediately.

If Clark draws first, find the probability that

- (i) Clark wins the game at his third draw, [2]
- (ii) Kara wins the game.

[3]

7 An archer shoots an arrow into a circular target board that has a radius of 60 cm. The target board further consists of three inner concentric circular sections, with radii 40 cm, 20 cm and 10 cm respectively as shown in the diagram.

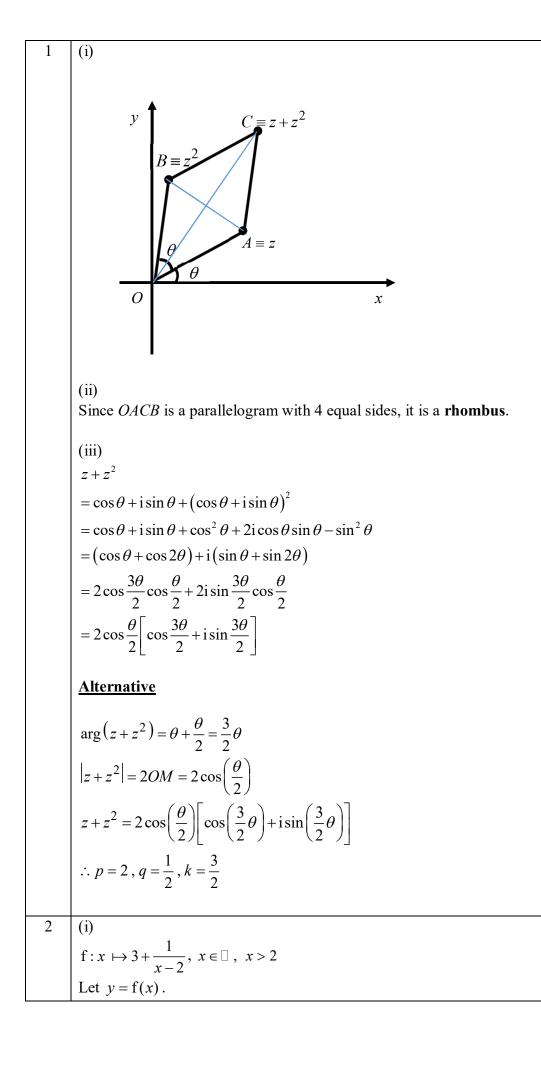
The archer scores

- 50 points if the arrow lands in the centre circle of radius 10 cm, •
- 20 points if the arrow lands in the ring with outer radius 20 cm, •
- 10 points if the arrow lands in the ring with outer radius 40 cm, ٠
- 0 point otherwise. ٠

Assume that the arrow will definitely hit the target board and is equally likely to hit any portion of the target board.

- (i) Let X be the number of points scored for one arrow shot. Find the expectation of [3] X, leaving your answer in 4 significant figures.
- (ii) Interpret, in this context, the value obtained in part (i). [1]
- (iii) The archer shot at the target board forty times. Find the probability that the average score obtained by the archer is between 10 and 20 points (inclusive). [4]

8		hospital, records show that 84 on that on any day, the doctor h						
	On o	ne particular day, there are 20	patients who make appo	ointments to see the doctor.				
	(i)	(i) State, in this context, one condition that must be met for the number of patients who turn up for their appointments to be well modelled by a binomial distribution.[1]						
	For t	he remainder of this question,	assume that the condition	on stated in part (i) is met.				
	(ii)	(ii) Find the probability that more than 15 patients turn up for their appointments. [2]						
	(iii)	Given that at least 12 patients that more than 2 patients fail						
	 (iv) To improve efficiency, the hospital decides to increase the number of appointments that can be made on each day. Given that there will still be enough time for the doctor to see 20 patients, find the greatest number of appointments that can be made so that there is a probability of at least 0.85 of the doctor having time to see all patients who turn up. 							
	and C are ir	nce test that consists of three c Communication. The scores obto ndependent random variables <i>L</i> standard deviations as shown in	tained by candidates in a , <i>P</i> and <i>C</i> which are norm	each of the three components				
	Γ		Mean	Standard deviation				
	-	Logical Reasoning, L	35.2	5.2				
	-	Personality, P	24.6	3.8				
	-	Communication, <i>C</i>	29.3	4.3				
	 (i) For a particular role in the corporation, the Logical Reasoning and the Personality scores of a candidate is valued and hence a special score of 3L+2P is computed. (a) Find the special score that is exceeded by only 1% of candidates taking the test. Leave your answer in 1 decimal place. [4] 							
		(b) Five candidates are select obtained a special score than 140.		probability that three of them the other two obtained less [3]				
	(ii)	 (ii) For another role in the corporation, a candidate must achieve a result such that his special score of 3L+2P differs from 5C by less than 25. Find the percentage of candidates who will be able to achieve this. [4] 						


10		following	table sho	ows the m	nass (m) c	of a foetu	s, in gran	ns, taken	at various	weeks
	(<i>t</i>).	t	12	16	20	24	28	32	36	
		m	14	100	300	600	1005	1702	2622	
	(i)	Draw a s	scatter dia	igram to i	llustrate (he data, l	abelling t	he axes c	learly.	[1]
 (ii) Calculate the product moment correlation coefficient between t and m, your answer correct to 5 decimal places. Explain why this value denecessarily mean that the linear model is the best model for the relate between t and m. It is proposed that the mass of the foetus at week t can be modelled by 							bes not			
	It is p	roposed	nat the m	lass of the		at^{b} ,	an de mo	defied by		
	where	e a and b	are positi	ve consta		- ur ,				
	(iii)	value of	the prod		ent correl				on, calcul two reason	
	(iv)	Calculat	e the valu	ies of <i>a</i> ai	nd <i>b</i> .					[2]
(v) Using the equation of a suitable regression line, estimate the mass of 26 weeks, giving your answer to the nearest grams. Comment on the the estimate.										
11	has a jam i	The mass of strawberry jam in a randomly chosen jar follows a normal distribution and has a mean mass of 200 grams. A retailer suspects that the mean mass of the strawberry jam is being overstated. He takes a random sample of 30 jars of strawberry jam and weighs the content, x grams, in each jar. The results are summarized as follows. $\sum (x-200) = -66 \text{ and } \sum (x-200)^2 = 958$								
	(i)	Test at 2	% signifi	cance lev	el, wheth	er the reta	ailer's sus	spicion is	justifiable	e. [6]
	(ii)	Explain,	in this co	ontext, the	e meaning	g of 'at 2%	% signific	ance leve	el'.	[1]
 (ii) Explain, in this context, the meaning of 'at 2% significance level'. (iii) Suppose the retailer now decides to test whether the mean mass differs grams at 2% significance level. Without carrying out the test, explain w conclusion would change in part (i). 										
	devia jam a so tha	tion is 3.5 nd the sam at the retain	5 grams. T mple mea iler's susp	The retaile in is foun picion tha	er selects and to be <i>k</i> and to be the mean of the mea	a new ran grams. Fi n mass di	dom samj nd the rai	ple of 20 j nge of po n 200 grar	ulation stra jars of stra ssible valu ns is not ju place.	wberry ies of <i>k</i>

ANNEX B

IJC H2 Math JC2 Preliminary Examination Paper 2

QN	Topic Set	Answers	
1	Complex numbers	(ii) rhombus	
		(iii) $2\cos\frac{\theta}{2}\left[\cos\frac{3\theta}{2} + i\sin\frac{3\theta}{2}\right]$	
2	Functions	(i) $f^{-1}(x) = 2 + \frac{1}{x-3}, x \in \mathbb{R}, x > 3$ (iii) $x = 3.62$	
3	Differentiation & Applications	(ii) $x = -\frac{1}{4}$	
4	AP and GP	(iii) $\ln \frac{8}{5} - \frac{\pi}{4} + \tan^{-1} \frac{1}{2}$ (a)(i) 88 m ² (a)(ii) k is $\frac{200}{3}$ (a)(iii) 5 (b)(i) -10n ² + 30n + 200 (b)(ii) number of complete weeks is 7; 120 m ²	
5	P&C, Probability	(i) 46080 (ii) 0.0000120	
6	P&C, Probability	(i) 0.0813 (ii) 0.4375	
7	DRV	(i) 6.389 (iii) 0.00965	
8	Binomial Distribution	 (i) Whether a randomly chosen patient turns up for an appointment is independent of any other patient. (ii) 0.812 (iii) 0.618 (iv) 22 	
9	Normal Distribution	$\begin{array}{c} (i)(a) & a = 195.2 \\ (i)(b) & 0.0875 \\ (ii) & 61.3\% \end{array}$	
10	Correlation & Linear Regression	(ii) $r = 0.94597$ (iii) $r = 0.990$ (iv) $a = 2.30 \times 10^{-4}$, $b = 4.59$ (v) $m = 728$ Since the value of 26 is within the range of values of t and the value of r is close to 1, this estimate is reliable.	

11	Hypothesis Testing	(ii) At 2% significance level means that there is a
		probability of 0.02 that the test will indicate that the
		mean mass of the strawberry jam in the jar is less than 200
		g when in fact it is 200 g.
		(iii) This will result in a different conclusion;
		198.2 < <i>k</i> < 201.8

$$y = 3 + \frac{1}{x-2}$$

$$x - 2 = \frac{1}{y-3}$$

$$x = 2 + \frac{1}{y-3}$$

$$\therefore f^{-1}(x) = 2 + \frac{1}{x-3}, x \in \Box, x > 3$$
(ii)
$$D_{f} = (2, \infty)$$

$$R_{f} = (3, \infty)$$
Since $R_{f} \subseteq D_{f}$, the composite function f^{2} exists.
(iii)

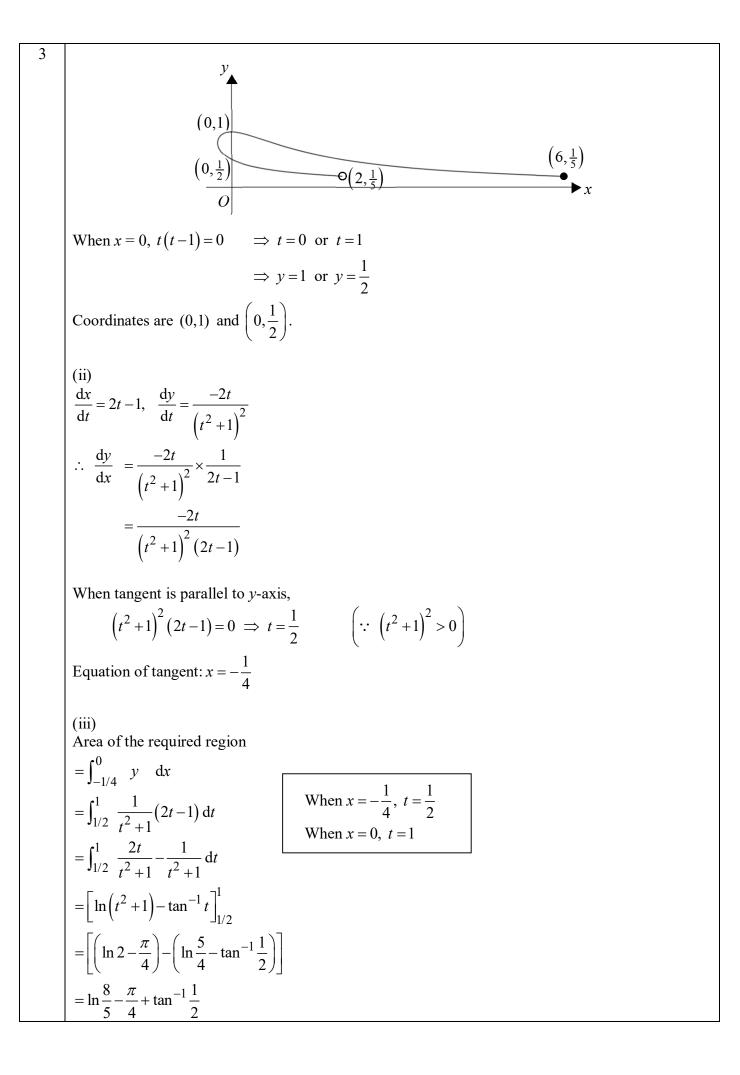
(iii)

$$f^{2}(x) = x$$

$$f\left(3 + \frac{1}{x-2}\right) = x$$

$$3 + \frac{1}{3 + \frac{1}{x-2} - 2} = x$$

$$3 + \frac{1}{\left(\frac{x-1}{x-2}\right)} = x$$


$$\frac{3(x-1) + (x-2)}{x-1} = x$$

$$4x - 5 = x(x-1)$$

$$x^{2} - 5x + 5 = 0$$
Using GC, $x = 1.38$ (rej $\because 1.38 \notin D_{f}$) or $x = 3.62$
ff $(x) = x$

$$f^{-1}ff(x) = f^{-1}(x)$$

$$f(x) = f^{-1}(x)$$
Therefore $x = 3.62$ satisfies $f(x) = f^{-1}(x)$.

4

(a)(i) Area of **unsown** ploughed land = 0.4 [0.4(300)+100]

 $=88 \text{ m}^2$

(a)((a)(ii)						
n	Beginning of week	End of week					
1	300	0.4(300)					
2	0.4(300)+100	0.4[0.4(300)+100] = 0.4 ² (300)+0.4(100)					
3	$0.4^{2}(300) + 0.4(100)$ +100	$0.4 \left[0.4^{2} (300) + 0.4 (100) + 100 \right]$ $= 0.4^{3} (300) + 0.4^{2} (100) + 0.4 (100)$					
n		$0.4^{n} (300) + 0.4^{n-1} (100) + + 0.4^{2} (100) + 0.4^{1} (100)$					

Area of land **unsown** ploughed land at the end of *n*th week $\begin{bmatrix} 0 & 1 & (n-1) \end{bmatrix}$

$$= 0.4^{n} (300) + 100 \left[\frac{0.4 (1 - 0.4^{n-1})}{1 - 0.4} \right]$$

= $\left[0.4^{n} (300) + \frac{200}{3} (1 - 0.4^{n-1}) \right] \text{ m}^{2}$
∴ the value of k is $\frac{200}{3}$.

(a)(iii) **Method 1**

$$\frac{400}{3}\left(1-0.4^{n-1}\right) < 70$$

$$0.4^{n} (300) + \frac{200}{3} - \frac{200}{3} (0.4)^{-1} \\ 0.4^{n} (300) + \frac{200}{3} - \frac{200}{3} (0.4)^{-1} \\ 0.4^{n} < 70$$

$$\frac{400}{3} \left(0.4^{n}\right) < \frac{10}{3}$$

$$0.4^{n} < \frac{1}{40}$$

$$n > \frac{\ln\left(\frac{1}{40}\right)}{\ln 0.4}$$

$$n > 4.02588$$
Hence the number of complete weeks required is 5

5.

Method 2

 $0.4^{n}(300) + \frac{200}{3}(1-0.4^{n-1}) < 70$ Using GC, when n = 4, unsown ploughed land = 70.08 (> 70) when n = 5, unsown ploughed land = 68.032 (< 70) when n = 6, unsown ploughed land = 67.213 (< 70)

Hence the number of complete weeks required is 5.

(b)(i)

n	Beginning of week	End of week
1	300	300-80
2	300 + (100) - 80	300 + (100) - 80 - 100
3	300 + 2(100) - 80 - 100	300 + 2(100) - 80 - 100 - 120
	•••	
n		$300 + (n-1)(100) - 80 - 100$ $- \cdots - [80 + 20(n-1)]$

Area of **unsown** ploughed land at the end of *n*th week

$$= 300 + 100(n-1) - \frac{n}{2} [2(80) + 20(n-1)]$$

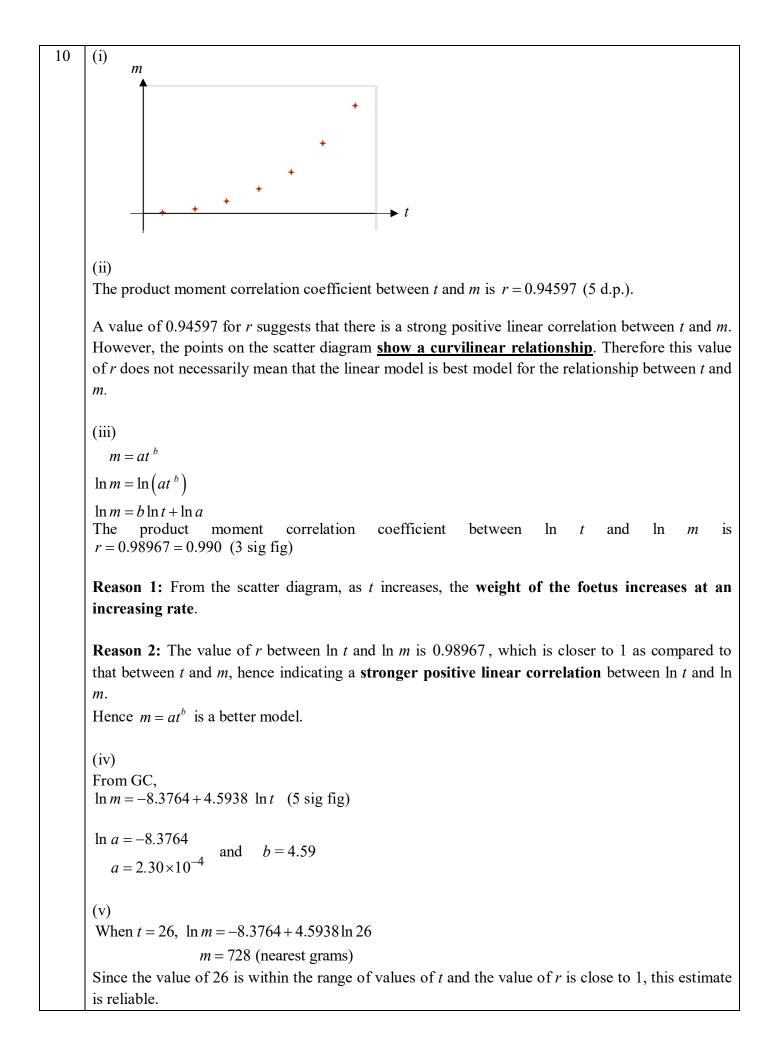
= 300 + 100n - 100 - $\frac{n}{2} (140 + 20n)$
= 300 + 100n - 100 - 70n - 10n²
= -10n² + 30n + 200

(b)(ii)

For the farmer to finish sowing all the ploughed farmland, $-10n^2 + 30n + 200 \le 0$

Method 1:

Solving the inequality, $n \ge 6.21699$ or $n \le -3.21699$ (rejected) Hence the number of complete weeks is 7.


Method 2:

Using GC to set up a table, When n = 6, area unsown = 20 When n = 7, area unsown = -80 When n = 8, area unsown = -200 Hence the number of complete weeks is 7.

	In work 6, the area of unsown playabed land
	In week 6, the area of unsown ploughed land $= 10(6)^2 + 30(6) + 200 = 20 \text{ m}^2$
	$= -10(6)^{2} + 30(6) + 200 = 20 \text{ m}^{2}$
	\therefore area of ploughed land to be sown in week 7 (the final week)
	$= 20 + 100 = 120 \text{ m}^2$
5	(i) Number of emergements $= 61 \times 2^6 - 46080$
5	(i) Number of arrangements = $6! \times 2^6 = 46080$
	(ii)
	Required probability
	${}^{6}C_{5} \times (5-1)! \times 2$
	$=\frac{{}^{6}C_{5} \times (5-1)! \times 2}{{}^{12}C_{10} \times (10-1)!}$
	$=\frac{288}{2}$
	- 23950080
	= 0.0000120 (3 sig fig)
6	(i)
	P(Clark wins in 3 rd draw)
	$=\frac{7}{9} \times \frac{7}{9} \times \frac{7}{9} \times \frac{7}{9} \times \frac{2}{9}$
	= 0.081322
	= 0.0813
	- 0.0015
	(ii) P(Kara wing)
	P(Kara wins)
	$= \frac{7}{9} \times \frac{2}{9} + \left(\frac{7}{9}\right)^3 \times \frac{2}{9} + \left(\frac{7}{9}\right)^5 \times \frac{2}{9} + \dots$
	$=\frac{2}{9}\left[\frac{7}{9} + \left(\frac{7}{9}\right)^3 + \left(\frac{7}{9}\right)^5 + \dots\right]$
	$2 \frac{1}{2}$
	$=\frac{2}{9}\left(\frac{\frac{7}{9}}{1-\left(\frac{7}{9}\right)^2}\right)$
	$9 \left[1 - \left(\frac{7}{2}\right)^2 \right]$
	-0.4275 or 7
	$= 0.4375 \text{ or } \frac{7}{16}$
7	(i) Given that X is the number of points scored for one arrow shot.
	$P(X = 50) = \frac{\pi (10)^2}{\pi (60)^2} = \frac{1}{36}$
	$P(X = 20) = \frac{\pi (20)^2 - \pi (10)^2}{\pi (60)^2} = \frac{1}{12}$
	$\pi(40)^2 - \pi(20)^2 = 1$
	$P(X=10) = \frac{\pi (40)^2 - \pi (20)^2}{\pi (60)^2} = \frac{1}{3}$
L	

8 (i)
8 (i)
1 (ii)
1 (iii)
1 (ii)
1 (f the archer is to shoot at the target board repeatedly, then in the long run his average score will be
6.389 points.
(iii)
Var
$$(X) = (10)^2 \left(\frac{1}{3}\right) + (20)^2 \left(\frac{1}{12}\right) + (50)^2 \left(\frac{1}{36}\right) - (6.38888)^2$$

 $= 95.2932$
Let $\overline{X} = \frac{X_1 + X_2 + ... + X_{40}}{40}$.
Since $n = 40$ is large, by Central Limit Theorem, $\overline{X} \sim N\left(6.38888, \frac{95.2932}{40}\right)$ approximately.
Required probability
 $= P(10 < \overline{X} < 20)$
 $= 0.00965$ (3 sig fig)
8 (i)
Whether a randomly chosen patient turns up for an appointment is independent of any other patient.
(ii)
Let X be the number of patients who turn up for their appointments, out of 20 appointments.
 $X \sim B(20, 0.845)$
 $P(X > 15)$
 $= 1 - P(X \le 15)$
 $= 0.812$ (3 sig fig)
(iii)
Required probability
 $= P(X \le 17 | X \ge 12)$
 $= \frac{P(12 \le X \le 17)}{P(X \ge 12)}$
 $= \frac{P(12 \le X \le 17)}{P(X \ge 12)}$
 $= \frac{P(12 \le X \le 17)}{P(X \ge 12)}$
 $= \frac{P(X \le 17 - |X \ge 11)}{1 - P(X \le 11)}$
 $= 0.618$ (3 sig fig)

	T
	(iv)
	Let <i>Y</i> be the number of patients who turn up for their appointments, out of <i>n</i> appointments.
	$Y \sim B(n, 0.845)$
	$P(Y \le 20) \ge 0.85(*)$
	Using GC,
	When $n = 21$, $P(Y \le 20) = 0.9709$ (> 0.85)
	When $n = 22$, $P(Y \le 20) = 0.8762$ (>0.85)
	When $n = 23$, $P(Y \le 20) = 0.7146$ (< 0.85)
	\therefore Largest <i>n</i> is 22.
9	(i)(a) (1)(a)
	Given: $L \sim N(35.2, 5.2^2) P \sim N(24.6, 3.8^2) C \sim N(29.3, 4.3^2)$
	Let $T = 3L + 2P$.
	$E(T) = 3 \times 35.2 + 2 \times 24.6 = 154.8$
	Var $(T) = 3^2 \times 5.2^2 + 2^2 \times 3.8^2 = 301.12$
	$\therefore T \sim N(154.8, 301.12)$
	Let a be the required score exceed by 1% of the candidates.
	P(T > a) = 0.01
	$\Rightarrow P(T \le a) = 0.99$
	Using GC, $a = 195.2$ (1 dec pl)
	(i)(b) Described and helpility
	Required probability
	$= \left[P(T > 150) \right]^3 \left[P(T < 140) \right]^2 \times \left(\frac{5!}{2!3!} \right)$
	= 0.0875 (3 sig fig)
	(ii)
	Consider $A = 3L + 2P - 5C$
	E(A) = 154.8 - 5(29.3) = 8.3
	Var $(A) = 301.12 + 5^2 (4.3^2) = 763.37$
	$\therefore A \sim N(8.3, 763.37)$
	Required probability
	= P(A < 25)
	= P(-25 < A < 25)
	= 0.613 (3 sig fig) Required percentage = 61.3%
	required percentage 01.570

11 (i) Let X be the random variable denoting the mass of strawberry jam, in grams, in a randomly chosen jar. Unbiased estimate of population mean $\overline{x} = \frac{-66}{30} + 200 = 197.8$ Unbiased estimate of population variance $s^2 = \frac{1}{29} \left[958 - \frac{(-66)^2}{30} \right] = 28.02759$ $H_0: \mu = 200$ $H_1: \mu < 200$ Test at 2% significance level Assume H₀ is true. $\overline{X} \sim N\left(200, \frac{28.02759}{30}\right)$ Test statistic: $Z = \frac{\overline{X} - 200}{\sqrt{28.02759/30}} \sim N(0,1)$ Using GC, p-value = 0.011420121 < 0.02Reject H₀ and conclude that there is sufficient evidence at 2% level of significance that the mean mass of strawberry jam in each jar is overstated. Therefore the retailer's suspicion is justifiable. (ii) At 2% significance level means that there is a probability of 0.02 that the test will indicate that the mean mass of the strawberry jam in the jar is less than 200 g when in fact it is 200 g. (iii) $H_0: \mu = 200$ $H_1: \mu \neq 200$ For a two tailed test, the p-value will be twice of 0.0114 which is 0.0228. This value is now more than the 0.02 where we do not reject H_0 at 2% significance level. As such this will result in a different conclusion. (iv) $H_0: \mu = 200$ $H_1: \mu \neq 200$ Test at 2% significance level Assume H₀ is true. $\overline{X} \sim N\left(200, \frac{3.5^2}{20}\right)$. Test statistic: $Z = \frac{\overline{X} - 200}{\sqrt{3.5^2/20}} \sim N(0,1)$

For the retailer's suspicion that the mean mass differs from 200 g to be not justified, do not reject H_0 .

⇒ z-value falls outside the critical region -2.32635 < z-value < 2.32635 -2.32635 < $\frac{k-200}{3.5/\sqrt{20}}$ < 2.32635 -1.82066 < k - 200 < 1.82066 198.17934 < k < 201.82066 ⇒ 198.2 < k < 201.8 (to 1 d.p)