MATHEMATICS

Higher 2

9740/1

2

9740/1

15 Sept 2016

3 hours

Additional materials: Writing paper

List of Formulae (MF15)

TIME: 3 hours

READ THESE INSTRUCTIONS FIRST

Write your name and class on the cover page and on all the work you hand in.

Write in blue or black pen on both sides of the paper.

You may use a soft pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

You are expected to use a graphic calculator.

Unsupported answers from a graphic calculator are allowed unless a question specifically states otherwise.

Where unsupported answers from a graphic calculator are not allowed in a question, you are required to present the mathematical steps using mathematical notations and not calculator commands.

You are reminded of the need for clear presentation in your answers.

The number of marks is given in brackets [] at the end of each question or part question. At the end of the examination, fasten all your work securely together.

Total marks for this paper is 100 marks

This question paper consists of 6 printed pages (inclusive of this page) and 2 blank pages.

Answer all questions [100 marks].

State a sequence of 3 transformations which transform the graph of $g(x) = e^{(6x+2)^2} + 1 \text{ to the graph of } f(x) = e^{(2x-2)^2}.$

- Using the standard series expansions, obtain the Maclaurin series of $\ln \left[(1+x)(1-2x)^3 \right]$ in ascending powers of x, up to and including the term in x^3 . [2]
 - (i) Find the set of values of x for which the above expansion is valid. [1]
 - (ii) Hence, find the range of values of x for which the expansion of

$$\begin{bmatrix} \ln \left[\ln \frac{1}{\left(1 + 2x \right)^3} \right] - \ln(1 - x) \\ 0 \end{bmatrix} (2 + 7x)^5 \text{ is valid.}$$
 [2]

The diagram shows the graph of $y = e^{2x} - kx$, where k is a positive real number.

The two roots of the equation $e^{2x} - kx = 0$ are denoted by α and β , where $\alpha < \beta$.

It is given that there is a sequence of real numbers x_1, x_2, x_3 ... that satisfies the recurrence relation, $x_{n+1} = \frac{1}{k} e^{2x_n}$, for $n \ge 1$.

By considering $x_{n+1} - x_n$, prove that

$$x_{n+1} > x_n \text{ if } x_n < \alpha \text{ or } x_n > \beta.$$
 [2]

(b) Prove by the method of mathematical induction that

$$\sum_{r=1}^{n} \cos r\theta = \frac{\sin(n+\frac{1}{2})\theta - \sin\frac{1}{2}\theta}{2\sin\frac{1}{2}\theta}$$
, for all positive integers *n*. [5]

- 4 Andy and his fiancée signed up for a new 4-room flat in Boon Keng. They take up a housing loan of \$450,000 provided by BEST bank for the purchase. The couple pay a fixed monthly instalment of \$A on the first day of each month. Interest is charged on the last day of each year at a fixed rate of 1.6% of the remaining loan amount at the beginning of that year. If the first instalment is paid in January 2016,
 - (i) Show that the amount the couple owe the bank at the end of 2017 is \$[464515.20-24.192*A*].
 - [5]

[1]

- (ii) Given that A is 1500, find the date and amount of the final repayment to the nearest cent.
- (a) It is given that $y = \frac{x^2 x 1}{x + 1}$, $x \in \square$, $x \ne -1$. Without using a graphic calculator, find the set of values that y cannot take. [3]
 - **(b)** The curve C has equation $y = \frac{x^2 + b}{x a}$, where a > 0, b > a and $x \ne a$.
 - (i) Draw a sketch of the curve C, label clearly the equation(s) of its asymptote(s) and the coordinates of any intersection with the axes. [3]
 - (ii) By drawing an additional graph on the diagram drawn in (i), state the number of real root(s) of the equation $x^2 + b = (x - a)(x^2 + a)$. [2]
- 6 (a) The equations of two planes p_1 and p_2 are

$$x+4y+2z=7,$$

$$3x+\lambda y+4z=\mu,$$

respectively, where λ and μ are constants.

(i) Given that the two planes intersect in a line l, with a vector equation given by

$$\mathbf{r} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + s \begin{pmatrix} -2 \\ 1 \\ -1 \end{pmatrix}, \ s \in \mathbf{R},$$

show that the value of λ is 10 and find the value of μ .

[3] .

[2]

- (ii) If plane p_3 is the reflection of p_1 in p_2 , find the acute angle between p_1 and p_3 .
- (b) Relative to the origin O, the points A, B, C and D have position vectors a, b, **c** and **d** respectively. It is given that λ and μ are non-zero numbers such that $\lambda \mathbf{a} + \mu \mathbf{b} - \mathbf{c} = \mathbf{0}$ and $\lambda + \mu = 1$,
 - (i) Show that A, B and C are collinear. [3]
 - (ii) If O is not on the line AC and $|\mathbf{c} \times \mathbf{a}|(\mathbf{b} \mathbf{a}) = (\mathbf{c} \cdot \mathbf{d})\mathbf{d}$, determine the
 - relationship between \overrightarrow{AC} and \overrightarrow{OD} , explaining your answer clearly. [2]

A piece of metal with negligible thickness has been cut into a shape that is made up of four isosceles triangles each with base x cm and fixed sides a cm. Their bases frame to a form a square with sides of length x cm. A right pyramid is formed by folding along the dotted lines as shown in the diagram below.

[Volume of a pyramid = $\frac{1}{3}$ × base area × height]

- (i) Show that the volume of the pyramid is $\frac{x^2}{3}\sqrt{a^2-\frac{x^2}{2}}$ cm³.
- (ii) Find the value of x, in terms of a, that will give maximum volume for the pyramid.

[2]

[4]

(iii)

To make the pyramid into a paperweight with negligible thickness, a viscous fluid is pumped into the interior at a rate of 1 cm³/s. Given that H cm is the perpendicular distance from the apex of the pyramid to the viscous fluid surface, x = a and the height of the pyramid is $\frac{\sqrt{2}}{2}a$ cm, find the rate at

which *H* is changing when $H = \frac{a}{2}$, giving your answer in terms of *a*. [3] [The diagram above shows the cross sectional area of the pyramid.]

- 8 (i) Show that $\left(0, -\frac{1}{4}\right)$ lies on the locus |z+2| = |z+1+2i|. [1]
 - (ii) Sketch on a single Argand diagram the loci $|z+1+2i| = \sqrt{5}$ and |z+2| = |z+1+2i|. [4]
 - (iii) Hence indicate clearly on the Argand diagram the locus of z that satisfies the relations $|z+1+2i| \le \sqrt{5}$ and |z+2| = |z+1+2i|. [1]
 - (iv) Find the greatest and least possible values of arg(z+1+2i), giving your answers in radians correct to 3 decimal places. [4]
- 9 The path travelled by an object measured with respect to the origin in the horizontal and vertical directions, at time t seconds, is denoted by the variables x and y respectively.

It is given that when t = 0, x = 1, y = 0 and $\frac{dx}{dt} = 1$. The variables are related by

the differential equations $\frac{dy}{dt} - y + \sqrt{e^{2t} - 4y^2} = 0$ and $\frac{d^2x}{dt^2} = \cos^2 2t$.

- (i) Using the substitution $y = we^t$, show that $\frac{dw}{dt} = -\sqrt{1 4w^2}$ and hence find y in terms of t. [6]
- (ii) Find x in terms of t. [4]
- 10 Given that $f(r) = \frac{3^r}{r+1}$, show that $f(r+2) f(r) = \frac{(8r+6)3^r}{(r+1)(r+3)}$. [1]
 - (i) Find $\sum_{r=1}^{n} \frac{(4r+3)3^r}{(r+1)(r+3)}$ in terms of n. [2]
 - (ii) Hence find $\sum_{r=1}^{n} \frac{(4r+11)3^r}{(r+3)(r+5)}$ in terms of n. [4]
 - (iii) Using the result in (ii), show that $\sum_{r=0}^{n} \left[\frac{r \cdot 3^{r}}{(r+5)^{2}} \right] \frac{3^{n+1}}{4} < -\frac{51}{160}.$ [3]

11 The functions f and g are defined as follows:

$$f: x \mapsto -|x^2 + 2x|, \quad a < x \le 0$$

 $g: x \mapsto -\sqrt{x+1}, \quad x > -1$

(i) State the least value of a for the inverse function of f to exist. Hence, find f^{-1} in similar form. [4]

For the following parts, use the value of a found in part (i).

- (ii) Write down ff⁻¹ in similar form. [1]
- (iii) Find the rule for gf in the form bx + c, where $b, c \in \square$. State its range. [3]
- (iv) Find the exact range of x for which $f\left(x-\frac{3}{2}\right) > gf\left(x-\frac{3}{2}\right)$. [3].

12 (a)(i) Find
$$\frac{d}{dx}[(\ln x)^2]$$
. [1]

(ii) The curve C is defined by the parametric equations

$$x = \ln t - t$$
, $y = 2t + \ln(t^2)$ where $t > 0$.

Another curve L is defined by the equation $(4-y)^2 = 3-x$. The graphs of C and L intersect at the point A(-1,2) as shown in the diagram below.

Find the exact area of the shaded region bounded by C, L and the line A(-1,2).

[6]

[4]

(b) The region R is the finite region enclosed by the curve $(y-1)^2 = 1-x$ and the y-axis. The region S is the region in the 2^{nd} quadrant enclosed by the curve $y = 2\tan\left(x + \frac{\pi}{4}\right)$ and the axes.

Find the total volume generated when region R and S is rotated through 2π radians about the x-axis, leaving your answers in exact form.

MATHEMATICS

Higher 2

9740/1

15 Sept 2016

3 hours

Additional materials: Writing paper

List of Formulae (MF15)

TIME: 3 hours

READ THESE INSTRUCTIONS FIRST

Write your name and class on the cover page and on all the work you hand in.

Write in blue or black pen on both sides of the paper.

You may use a soft pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

You are expected to use a graphic calculator.

Unsupported answers from a graphic calculator are allowed unless a question specifically states otherwise.

Where unsupported answers from a graphic calculator are not allowed in a question, you are required to present the mathematical steps using mathematical notations and not calculator commands.

You are reminded of the need for clear presentation in your answers.

The number of marks is given in brackets [] at the end of each question or part question.

At the end of the examination, fasten all your work securely together.

Total marks for this paper is 100 marks

This question paper consists of 6 printed pages (inclusive of this page) and 2 blank page.

Answer all questions [100 marks].

1	State a sequence of 3 transformations which transform the graph of	
	$g(x) = e^{(6x+2)^2} + 1$ to the graph of $f(x) = e^{(2x-2)^2}$.	[3]
	Solution	
	I) Translation in the negative y-direction by 1 unit	
	$y = e^{(6x+2)^2} + 1 \rightarrow y = e^{(6x+2)^2}$	
	II) Stretch parallel to the x-axis by a scale factor 3.	
	$y = e^{(6x+2)^2} \rightarrow y = e^{\left(6\left(\frac{x}{3}\right)+2\right)^2} = e^{(2x+2)^2}$	
	III) Translation in the positive x-direction by 2 units	
	$y=e^{(2x+2)^2} \rightarrow y=e^{(2(x-2)+2)^2}=e^{(2x-2)^2}$	
	Alternatively	
	I) Translation in the negative y-direction by 1 unit	
	$y = e^{(6x+2)^2} + 1 \rightarrow y = e^{(6x+2)^2}$	
	II) Translation in the positive x-direction by 2/3 units	
	$y = e^{(6x+2)^2} \rightarrow y = e^{\left(6\left(x-\frac{2}{3}\right)+2\right)^2} = e^{(6x-2)^2}$	
	III) Stretch parallel to the x-axis by a scale factor 3.	
	$y = e^{(6x-2)^2} \rightarrow y = e^{\left(6\left(\frac{x}{3}\right)-2\right)^2} = e^{(2x-2)^2}$	
	Note: The translation can be step 1, 2 or 3.	
2	Using the standard series expansions, obtain the Maclaurin series of $\ln \left[(1+x)(1-2x)^3 \right]$	
	in ascending powers of x , up to and including the term in x^3 .	[2]
	(i) Find the set of values of x for which the above expansion is valid. (ii) Hence, find the range of values of x for which the expansion	[1]
	(ii) Hence, find the range of values of x for which the expansion	
	$\left[e^{\ln\left[\ln\frac{1}{(1+2x)^3}\right]}-\ln(1-x)\right](2+7x)^5 \text{ is valid.}$	[2]
	·	
	Solution	
	$\ln[(1+x)(1-2x)^3] = \ln(1+x) + 3\ln(1-2x)$	
	$= x - \frac{x^2}{2} + \frac{x^3}{3} + 3\left(-2x - 2x^2 - \frac{8x^3}{3}\right) + \cdots$	

		 -
	$=-5x-\frac{13x^2}{2}-\frac{23x^3}{3}+\cdots$	
	(i) So $-1 < -2x \le 1$ and $-1 < x \le 1$	
	$-\frac{1}{2} \le x < \frac{1}{2} \text{and} -1 < x \le 1$	
	$\left\{x \in \Box : -\frac{1}{2} \le x < \frac{1}{2}\right\}$	
	(ii) $ \left[e^{\ln \left[\ln \frac{1}{(1+2x)^3} \right]} - \ln(1-x) \right] (2+7x)^3 = \left[-3\ln(1+2x) - \ln(1-x) \right] (2+7x)^3 $	
	$= -[3\ln(1+2x) + \ln(1-x)](2+7x)^{3}$	
	From (i), replace x by $-x$,	
	$-\frac{1}{2} < x \le \frac{1}{2} \text{ and } x \in \square$	
·	∴ Range of values of x is $-\frac{1}{2} < x \le \frac{1}{2}$.	
3	(a) ,,	
- MAG-1970-1	$y = e^{2x} - kx$ $O \alpha \qquad \beta$	
3'		
56.	The diagram shows the graph of $y = e^{2x} - kx$, where k is a positive real number. The two roots of the equation $e^{2x} - kx = 0$ are denoted by α and β , where	
	$\alpha < \beta$.	
	It is given that there is a sequence of real numbers x_1, x_2, x_3 that satisfies the	. :
	recurrence relation, $x_{n+1} = \frac{1}{k} e^{2x_n}$, for $n \ge 1$.	
	By considering $x_{n+1}-x_n$, prove that	
*	$x_{n+1} > x_n \text{ if } x_n < \alpha \text{ or } x_n > \beta.$	[2]
	(b) Prove by the method of mathematical induction that	[4]
	$\sum_{r=1}^{n} \cos r\theta = \frac{\sin(n+\frac{1}{2})\theta - \sin\frac{1}{2}\theta}{2\sin\frac{1}{2}\theta}$, for all positive integers n .	[5]

	Solution	
	(a) $x_{n+1} - x_n$	
	$= \frac{1}{k}e^{2x_n} - x_n$ $= \frac{e^{2x_n} - kx_n}{k}$ $y = e^{2x} - kx$	
	$=\frac{e^{2x_n}-kx_n}{}$	
	k $O \alpha \beta$	
	From given sketch, if $x < \alpha$ or $x > \beta$,	
j	$e^{2x} - kx > 0$	
	So if $x_n < \alpha$ or $x_n > \beta$,	
	$x_{n+1} - x_n = \frac{e^{2x_n} - kx_n}{k} > 0$	
	Therefore, $x_{n+1} > x_n$ (Proven)	
	(b) Let P_n be the statement	
	$\cos\theta + \cos 2\theta + \cos 2\theta + \cos n\theta = \sin(n + \frac{1}{2})\theta - \sin\frac{1}{2}\theta$ for $n \in \mathbb{R}^+$	
	$\cos\theta + \cos 2\theta + \cos 3\theta + \dots + \cos n\theta = \frac{\sin(n + \frac{1}{2})\theta - \sin\frac{1}{2}\theta}{2\sin\frac{1}{2}\theta} \text{ for } n \in \square^+.$	
	To show P_1 is true,	
	$LHS = \sum_{r=1}^{1} \cos r\theta = \cos \theta$	
	$RHS = \frac{\sin\frac{3}{2}\theta - \sin\frac{1}{2}\theta}{2\cos\frac{1}{2}\theta}$	
	$2\cos\theta\sin(\frac{1}{2}\theta)$. •
	$=\frac{1}{2\sin\frac{1}{2}\theta}$	
	$=\cos\theta = \text{LHS}$	
	$\therefore P_1$ is true.	
	Suppose P_k is true for some $k \in \mathbb{Z}^+$, i.e. $\sum_{r=1}^k \cos r\theta = \frac{\sin(k+\frac{1}{2})\theta - \sin\frac{1}{2}\theta}{2\sin\frac{1}{2}\theta}$	
	To show P is true i.e. $\sum_{k=1}^{k+1} \cos r\theta = \frac{\sin(k+\frac{3}{2})\theta - \sin(\frac{1}{2}\theta)}{\sin(k+\frac{3}{2})\theta - \sin(\frac{1}{2}\theta)}$	
	r=1 25H1 2 0	
	$LHS = \sum_{r=1}^{k+1} \cos r\theta$	
	$=\sum_{r=1}^{k}\cos r\theta+\cos(k+1)\theta$	
•	$=\frac{\sin(k+\frac{1}{2})\theta-\sin\frac{1}{2}\theta}{2\sin\frac{1}{2}\theta}+\cos(k+1)\theta$	
	$-\frac{\sin(k+\frac{1}{2})\theta - \sin\frac{1}{2}\theta + 2\cos(k+1)\theta\sin\frac{1}{2}\theta}{\sin\frac{1}{2}\theta}$	
	$=\frac{2\sin\frac{1}{2}\theta}{2\sin\frac{1}{2}\theta}$	
	$2\sin\frac{1}{2}\theta$	<u> </u>

•

		$\sin(k+\frac{1}{2})\theta - \sin\frac{1}{2}\theta + \sin(k)$	$+\frac{3}{2}\theta - \sin(k+\frac{1}{2})\theta$	
		$=\frac{2\sin\frac{1}{2}\theta}{2\sin\frac{1}{2}\theta}$	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2	
-				
		$= \frac{1}{2\sin\frac{1}{2}\theta} = RHS$		
Hence	P_{k+1}	is true if P_k is true. (Missing	is "P")	
Since	P ₁ is	s true and P_{k+1} is true when P_k is	s true, by Mathematical Induction, P_n	
is true	e for	all positive integers n.		
up a l coupl Intere remai	housi e pay st is ning	ing loan of \$450,000 provided y a fixed monthly instalment charged on the last day of ear loan amount at the beginning of	I by BEST bank for the purchase. The of $$A$$ on the first day of each month. ach year at a fixed rate of 1.6% of the	
(i) S	how	that the amount the couple ow	e the bank at the end of 2017 is	[1]
, , ,			d amount of the final repayment to the	[5]
Solut	ion			
(i) Ar	nt ov	we at the end of $2017 = (1.016)$	(1.016)(450000) – 1.016(12A) – 12A	
(49)		= \$[4645	15.2 – 24.192.4]	
(11)	-			
У	ear	Amt owed at the beginning	Amt owed at the end of the year after paying 18000	
15	st	450000	1.016(450000) -18000	
21	nd	1.016(450000) -12A	(1.016)(1.016)(450000) -	
			1.016(18000) –	
	·		18000	
3 ¹	rd	$(1.016^2)(450000) -$	(1.016)(1.016 ²)(450000) –	
		1.016(12 <i>A</i>) –	(1.016)(1.016)(18000) –	
		12.4	(1.016)(18000) –	
			18000	
		•••		
n'	th	•	$(1.016^n)(450000) -$	
	Andy up a l coupl Intere remai in Jan (i) S (ii) G ne Solut (ii) Ar 2'	Andy and up a housi couple pay Interest is remaining in January (i) Show \$[464: (ii) Given nearest Solution (i) Amt ov	$=\frac{\sin(k+\frac{3}{2})\theta-\sin\frac{1}{2}\theta}{2\sin\frac{1}{2}\theta}=\text{RHS}$ Hence, P_{k+1} is true if P_k is true. (Missing Since P_1 is true and P_{k+1} is true when P_k is true for all positive integers n . Andy and his fiancée signed up for a new parabolic and a housing loan of \$450,000 provided couple pay a fixed monthly instalment Interest is charged on the last day of ear remaining loan amount at the beginning of in January 2016, (i) Show that the amount the couple ow \$[464515.2-24.192A]. (ii) Given that A is 1500, find the date an nearest cent. Solution (i) Amt owe at the end of 2017 = (1.016) = \$[4645]. (ii) year Amt owed at the beginning 1^{st} 450000 2^{nd} 1.016(450000) -12 A	Andy and his fiancée signed up for a new 4-room flat in Boon Keng. They take up a housing loan of \$450,000 provided by BEST bank for the purchase. The couple pay a fixed monthly instalment of \$A\$ on the first day of each month. Interest is charged on the last day of each year at a fixed rate of 1.6% of the remaining loan amount at the beginning of that year. If the first instalment is paid in January 2016, (i) Show that the amount the couple owe the bank at the end of 2017 is \$ $[464515.2-24.192A]$. (ii) Given that A is 1500, find the date and amount of the final repayment to the nearest cent. Solution (i) Amt owe at the end of 2017 = $(1.016)(1.016)(450000) - 1.016(12A) - 12A$ = \$ $[464515.2-24.192A]$ (ii) year Amt owed at the beginning Amt owed at the end of the year after paying 18000 1^{18} 450000 $1.016(450000) - 18000$ $1.016(18000) - 18000$ 3^{rd} (1.016^2)(450000) - 18000 $1.016(18000) - 12A$ (1.016)(1.016

		6 .	
ſ		$(1.016^{n-1})(18000) -$	
		$(1.016^{n-2})(18000) -$	
		18000	
		Amount of money owe at the end of <i>n</i> th year	
		$= 450000(1.016)^{n} - 18000(1+1.016+1.016^{2} + + 1.016^{n-1})$	
All the second s		Consider $450000(1.016)^n - 18000 \left(\frac{1(1.016^n - 1)}{1.016 - 1} \right) \le 0$. :
		$450000(1.016)^n - 1125000(1.016^n - 1) \le 0$	
		Using G.C, $n \ge 32.2$	
		When $n = 32$, Amount owe at the end of 32 years	
		$= $450000(1.016)^{32} - $1125000(1.016^{32} - 1) = 3233.601	
·		Since they will be paying \$1500 each month, they will finished the payment on 1st March 2048. The last payment is \$233.60.	
	5	(a) It is given that $y = \frac{x^2 - x - 1}{x + 1}$, $x \in \Box$, $x \neq -1$. Without using a graphic	
·		calculator, find the set of values that y cannot take.	[3]
		(b) The curve C has equation $y = \frac{x^2 + b}{x - a}$, where $a > 0$, $b > a$ and $x \ne a$	
		(i) Draw a sketch of the curve C, label clearly the equation(s) of its asymptote(s) and the coordinates of any intersection with the axes.	[3]
		(ii) By drawing an additional graph on the diagram drawn in (i), state the	[2]
		number of real root(s) of the equation $x^2 + b = (x-a)(x^2+a)$.	[2]
		Solution	
		(a) Consider any horizontal line $y = k, k \in \square$.	
• •		(a) Consider any horizontal line $y = k$, $k \in \square$. Consider the intersection of the graphs $y = \frac{x^2 - x - 1}{x + 1}$ and $y = k$, i.e.	
		$\frac{x^2 - x - 1}{x + 1} = k$	
		$\Rightarrow x^2 - x - 1 = k(x + 1)$	
		$\Rightarrow x^2 + x(-1-k) + (-1-k) = 0$	
		For the equation to have no real solutions,	
		Discriminant < 0	
		$\Rightarrow (-1-k)^2 - 4(1)(-1-k) < 0$	لــــا

	$\Rightarrow k^2 + 6k + 5 < 0$	
	(k+1)(k+5) < 0	
		
	+ _51 +	
	∴ The set of values that y cannot take is $\{y \in \square : -5 < y < -1\}$	
	(bi) When $x = 0$, $y = -\frac{b}{}$	
	a	
	$y = \frac{x^2 + b}{x - a} = (x + a) + \frac{a^2 + b}{x - a}$	
	x = a and $y = x + a$, are equations of the asymptotes	
	(ii)	
		Ì
	$y = x^2 + a$	
	x	
.		
	$\left \left \left \left(0, -\frac{b}{b} \right) \right \right \right $	
l		
	x = a	
	$x^2 + b = (x - a)(x^2 + a)$	
	$\Rightarrow \frac{x^2 + b}{x - a} = x^2 + a$	
	x-a	
ļ.	By adding an additional graph in (i), i.e. $y = x^2 + a$, no. of real root is 1.	
6	(a) The equations of two planes p_1 and p_2 are	
	x+4y+2z=7, $3x+\lambda y+4z=\mu,$	
	respectively, where λ and μ are constants. (i) Given that the two planes intersect in a line l , with a vector equation	
	given by	
	$\mathbf{r} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + s \begin{pmatrix} -2 \\ 1 \\ -1 \end{pmatrix}, \ s \in \mathbf{R},$	
	$\begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} -1 \end{pmatrix}$	
	show that the value of λ is 10 and find the value of μ .	[3]
	(ii) If plane p_3 is the reflection of p_1 in p_2 , find the acute angle between p_1	
	and p_3 .	[2]

	(b) Relative to the origin O, the points A, B, C and D have position vectors a, b,	ľ
ŀ	c and d respectively. It is given that λ and μ are non-zero numbers such that	
1	$\lambda \mathbf{a} + \mu \mathbf{b} - \mathbf{c} = 0 \text{ and } \lambda + \mu = 1$,	
	(i) Show that A, B and C are collinear.	[3]
	(ii) If O is not on the line AC and $ \mathbf{c} \times \mathbf{a} (\mathbf{b} - \mathbf{a}) = (\mathbf{c} \cdot \mathbf{d}) \mathbf{d}$, determine the	
	• • • • • • • • • • • • • • • • • • • •	
	relationship between \overrightarrow{AC} and \overrightarrow{OD} , explaining your answer clearly.	[2]
	Solution	╁
	$ (ai) \begin{pmatrix} -2 \\ 1 \\ -1 \end{pmatrix} \begin{pmatrix} 3 \\ \lambda \\ 4 \end{pmatrix} = 0 $.]
	$\left(-1\right)\left(4\right)$	
	$\lambda = 10$	
İ	$\mu = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \bullet \begin{pmatrix} 3 \\ 10 \\ 4 \end{pmatrix} = 17$	
	$\mu = \left 1 \right \bullet \left 10 \right = 17$	
	(1) (4)	
	(ii)	
	Let θ be the angle between p_1 and p_2 .	
	(1) (3)	
	4 • 10	
	$\begin{bmatrix} 2 & 4 \end{bmatrix}$	
	$\cos \theta = \frac{\begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix} \bullet \begin{pmatrix} 3 \\ 10 \\ 4 \end{pmatrix}}{\sqrt{1^2 + 4^2 + 2^2} \sqrt{3^2 + 10^2 + 4^2}}$].
	$\sqrt{1 + 4 + 2} \sqrt{3 + 10 + 4}$	
	51	
	$\cos\theta = \frac{51}{\sqrt{21}\sqrt{125}}$	
	$\theta = 5.4869^{\circ}$	
	Acute angle between p_1 and $p_3 = 2(5.4869^\circ) = 11.0^\circ$	
	(bi)	
	$\overrightarrow{AB} = \mathbf{b} - \mathbf{a}$	
	$AC = \mathbf{c} - \mathbf{a}$	
	$=\lambda \mathbf{a} + \mu \mathbf{b} - \mathbf{a}$	_
<u> </u>	$=(\lambda-1)\mathbf{a}+\mu\mathbf{b}$	-
	$=-\mu \mathbf{a} + \mu \mathbf{b}$	┨
	$=\mu(\mathbf{b}-\mathbf{a})$	-
	Since $\overrightarrow{AC} = \mu \overrightarrow{AB}$ for some $\mu \in \square \setminus \{0\}$, A, B, C are collinear.	
	(ii) $ \mathbf{c} \times \mathbf{a} (\mathbf{b} - \mathbf{a}) = (\mathbf{c} \Box \mathbf{d}) \mathbf{d} \Rightarrow \overrightarrow{AB} = k \overrightarrow{OD}$ for some $k \in \Box$ as $ \mathbf{c} \times \mathbf{a} \neq 0$ since O is	
	not on AC	
	$\longrightarrow \hspace{1cm} \rightarrow	1
	since $AB = \mu AC$ for some $\mu \in \mathbb{N}$	1
	since $AB = \mu AC$ for some $\mu \in \square$ so AC is parallel to OD .	

A piece of metal with negligible thickness has been cut into a shape that is made up of four isosceles triangles each with base x cm and fixed sides a cm. Their bases frame to a form a square with sides of length x cm. A right pyramid is formed by folding along the dotted lines as shown in the diagram below.

[Volume of a pyramid = $\frac{1}{3}$ × base area × height]

(i) Show that the volume of the pyramid is $\frac{x^2}{3}\sqrt{a^2-\frac{x^2}{2}}$ cm³.

[2]

(ii) Find the value of x, in terms of a, that will give maximum volume for the pyramid.

[4]

(iii)

To make the pyramid into a paperweight with negligible thickness, a viscous fluid is pumped into the interior at a rate of 1 cm 3 /s. Given that H cm is the perpendicular distance from the apex of the pyramid to the viscous fluid surface,

	$x = a$ and the height of the pyramid is $\frac{\sqrt{2}}{2}a$ cm, find the rate at which H is	
	changing when $H = \frac{a}{2}$, giving your answer in terms of a .	[3]
	[The diagram above shows the cross sectional area of the pyramid.]	
	Solution	
	(i) Let the height of the isosceles triangle be k cm.	
	$k^{2} + \frac{x^{2}}{4} = a^{2}$ $k^{2} = a^{2} - \frac{x^{2}}{4}$	
	$k^2 = a^2 - \frac{x^2}{4}$	
	Therefore, height of the pyramid = $\sqrt{a^2 - \frac{x^2}{4} - \frac{x^2}{4}} = \sqrt{a^2 - \frac{x^2}{2}}$	
	Volume of pyramid, $V = \frac{x^2}{3} \sqrt{a^2 - \frac{x^2}{2}}$	
	(ii) $\frac{dV}{dx} = \frac{4x}{3} \sqrt{a^2 - \frac{x^2}{2}} + \frac{x^2}{3} \left(\frac{1}{2}\right) \frac{-x}{\sqrt{a^2 - \frac{x^2}{2}}}$	
	$= \frac{4x\left(a^2 - \frac{x^2}{2}\right) - x^3}{6\sqrt{a^2 - \frac{x^2}{2}}}$ $= \frac{4a^2x - 3x^2}{\sqrt{2}}$	
	$6\sqrt{a^2 - \frac{x^2}{2}}$	
,	$= \frac{4a^2x - 3x^2}{6\sqrt{a^2 - \frac{x^2}{2}}}$	
	$2x\left(a-\frac{\sqrt{3}}{2}x\right)\left(a+\frac{\sqrt{3}}{2}x\right)$	
	$-\frac{3\sqrt{a^2-\frac{x^2}{2}}}$	
	When $\frac{\mathrm{d}V}{\mathrm{d}x} = 0$,	,
	$\frac{2x\left(a-\frac{\sqrt{3}}{2}x\right)\left(a+\frac{\sqrt{3}}{2}x\right)}{}=0$	
:	$3\sqrt{a^2 - \frac{x^2}{2}}$	
	$\left(\frac{2x}{3}\left(a^2 - \frac{x^2}{2}\right)\right) = \frac{x^3}{6}$	

	$x = \frac{2\sqrt{3}}{3} a \text{ or } -\frac{2\sqrt{3}}{3} a \text{ (rejected } \because x > 0)$	
	When $x = \frac{2\sqrt{3}}{3}a^{-}$,	•
TOWN 1	$\frac{1}{\sqrt{a^2 - \frac{x^2}{2}}} > 0, \frac{2}{3}x > 0, a - \frac{\sqrt{3}}{2}x > 0 \text{ and } a + \frac{\sqrt{3}}{2}x > 0, \text{ thus } \frac{dV}{dx} > 0.$	
	When $x = \frac{2\sqrt{3}}{3}a^{+}$,	
	$\frac{1}{\sqrt{a^2 - \frac{x^2}{2}}} > 0, \frac{2}{3}x > 0, a - \frac{\sqrt{3}}{2}x < 0 \text{ and } a + \frac{\sqrt{3}}{2}x > 0, \text{ thus } \frac{dV}{dx} < 0.$	
aga i	Therefore $x = \frac{2\sqrt{3}}{3}a$ gives maximum volume.	-
i	(iii) Volume of pyramidal empty space, $W \text{ cm}^3$, in the pyramid as it is being filled up	
	$=\frac{1}{3}b^2H$, where b is the length of the square base	
	$\frac{b}{H} = \sqrt{2}$	
	Therefore $W = \frac{2}{3}H^3 \Rightarrow \frac{dW}{dH} = 2H^2$	
	When $H = \frac{a}{2}$	
	$\frac{\mathrm{d}W}{\mathrm{d}H} \times \frac{\mathrm{d}H}{\mathrm{d}t} = \frac{\mathrm{d}W}{\mathrm{d}t}$	
	$2\left(\frac{a}{2}\right)^2 \times \frac{dH}{dt} = -1$	
	$\frac{\mathrm{d}H}{\mathrm{d}t} = -\frac{2}{a^2}$	
	H is decreasing at a rate of $\frac{2}{a^2}$ cm/s.	
4		
8	(i) Show that $\left(0, -\frac{1}{4}\right)$ lies on the locus $ z+2 = z+1+2i $.	[1]
	(ii) Sketch on a single Argand diagram the loci $ z+1+2i = \sqrt{5}$ and	
	z+2 = z+1+2i .	[4]

relations $ z+1+2i \le \sqrt{5}$ and $ z+2 = z+1+2i $.	
(iv) Find the greatest and least possible values of $arg(z+1+2i)$, giving your	1
answers in radians correct to 3 decimal places.	
	-
Solution	+
(i) When $z = -\frac{1}{4}i$	+
L.H.S = $\left -\frac{1}{4}i + 2 \right = \sqrt{4\frac{1}{16}}$	-
R.H.S = $\left -\frac{1}{4}i + 1 + 2i \right = \left 1 + \frac{7}{4}i \right = \sqrt{4\frac{1}{16}}$	
(a 1) 4 V 16	
Hence $\left(0, -\frac{1}{4}\right)$ lies on $ z + 2 = z + 1 + 2i $.	
(ii) & (iii)	
Locus of z Im	
(-2,0) (0,0) Re	
$ z+1+2\mathbf{i} =\sqrt{5}$	
(-1,-2)	
(-1.5, -1)	
$ z+2 = z+1+2i \qquad (0,-4)$	

Equation of circle: $(x + 1)^2 + (y + 2)^2 = 5$

$$y = -2 \pm \sqrt{5 - (x+1)^2}$$
 ----(1)

Gradient of the line passing through the (-2, 0) and $(-1, -2) = \frac{0 - (-2)}{(-2) - (-1)} = -2$

Gradient of the perpendicular bisector = $-\frac{1}{-2} = \frac{1}{2}$

Equation of the perpendicular bisector: $y + 1 = \frac{1}{2}(x + 1.5)$

$$y = \frac{1}{2}x - \frac{1}{4} \qquad -----(2)$$

Using GC, the points of intersection are (-3.232051, -1.866025) and (0.23205, -0.1339746).

Least value of arg (z + 1 + 2i) when z = 0.23205 - 0.1339746i is 0.987. Greatest value of arg (z + 1 + 2i) when z = -3.232051 - 1.866025i is 3.082

NORMAL FLOAT AUTO REAL RADIAN MP angle(.23205-.13397i+1+2i) .9872478185 angle(-3.2322-1.866i+1+2i) 3.081634145

The path travelled by an object measured with respect to the origin in the horizontal and vertical directions, at time t seconds, is denoted by the variables x and y respectively.

			
	It is give	In that when $t = 0$, $x = 1$, $y = 0$ and $\frac{dx}{dt} = 1$. The variables are related by	
	the differe	ential equations $\frac{dy}{dt} - y + \sqrt{e^{2t} - 4y^2} = 0$ and $\frac{d^2x}{dt^2} = \cos^2 2t$.	
	(i) Using	the substitution $y = we^t$, show $\frac{dw}{dt} = -\sqrt{1 - 4w^2}$ and hence find y in	
	terms	of t.	[6
	(ii) Find x	in terms of t.	[4]
	Solution		
à ·		dv ———	
	(i)	$\frac{\mathrm{d}y}{\mathrm{d}t} - y + \sqrt{e^{2t} - 4y^2} = 0$	
		y = we'	
		$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{\mathrm{d}w}{\mathrm{d}t} \mathrm{e}^t + w \mathrm{e}^t$	
		$\mathrm{d}t$ $\mathrm{d}t$	
		$\frac{\mathrm{d}y}{\mathrm{d}t} = \mathrm{e}' \left(\frac{\mathrm{d}w}{\mathrm{d}t} + w \right)$	
		$e^{t}\left(\frac{dw}{dt} + w\right) - we^{t} + \sqrt{e^{2t} - 4\left(we^{t}\right)^{2}} = 0$	
		$e'\left(\frac{\mathrm{d}w}{\mathrm{d}t} + w\right) - we' + e'\sqrt{1 - 4w^2} = 0$	
		$\frac{\mathrm{d}w}{\mathrm{d}t} + w - w + \sqrt{1 - 4w^2} = 0$	
		$\frac{\mathrm{d}w}{\mathrm{d}t} = -\sqrt{1 - 4w^2} (\mathrm{shown})$	
		$\frac{1}{\sqrt{1-4w^2}}\frac{\mathrm{d}w}{\mathrm{d}t} = -1$	
		$\frac{1}{2}\sin^{-1}\left(2w\right) = -t + C$	
		$w = \frac{1}{2}\sin\left(-2t + 2C\right)$	
		$y = \frac{1}{2}e^t \sin\left(-2t + C\right)$	
		When $t = 0, y = 0$	-
		$\frac{1}{2}\sin\left(-2C\right) = 0$	
		C=0	
		$\therefore y = \frac{1}{2}e'\sin(-2t) \text{or} y = -\frac{1}{2}e'\sin(2t)$	
	(ii) $\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} =$	$\cos^2 2t$	

		,
	$=\frac{1+\cos 4t}{2}$	
ļ	2	
	$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{1}{2} \left(t + \frac{\sin 4t}{4} \right) + D_{\mathrm{I}}$	
	$x = \frac{1}{2} \left(\frac{t^2}{2} - \frac{\cos 4t}{16} \right) + D_1 t + D_2$	
	When $t = 0, x = 1, \frac{\mathrm{d}x}{\mathrm{d}t} = 1$	
	$D_1 = 1, D_2 = \frac{33}{32}$	
	$x = \frac{t^2}{4} - \frac{\cos 4t}{32} + t + \frac{33}{32}$	
10	Given that $f(r) = \frac{3^r}{r+1}$, show that $f(r+2)-f(r) = \frac{(8r+6)3^r}{(r+1)(r+3)}$.	[1]
	(i) Find $\sum_{r=1}^{n} \frac{(4r+3)3^r}{(r+1)(r+3)}$ in terms of n .	[2]
	(ii) Hence find $\sum_{r=1}^{n} \frac{(4r+11)3^r}{(r+3)(r+5)}$ in terms of n .	[4]
	(iii) Using the result in (ii), show that $\sum_{r=0}^{n} \left[\frac{r \cdot 3^{r}}{(r+5)^{2}} \right] - \frac{3^{n+1}}{4} < -\frac{51}{160}$.	[3]
<u> </u>	Solution	
	$f(r+2)-f(r) = \frac{3^{r+2}}{r+3} - \frac{3^r}{r+1}$	
	$= r \cdot 3^{r+2} + 3^{r+2} - 3^r \cdot r - 3^{r+1}$	
	= $(r+1)(r+3)$	
	 	
	$=\frac{8r\cdot 3^r+3^{r+1}(3-1)}{(r+1)(r+3)}$	
	$=\frac{(8r+6)3^r}{(r+1)(r+3)}$	
	(i) $\sum_{r=1}^{n} \frac{(4r+3)3^r}{(r+1)(r+3)} = \frac{1}{2} \sum_{r=1}^{n} [f(r+2)-f(r)]$	
	· · · · · · · · · · · · · · · · · · ·	

	[[a(a) a(d)]		Γ
	f(3)-f(1)		-
	+f(4)-f(2)		
	+f(5)-f(3)		
	$ \begin{vmatrix} =\frac{1}{2} \\ +f(5)-f(3) \\ + \\ +f(n)-f(n-2) \end{vmatrix} = \frac{1}{2} \left[-f(1)-f(2)+f(n+1)+f(n+2) \right] $		
	+f(n+1)-f(n-1)		
	$\left[+f(n+2)-f(n)\right]$		1
	$= -\frac{9}{4} + \frac{3^{n+1}}{2} \left[\frac{1}{n+2} + \frac{3}{n+3} \right] = -\frac{9}{4} + \frac{3^{n+1}}{2} \left[\frac{4n+9}{(n+2)(n+3)} \right]$		
	(ii) $\sum_{r=1}^{n} \frac{(4r+11)3^r}{(r+3)(r+5)} = \frac{1}{9} \sum_{r=1}^{n} \frac{(4r+11)3^{r+2}}{(r+3)(r+5)}$	•	
	$r=1 (r+3)(r+5) = 9 \sum_{r=1}^{\infty} (r+3)(r+5)$	•	
	$=\frac{1}{9}\sum_{r=3}^{n+2}\frac{(4r+3)3^r}{(r+1)(r+3)}$		
			-
	$= \frac{1}{9} \left[\sum_{r=1}^{n+2} \frac{(4r+3)3^r}{(r+1)(r+3)} - \frac{21}{8} - \frac{99}{15} \right]$		
·	$=\frac{1}{9}\left[-\frac{9}{4}+\frac{3^{n+3}(4n+17)}{2(n+4)(n+5)}-\frac{21}{8}-\frac{99}{15}\right]$		
	$=-\frac{51}{40}+\frac{3^{n+1}(4n+17)}{2(n+4)(n+5)}$		
	(iii) $\sum_{r=0}^{n} \frac{r \cdot 3^{r}}{(r+5)^{2}} = \frac{1}{4} \sum_{r=1}^{n} \frac{4r \cdot 3^{r}}{(r+5)^{2}}$		
	$1 \sum_{r=1}^{n} (4r+11) \cdot 3^{r}$		
	$<\frac{1}{4}\sum_{r=1}^{n}\frac{(4r+11)\cdot 3^{r}}{(r+5)^{2}}$		
•	$<\frac{1}{4}\sum_{r=1}^{n}\frac{(4r+11)\cdot 3^{r}}{(r+3)(r+5)}$		
, ,	$\frac{1}{4}\sum_{r=1}^{2}\frac{(r+3)(r+5)}{(r+5)}$		
	$\left[\sum_{i=1}^{n} r \cdot 3^{i} \right] = \left[1 \left[51 + 3^{n+1} \left(4n + 17 \right) \right] $		
	So $\sum_{r=0}^{n} \frac{r \cdot 3^{r}}{(r+5)^{2}} < \frac{1}{4} \left[-\frac{51}{40} + \frac{3^{n+1}(4n+17)}{2(n+4)(n+5)} \right]$		
	$r \cdot 3^{r} 3^{n+1} 51 3^{n+1} (4n+17) 3^{n+1}$	· · · ·	
124	$\Rightarrow \sum_{r=0}^{n} \frac{r \cdot 3^{r}}{(r+5)^{2}} - \frac{3^{n+1}}{4} < -\frac{51}{160} + \frac{3^{n+1}(4n+17)}{8(n+4)(n+5)} - \frac{3^{n+1}}{4}$		
• • •	$= -\frac{51}{160} - \frac{3^{n+1}}{4} \left[1 - \frac{4n+17}{2(n+4)(n+5)} \right]$		
	$<-\frac{51}{160}$ since $\frac{4n+17}{2(n+4)(n+5)} \le \frac{17}{18}$ for all $n \ge 0$		
			1
L			1

11	The functions f and g are defined as follows:	
	$f: x \mapsto - x^2 + 2x , a < x \le 0$	
	$g: x \mapsto -\sqrt{x+1}, x > -1$	
	(i) State the least value of a for the inverse function of f to exist. Hence, find	
	f^{-1} in similar form.	[4]
	For the following parts, use the value of a found in part (i).	
	(ii) Write down ff ⁻¹ in similar form.	[1]
	(iii) Find the rule for gf in the form $bx + c$, where $b, c \in \square$. State its range.	[3]
	(iv) Find the exact range of x for which $f\left(x-\frac{3}{2}\right) > g f\left(x-\frac{3}{2}\right)$.	[3]
	Solution	
	(i) Least $a = -1$	
	$f(x) = -(-(x^2 + 2x)) = x^2 + 2x$	•
	Let $y = f(x) = x^2 + 2x$	
		
	$y = (x+1)^2 - 1$	
	$y+1=\left(x+1\right)^2$	
	$x = -1 \pm \sqrt{y+1}$	
	$x = -1 + \sqrt{y+1} \left(\because -1 < x \le 0 \right)$	
	$f^{-1}: x \mapsto -1 + \sqrt{x+1}, -1 < x \le 0$	
	(ii) $ff^{-1}: x \mapsto x, -1 < x \le 0$	
	(iii) gf $(x) = -\sqrt{x^2 + 2x + 1}$	
	$=-\sqrt{\left(x+1\right)^2}$	
	=- x+1	
	$=-x-1 \left(\because D_{\rm gf}=(-1,0]\right)$	ļ
	$R_{\rm gf} = \begin{bmatrix} -1,0 \end{bmatrix}$	
	(iv) $f\left(x-\frac{3}{2}\right) > gf\left(x-\frac{3}{2}\right)$	
	$\left(x-\frac{3}{2}\right)^2 + 2\left(x-\frac{3}{2}\right) > -\left(x-\frac{3}{2}\right) - 1$	
	$x^2 - 3x + \frac{9}{4} + 3x - 3 + 1 - \frac{3}{2} > 0$	·
	$x^2 - \frac{5}{4} > 0$	
	$\left(x - \frac{\sqrt{5}}{2}\right)\left(x + \frac{\sqrt{5}}{2}\right) > 0$	
		1

	x	
	$-\sqrt{5}$ $\sqrt{5}$	
	2 2	
	$x < -\frac{\sqrt{5}}{2} \text{or} x > \frac{\sqrt{5}}{2}$	
	But after translation by 1.5 units in the positive x – direction, $D_f = D_{gf} = \left(\frac{1}{2}, \frac{3}{2}\right)$	
	$\therefore \frac{\sqrt{5}}{2} < x \le \frac{3}{2}$	
12	(a)(i) Find $\frac{d}{dx} [(\ln x)^2]$.	[1]
	(ii) The curve C is defined by the parametric equations $x = \ln t - t$, $y = 2t + \ln(t^2)$ where $t > 0$.	
	Another curve L is defined by the equation $(4-y)^2 = 3-x$. The graphs of C and L intersect at the point $A(-1,2)$ as shown in the diagram below.	
	$y = 4 + \ln 4$ $A(-1,2)$ x	
	Find the exact area of the shaded region bounded by C , L and the line $y = 4 + \ln 4$.	[6]
and Real and	(b) The region R is the finite region enclosed by the curve $(y-1)^2 = 1-x$ and the y-axis. The region S is the region in the 2^{nd} quadrant enclosed by the curve $y = 2\tan\left(x + \frac{\pi}{4}\right)$ and the axes.	
	Find the total volume generated when region R and S is rotated through 2π radians about the x -axis, leaving your answers in exact form.	[4]
	Solution	
	(ai) $\frac{d}{dx} \left[(\ln x)^2 \right] = (2 \ln x) \left(\frac{1}{x} \right) = \frac{2 \ln x}{x}$	

(ii) Area = $\int_{2}^{4 + \ln 4} \left[3 - (4 - y)^2 \right] dy - \int_{2}^{4 + \ln 4} x dy$ = $\left[3y - \frac{(4 - y)^3}{(-3)} \right]_{2}^{4 + \ln 4} - \int_{1}^{2} (\ln t - t) \left(2 + \frac{2}{t} \right) dt$ = $3(2 + \ln 4) - \frac{1}{3} \left[(-\ln 4)^3 - 8 \right] - \int_{1}^{2} \left(2 \ln t + \frac{2 \ln t}{t} - 2t - 2 \right) dt$ = $\frac{10}{3} + 6 \ln 2 - \frac{(\ln 4)^3}{3} - 2 \int_{1}^{2} \ln t dt - \left[(\ln t)^2 \right]_{1}^{2} + \left[t^2 \right]_{1}^{2} + \left[2t \right]_{1}^{2}$ = $\frac{10}{3} + 6 \ln 2 - \frac{(\ln 4)^3}{3} - 2 \left[t \ln t \right]_{1}^{2} + \int_{1}^{2} 2 dt - (\ln 2)^2 + 3 + 2$ = $\frac{25}{3} + 6 \ln 2 - \frac{(\ln 4)^3}{3} - 4 \ln 2 + \left[2t \right]_{1}^{2} - (\ln 2)^2$ = $\frac{31}{3} + 2 \ln 2 - \frac{(\ln 4)^3}{3} - (\ln 2)^2$ (b) Vol = $\pi \int_{-\pi}^{0} \frac{4}{4} t \tan^2 \left(x + \frac{\pi}{4} \right) dx + \pi \int_{0}^{1} \left[\left(1 + \sqrt{1 - x} \right)^2 - \left(1 - \sqrt{1 - x} \right)^2 \right] dx$ = $4\pi \int_{-\pi}^{0} \left(\sec^2 \left(x + \frac{\pi}{4} \right) - 1 \right) dx + \pi \int_{0}^{1} 4 \sqrt{1 - x} dx$ = $4\pi \left[\tan \left(x + \frac{\pi}{4} \right) - x \right]_{-\frac{\pi}{4}}^{0} + 4\pi \left[\frac{(1 - x)^{\frac{3}{2}}}{-\frac{3}{2}} \right]_{0}^{1}$ = $4\pi \left(1 - \frac{\pi}{4} \right) + \frac{8}{3}\pi = \frac{20}{3}\pi - \pi^2$	e4+In4 F	
$= 3(2 + \ln 4) - \frac{1}{3} \left[(-\ln 4)^3 - 8 \right] - \int_1^2 \left(2 \ln t + \frac{2 \ln t}{t} - 2t - 2 \right) dt$ $= \frac{10}{3} + 6 \ln 2 - \frac{(\ln 4)^3}{3} - 2 \int_1^2 \ln t dt - \left[(\ln t)^2 \right]_1^2 + \left[t^2 \right]_1^2 + \left[2t \right]_1^2$ $= \frac{10}{3} + 6 \ln 2 - \frac{(\ln 4)^3}{3} - 2 \left[t \ln t \right]_1^2 + \int_1^2 2 dt - (\ln 2)^2 + 3 + 2$ $= \frac{25}{3} + 6 \ln 2 - \frac{(\ln 4)^3}{3} - 4 \ln 2 + \left[2t \right]_1^2 - (\ln 2)^2$ $= \frac{31}{3} + 2 \ln 2 - \frac{(\ln 4)^3}{3} - (\ln 2)^2$ $(b) \text{ Vol} = \pi \int_{-\frac{\pi}{4}}^0 4 \tan^2 \left(x + \frac{\pi}{4} \right) dx + \pi \int_0^1 \left[\left(1 + \sqrt{1 - x} \right)^2 - \left(1 - \sqrt{1 - x} \right)^2 \right] dx$ $= 4\pi \int_{-\frac{\pi}{4}}^0 \left(\sec^2 \left(x + \frac{\pi}{4} \right) - 1 \right) dx + \pi \int_0^1 4 \sqrt{1 - x} dx$ $= 4\pi \left[\tan \left(x + \frac{\pi}{4} \right) - x \right]_{-\frac{\pi}{4}}^0 + 4\pi \left[\frac{(1 - x)^{\frac{3}{2}}}{-\frac{3}{2}} \right]_0^1$	(ii) Area = $\int_{2}^{4+\ln 4} \left[3 - (4-y)^{2} \right] dy - \int_{2}^{4+\ln 4} x dy$	
$= \frac{10}{3} + 6 \ln 2 - \frac{(\ln 4)^3}{3} - 2 \int_1^2 \ln t dt - \left[(\ln t)^2 \right]_1^2 + \left[t^2 \right]_1^2 + \left[2t \right]_1^2$ $= \frac{10}{3} + 6 \ln 2 - \frac{(\ln 4)^3}{3} - 2 \left[t \ln t \right]_1^2 + \int_1^2 2 dt - (\ln 2)^2 + 3 + 2$ $= \frac{25}{3} + 6 \ln 2 - \frac{(\ln 4)^3}{3} - 4 \ln 2 + \left[2t \right]_1^2 - (\ln 2)^2$ $= \frac{31}{3} + 2 \ln 2 - \frac{(\ln 4)^3}{3} - (\ln 2)^2$ $(b) \text{ Vol} = \pi \int_{-\frac{\pi}{4}}^0 4 \tan^2 \left(x + \frac{\pi}{4} \right) dx + \pi \int_0^1 \left[\left(1 + \sqrt{1 - x} \right)^2 - \left(1 - \sqrt{1 - x} \right)^2 \right] dx$ $= 4\pi \int_{-\frac{\pi}{4}}^0 \left[\sec^2 \left(x + \frac{\pi}{4} \right) - 1 \right] dx + \pi \int_0^1 4 \sqrt{1 - x} dx$ $= 4\pi \left[\tan \left(x + \frac{\pi}{4} \right) - x \right]_{-\frac{\pi}{4}}^0 + 4\pi \left[\frac{\left(1 - x \right)_2^3}{2} \right]_0^1$	$= \left[3y - \frac{(4-y)^3}{(-3)}\right]_2^{4+\ln 4} - \int_1^2 (\ln t - t) \left(2 + \frac{2}{t}\right) dt$	
$= \frac{10}{3} + 6 \ln 2 - \frac{(\ln 4)^3}{3} - 2[t \ln t]_1^2 + \int_1^2 2 dt - (\ln 2)^2 + 3 + 2$ $= \frac{25}{3} + 6 \ln 2 - \frac{(\ln 4)^3}{3} - 4 \ln 2 + [2t]_1^2 - (\ln 2)^2$ $= \frac{31}{3} + 2 \ln 2 - \frac{(\ln 4)^3}{3} - (\ln 2)^2$ $(b) \text{ Vol} = \pi \int_{-\frac{\pi}{4}}^0 4 \tan^2 \left(x + \frac{\pi}{4} \right) dx + \pi \int_0^1 \left[\left(1 + \sqrt{1 - x} \right)^2 - \left(1 - \sqrt{1 - x} \right)^2 \right] dx$ $= 4\pi \int_{-\frac{\pi}{4}}^0 \left(\sec^2 \left(x + \frac{\pi}{4} \right) - 1 \right) dx + \pi \int_0^1 4 \sqrt{1 - x} dx$ $= 4\pi \left[\tan \left(x + \frac{\pi}{4} \right) - x \right]_{-\frac{\pi}{4}}^0 + 4\pi \left[\frac{(1 - x)^{\frac{3}{2}}}{-\frac{3}{2}} \right]_0^1$	$= 3(2+\ln 4) - \frac{1}{3} \left[(-\ln 4)^3 - 8 \right] - \int_1^2 \left(2\ln t + \frac{2\ln t}{t} - 2t - 2 \right) dt$	
$= \frac{25}{3} + 6 \ln 2 - \frac{(\ln 4)^3}{3} - 4 \ln 2 + [2t]_1^2 - (\ln 2)^2$ $= \frac{31}{3} + 2 \ln 2 - \frac{(\ln 4)^3}{3} - (\ln 2)^2$ $(b) \text{ Vol} = \pi \int_{-\frac{\pi}{4}}^0 4 \tan^2 \left(x + \frac{\pi}{4} \right) dx + \pi \int_0^1 \left[\left(1 + \sqrt{1 - x} \right)^2 - \left(1 - \sqrt{1 - x} \right)^2 \right] dx$ $= 4\pi \int_{-\frac{\pi}{4}}^0 \left(\sec^2 \left(x + \frac{\pi}{4} \right) - 1 \right) dx + \pi \int_0^1 4 \sqrt{1 - x} dx$ $= 4\pi \left[\tan \left(x + \frac{\pi}{4} \right) - x \right]_{-\frac{\pi}{4}}^0 + 4\pi \left[\frac{(1 - x)^{\frac{3}{2}}}{-\frac{3}{2}} \right]_0^1$	$= \frac{10}{3} + 6 \ln 2 - \frac{(\ln 4)^3}{3} - 2 \int_1^2 \ln t dt - \left[(\ln t)^2 \right]_1^2 + \left[t^2 \right]_1^2 + \left[2t \right]_1^2$	
$= \frac{31}{3} + 2\ln 2 - \frac{(\ln 4)^3}{3} - (\ln 2)^2$ $(b) \text{ Vol} = \pi \int_{-\frac{\pi}{4}}^{0} 4 \tan^2 \left(x + \frac{\pi}{4} \right) dx + \pi \int_{0}^{1} \left[\left(1 + \sqrt{1 - x} \right)^2 - \left(1 - \sqrt{1 - x} \right)^2 \right] dx$ $= 4\pi \int_{-\frac{\pi}{4}}^{0} \left(\sec^2 \left(x + \frac{\pi}{4} \right) - 1 \right) dx + \pi \int_{0}^{1} 4\sqrt{1 - x} dx$ $= 4\pi \left[\tan \left(x + \frac{\pi}{4} \right) - x \right]_{-\frac{\pi}{4}}^{0} + 4\pi \left[\frac{(1 - x)^{\frac{3}{2}}}{-\frac{3}{2}} \right]_{0}^{1}$	$= \frac{10}{3} + 6 \ln 2 - \frac{(\ln 4)^3}{3} - 2 [t \ln t]_1^2 + \int_1^2 2 dt - (\ln 2)^2 + 3 + 2$	
(b) Vol = $\pi \int_{-\frac{\pi}{4}}^{0} 4 \tan^{2} \left(x + \frac{\pi}{4} \right) dx + \pi \int_{0}^{1} \left[\left(1 + \sqrt{1 - x} \right)^{2} - \left(1 - \sqrt{1 - x} \right)^{2} \right] dx$ = $4\pi \int_{-\frac{\pi}{4}}^{0} \left(\sec^{2} \left(x + \frac{\pi}{4} \right) - 1 \right) dx + \pi \int_{0}^{1} 4\sqrt{1 - x} dx$ = $4\pi \left[\tan \left(x + \frac{\pi}{4} \right) - x \right]_{-\frac{\pi}{4}}^{0} + 4\pi \left[\frac{\left(1 - x \right)^{\frac{3}{2}}}{-\frac{3}{2}} \right]_{0}^{1}$	$= \frac{25}{3} + 6 \ln 2 - \frac{(\ln 4)^3}{3} - 4 \ln 2 + [2t]_1^2 - (\ln 2)^2$	
$= 4\pi \int_{-\frac{\pi}{4}}^{0} \left(\sec^{2} \left(x + \frac{\pi}{4} \right) - 1 \right) dx + \pi \int_{0}^{1} 4\sqrt{1 - x} dx$ $= 4\pi \left[\tan \left(x + \frac{\pi}{4} \right) - x \right]_{-\frac{\pi}{4}}^{0} + 4\pi \left[\frac{(1 - x)^{\frac{3}{2}}}{-\frac{3}{2}} \right]_{0}^{1}$	$= \frac{31}{3} + 2 \ln 2 - \frac{(\ln 4)^3}{3} - (\ln 2)^2$	
$= 4\pi \left[\tan \left(x + \frac{\pi}{4} \right) - x \right]_{-\frac{\pi}{4}}^{0} + 4\pi \left[\frac{(1-x)^{\frac{3}{2}}}{-\frac{3}{2}} \right]_{0}^{1}$	(b) Vol = $\pi \int_{-\frac{\pi}{4}}^{0} 4 \tan^2 \left(x + \frac{\pi}{4} \right) dx + \pi \int_{0}^{1} \left[\left(1 + \sqrt{1 - x} \right)^2 - \left(1 - \sqrt{1 - x} \right)^2 \right] dx$	
L 2 Jo	$= 4\pi \int_{-\frac{\pi}{4}}^{0} \left(\sec^{2} \left(x + \frac{\pi}{4} \right) - 1 \right) dx + \pi \int_{0}^{1} 4\sqrt{1 - x} dx$	
$= 4\pi \left(1 - \frac{\pi}{4}\right) + \frac{8}{3}\pi = \frac{20}{3}\pi - \pi^2$	$= 4\pi \left[\tan \left(x + \frac{\pi}{4} \right) - x \right]_{-\frac{\pi}{4}}^{0} + 4\pi \left[\frac{(1-x)^{\frac{3}{2}}}{-\frac{3}{2}} \right]_{0}^{1}$	
	$=4\pi\left(1-\frac{\pi}{4}\right)+\frac{8}{3}\pi=\frac{20}{3}\pi-\pi^{2}$	

MATHEMATICS

Higher 2

9740/2

21 Sept 2016

3 hours

Additional materials: Writing paper

List of Formulae (MF15)

TIME: 3 hours

READ THESE INSTRUCTIONS FIRST

Write your name and class on the cover page and on all the work you hand in.

Write in blue or black pen on both sides of the paper.

You may use a soft pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

You are expected to use a graphic calculator.

Unsupported answers from a graphic calculator are allowed unless a question specifically states otherwise.

Where unsupported answers from a graphic calculator are not allowed in a question, you are required to present the mathematical steps using mathematical notations and not calculator commands.

You are reminded of the need for clear presentation in your answers.

The number of marks is given in brackets [] at the end of each question or part question. At the end of the examination, fasten all your work securely together.

Total marks for this paper is 100 marks

This question paper consists of 7 printed pages (inclusive of this page) and 1 blank page.

Section A: Pure Mathematics [40 marks].

1 (a) If 0 < a < b, solve $\int_0^b x |a - x| dx$, leaving your answers in terms of a and b. [2]

(b)(i) Find
$$\frac{d}{dx} \left(\frac{3-x}{\sqrt{1-x}} \right)$$
. [1]

(ii) Find
$$\int \frac{3-x}{x^2 - 3x + 2} dx$$
. [2]

(iii) Hence find
$$\int \frac{1+x}{(1-x)^{\frac{3}{2}}} \tan^{-1} \sqrt{1-x} \, dx$$
. [3]

2

The cuboid above is formed by the eight vertices O, A, B, C, D, P, Q and R. Perpendicular unit vectors \mathbf{i} , \mathbf{j} , \mathbf{k} are parallel to OR, OP and OA respectively. The length of OR, OP and OA are 12 cm, 1 cm and 5 cm respectively.

- i) Find the Cartesian equation of line AC. [2]
- (ii) Find the acute angle between CA and CR. Hence, find the shortest distance from R to AC.
- (iii) The point T is on AC produced such that $AT = \lambda AC$ and M is the midpoint of OR. The unit vector in the direction of OT is represented by the vector
 - \overrightarrow{OV} . By considering the cross product of relevant vectors, find the ratio of the area of triangle *OVM* to the area of triangle *ORT* in terms of λ . [3]

- 3 (a) The complex number w is such that w = a + ib, where a and b are non-zero real numbers. The complex conjugate of w is denoted by w^* . Given that $\frac{(w^*)^2}{w} = 3 ib$, solve for a and b and hence write down the possible values of w.
 - (b) (i) Without the use of a graphic calculator, find the roots of the equation $z^2-2z+4=0 \text{ , leaving your answers in the form } r\mathrm{e}^{\mathrm{i}\theta} \text{ , } r>0 \text{ and } \\ -\pi<\theta\leq\pi \text{ .}$ [2]
 - (ii) Let α and β be the roots found in (b)(i). If $\arg(\alpha) > \arg(\beta)$, find $\left|\alpha^{10} \beta^{10}\right|$ and $\arg(\alpha^{10} \beta^{10})$ in exact form. [3]
 - (c) (i) Show that the locus of z where $\arg(z+2\sqrt{3}+i)=-\frac{\pi}{6}$ passes through the point $(-\sqrt{3},-2)$. [1]
 - (ii) Find the Cartesian equation of the locus of z in the form y = mx + c, stating its domain clearly. Leave your answer in exact form. [2]
- 4 A curve C has parametric equations

1 11

$$x = \sin t$$
, $y = \cos t$.

- (i) Find the equations of tangent and normal to C at the point with parameter t. [3]
- (ii) Points P and Q on C have parameters p and q respectively, where $0 and <math>0 < q < \frac{\pi}{2}$. The tangent at P meets the normal at Q at the point R. Show that the x-coordinate of R is $\frac{\sin q}{\cos(p-q)}$. Hence, find in similar form the

cos(p-q)y-coordinate of R in terms of p and q.

The tangent at P meets the y-axis at the point A and the normal at Q meets the y-axis at the point B. Taking $q = \frac{\pi}{2} - p$,

- (iii) Show that the area of triangle ARB is $\frac{1}{2}$ cosec(2p). [3]
- (iv) Find the Cartesian equation of the locus of point R. [3]

[3]

[3]

Section B: Statistics [60 marks]

5 Nicole decides to celebrate her birthday with 9 boys and 2 girls whose names are Vanessa and Sally.

(a)	(i)	They have a dinner at a restaurant that can only offer them a rectangular
		table as shown in the following diagram, with seats labelled A to L as
		shown.

Find the number of ways in which at least one girl must be seated at the seats A, F, G and L.

[2]

[2]

[2]

[3]

- (ii) Find the number of ways in which they can sit if instead, the restaurant offers them 2 indistinguishable round tables of 6.
- (iii) After the dinner, they went for a movie together. They bought tickets for seats in a row. Find the number of ways where Nicole and Vanessa must be seated together but not Sally.
- (b) After the celebration, Nicole plays a card game with Vanessa. The pack of 20 cards are numbered 1 to 20. The two friends take turns to draw a card from the pack. If a prime number is drawn, the player wins the game. If a composite number (4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20) is drawn, the player loses the game and the other player wins. If the number '1' is drawn, the card is returned and the other player draws the next card. Nicole draws the first card. Find the probability of her winning the game.
- In a telephone enquiry service, 92% of calls to it are successfully connected. The probability of any call being successfully connected is constant. A random sample of 60 calls is taken each day.
 - (i) State, in context, an assumption needed for it to be well modelled by a binomial distribution.
 - (ii) On a given day, it is found that at most 55 calls went through successfully. Find the probability that there are at least 50 successful calls in the sample of 60.
 - (iii) Estimate the probability that the number of successful calls on any day is less than 55 in a sample of 60. [4]
 - (iv) The number of successful calls is recorded daily for 70 consecutive days.

 Find the approximate probability that the average number of successful calls in a day is not more than 55.

 [2]

- 7 (a) Tickets are sold for the closing ceremony of an international swimming competition. It is desired to sample 1% of the spectators to find their opinions of the goodie bags received during the closing ceremony.
 - (i) Give a reason why it would be difficult to use a stratified sample. [1]
 - (ii) Explain how a systematic sample could be carried out. [2]
 - (b) The random variable X has the distribution $N(18,3^2)$ and the random variable Y has the distribution $N(\mu,\sigma^2)$. The random variable T is related to X and Y by the formula $T = \frac{X_1 + X_2 + 3Y}{4}$, where X_1 and X_2 are two independent observations of X. Given that P(T < 10) = P(T > 30) = 0.0668, find the value of σ and the exact value of μ .
 - (c) A survey done on students in a particular college found that the amount of time a student spends on social media in a week is normally distributed with mean 7 hours and variance 4 hours².
 Five students are randomly chosen. Find the probability that the fifth student is the second student who spends more than 10 hours a week on social media. [2]
- An advertising display contains a large number of light bulbs which are continually being switched on and off every day in a week. The light bulbs fail independently at random times. Each day the display is inspected and any failed light bulbs are replaced. The number of light bulbs that fail in any one-day period has a Poisson distribution with mean 1.6.

Sec.

- (i) State, in the context of the question, one assumption that needs to be made for the number of light bulbs that fail per day to be well modelled by a Poisson distribution.
- (ii) Estimate the probability that there are fewer than 17 light bulbs that needs to be replaced in a period of 20 days. [2]
- (iii) Using a suitable approximation, find the probability that there will be not fewer than 20 days with more than two light bulbs that will need to be replaced per day in a period of 8 weeks.

 [4]
- (iv) The probability of at least three light bulbs having to be replaced over a period of *n* consecutive days exceeds 0.999. Write down an inequality in terms of *n* to express this information, and hence find the least value of *n*. [4]

[5]

[1]

9 (a) Observations of 10 pairs of values (x,y) are shown in the table below.

x	1	2	3	4	5	6	7	8	9	10
у	0.5	0.6	0.8	0.95	а	1.21	1.36	1.55	1.87	2.11

It is known that the equation of the linear regression line of y on x is y = 0.17321x + 0.24133. Find a, correct to 2 decimal places.

(b) A student wanted to study the relationship between the number of commercial crimes (c) and the mean years of schooling (s) of the offenders. The following set of data was obtained.

Year	2009	2010	2011	2012	2013	2014	2015
Mean years of schooling (s)	9.7	10.1	10.2	10.3	10.5	10.6	10.7
No. of commercial crimes (c)	3359	3504	4080	3507	3947	5687	8329

(i) Draw a scatter diagram for these values.

[2]

[2]

(ii) One of the values of c appears to be incorrect. Circle this point on your diagram and label it P.

[1]

[2]

[2]

It is thought that the number of commercial crimes (c) can be modelled by one of the formulae after removing the point P.

$$(A) c = a + b \left(100^s \right)$$

(B)
$$c = a + bs$$

(C)
$$c = a + b \ln s$$

where a and b are non-zero constants.

- (iii) With reference to the scatter diagram, explain clearly which model is the best model for this set of data. For the case identified, find the equation of a suitable regression line.
- (iv) Using the regression line found in (iii), estimate the number of commercial crimes (to the nearest whole number) when the mean years of schooling reaches 11.
- (v) Comment on the reliability of your answer in part (iv). [1]

- In the latest Pokkinon Roll game, players go to a battle arena to use their Pokkinon character to battle against each other. Alvin and Billy are interested to know how long it takes before someone wins a battle. The time taken by a randomly chosen player to win a game follows a normal distribution.
 - (a) Alvin claims that on average, it will take at most 190.0 seconds to win a battle. To verify his belief, he surveyed a randomly chosen sample of 45 Pokkinon Roll gamers and found out that the mean is 195.0 seconds with a variance of 206.0 seconds².

Carry out an appropriate test at 1% level of significance whether there is any evidence to doubt Alvin's claim. State an assumption needed for the calculation.

(b) Billy also obtained his own data by recording the time taken, in seconds, by 5 randomly chosen gamers as shown below.

188.0 190.0 k 186.0 187.0

However, he believes that it will take 190.0 seconds on average to win a battle. When he conducted the test at 4.742% level of significance, his conclusion is one where the null hypothesis is not rejected. The sample mean time taken is denoted by \overline{x} .

Given that s^2 is the unbiased estimate of the population variance and that the maximum range of values of \overline{x} is $188 \le \overline{x} \le a$, write down an equation involving s and a.

Hence or otherwise find the values of a and k, leaving your answers to the nearest integer. [5]

THE END

[5]

[1]

MATHEMATICS

Higher 2

9740/2

21 Sept 2016

3 hours

Additional materials: Writing paper

List of Formulae (MF15)

TIME: 3 hours

READ THESE INSTRUCTIONS FIRST

Write your name and class on the cover page and on all the work you hand in.

Write in blue or black pen on both sides of the paper.

You may use a soft pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

You are expected to use a graphic calculator.

Unsupported answers from a graphic calculator are allowed unless a question specifically states otherwise.

Where unsupported answers from a graphic calculator are not allowed in a question, you are required to present the mathematical steps using mathematical notations and not calculator commands.

You are reminded of the need for clear presentation in your answers.

The number of marks is given in brackets [] at the end of each question or part question. At the end of the examination, fasten all your work securely together.

Total marks for this paper is 100 marks

This question paper consists of 7 printed pages (inclusive of this page) and 1 blank page.

Section A: Pure Mathematics [40 marks].

1	(a) If $0 < a < b$, solve $\int_0^b x a - x dx$, leaving your answers in terms of a and b.	
		[2]
	(b)(i) Find $\frac{d}{dx} \left(\frac{3-x}{\sqrt{1-x}} \right)$.	[1]
	(ii) Find $\int \frac{3-x}{x^2-3x+2} dx$.	[2]
	(iii) Hence find $\int \frac{1+x}{(1-x)^{\frac{3}{2}}} \tan^{-1} \sqrt{1-x} dx$.	[3]
<u> </u>	Solution	-
	(a) $\int_0^b x a-x dx = \int_0^a x(a-x) dx + \int_a^b x(x-a) dx$	
	$= \left[\frac{ax^2}{2} - \frac{x^3}{3} \right]_0^a + \left[\frac{x^3}{3} - \frac{ax^2}{2} \right]_a^b$	
	$= \left(\frac{a^3}{2} - \frac{a^3}{3}\right) + \left(\frac{b^3}{3} - \frac{ab^2}{2}\right) - \left(\frac{a^3}{3} - \frac{a^3}{2}\right)$	
	$= \frac{a^3}{3} + \frac{b^3}{3} - \frac{ab^2}{2}$	
	(bi) $\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{3-x}{\sqrt{1-x}} \right) = \frac{-\sqrt{1-x} - (3-x)\left(-\frac{1}{2}\right)\left(\frac{1}{\sqrt{1-x}}\right)}{1-x}$	
	$= \frac{-2 + 2x + 3 - x}{2(1 - x)^{3/2}} = \frac{x + 1}{2(1 - x)^{3/2}}$	
	(ii) $\int \frac{3-x}{x^2-3x+2} dx = \int \frac{3-x}{(x-2)(x-1)} dx$	
	$=\int \left[\frac{1}{x-2} - \frac{2}{x-1}\right] \mathrm{d}x$	
	$= \ln x-2 - 2\ln x-1 + c$	
	$\int \frac{1+x}{(1-x)^{\frac{3}{2}}} \tan^{-1} \sqrt{1-x} dx$	
	$=2\left(\frac{3-x}{\sqrt{1-x}}\right)\tan^{-1}\sqrt{1-x}-\int 2\left(\frac{3-x}{\sqrt{1-x}}\right)\left(\frac{1}{1+1-x}\right)\left(-\frac{1}{2}\right)\left(\frac{1}{\sqrt{1-x}}\right)dx$	
	$= 2\left(\frac{3-x}{\sqrt{1-x}}\right) \tan^{-1} \sqrt{1-x} + \int \frac{3-x}{(2-x)(1-x)} dx$	

	$= 2\left(\frac{3-x}{\sqrt{1-x}}\right) \tan^{-1} \sqrt{1-x} + \ln x-2 - 2\ln x-1 + c$	
2	B	
	A j P Q 1 cm	
	The cuboid above is formed by the eight vertices O , A , B , C , D , P , Q and R . Perpendicular unit vectors \mathbf{i} , \mathbf{j} , \mathbf{k} are parallel to OR , OP and OA respectively.	
	The length of OR, OP and OA are 12 cm, 1 cm and 5 cm respectively.	[0]
<u> </u>	(i) Find the Cartesian equation of line AC.(ii) Find the acute angle between CA and CR. Hence, find the shortest distance	[2]
	(ii) Find the acute angle between CA and CR . Hence, find the shortest distance from R to AC .	[4]
	(iii) The point T is on AC produced such that $AT = \lambda AC$ and M is the midpoint of OR. The unit vector in the direction of OT is represented by the vector	
	OV . By considering the cross product of relevant vectors, find the ratio of the area of triangle OVM to the area of triangle ORT in terms of λ .	[3]
	Solution	
	(i) $\overrightarrow{AC} = 12\mathbf{i} + \mathbf{j}$	
	Equation of line AC : $\mathbf{r} = \begin{pmatrix} 0 \\ 0 \\ 5 \end{pmatrix} + \alpha \begin{pmatrix} 12 \\ 1 \\ 0 \end{pmatrix}, \ \alpha \in \mathbf{R}$	
	Cartesian equation of line is $\frac{x}{12} = y, z = 5$.	
	(ii) Let the acute angle between AC and RC be x . $\cos x = \frac{\begin{pmatrix} 12 \\ 1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \\ 5 \end{pmatrix}}{\begin{pmatrix} 5 \\ 1 \\ 5 \end{pmatrix}}$	
	√145√26	
<u> </u>	Therefore, $x = 89.1^{\circ}$	
	Let the shortest distance required be y.	
	$\sin 89.07^{\circ} = \frac{y}{\sqrt{26}}$	
	y = 5.10 cm	
		ļ
i	1	1

י שנונציא זארווזויונין

•

		(iii)	
		$\overrightarrow{OC} = \frac{\overrightarrow{OT} + (\lambda - 1)\overrightarrow{OA}}{\lambda}$ $\overrightarrow{OT} = \lambda \overrightarrow{OC} - (\lambda - 1)\overrightarrow{OA}$	
		λ	
	•	$\begin{pmatrix} 12 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}$	
		$= \lambda \begin{pmatrix} 12 \\ 1 \\ 5 \end{pmatrix} - (\lambda - 1) \begin{pmatrix} 0 \\ 0 \\ 5 \end{pmatrix}$	
		(12λ)	
		$= \begin{pmatrix} 12\lambda \\ \lambda \\ 5 \end{pmatrix}$	
	,	Area of triangle $ORT = \frac{1}{2} \overrightarrow{OT} \times \overrightarrow{OR} $	
		Area of triangle OVM	
		$ = \frac{1}{2} \overrightarrow{OT} \times \overrightarrow{OR} $ $= \frac{1}{2} \overrightarrow{OT} \times \overrightarrow{OR} $	
		$=\frac{1}{2} \overrightarrow{OT} \times \frac{1}{2}$	
	i	$= \frac{1}{2\sqrt{25+145\lambda^2}} \times \frac{1}{2} \overrightarrow{OT} \times \overrightarrow{OR} $	
		$2\sqrt{25+145\lambda^2} \stackrel{\wedge}{2} 01 \times 010$	
	 -	Therefore the ratio of triangle <i>OVM</i> to area of triangle <i>ORT</i> is $1:2\sqrt{25+145\lambda^2}$.	
	3	(a) The complex number w is such that $w = a + ib$, where a and b are non-zero	
		real numbers. The complex conjugate of w is denoted by w^* . Given that $(w^*)^2$	
		$\frac{(w^*)^2}{w} = 3 - ib$, solve for a and b and hence write down the possible values	503
		of w. (b) (i) Without the use of a graphic calculator, find the roots of the equation	[3]
		$z^2 - 2z + 4 = 0$, leaving your answers in the form $re^{i\theta}$, $r > 0$ and	
	<u> </u>	$-\pi < \theta \le \pi$. (ii) Let α and β be the roots found in (b)(i). If $\arg(\alpha) > \arg(\beta)$, find	[2]
		1	
		$\left \alpha^{10}-\beta^{10}\right $ and $\arg\left(\alpha^{10}-\beta^{10}\right)$ in exact form.	[3]
	,	(c) (i) Show that the locus of z where $\arg(z+2\sqrt{3}+i)=-\frac{\pi}{6}$ passes through	
		the point $(-\sqrt{3},-2)$.	[1]
		(ii) Find the Cartesian equation of the locus of z in the form $y = mx + c$, stating its domain clearly. Leave your answer in exact form.	[2]
		Solution	
		(a) $\frac{(w^{\bullet})^2}{w} = 3 - ib \Rightarrow \frac{(a - ib)^2}{(a + ib)} = 3 - ib$	
i		(4.15)	

	$a^{2}-b^{2}-2iab=(3-ib)(a+ib)=3a+b^{2}+i(-ab+3b)$	
	Equating the real and the imaginary parts:	
	$a^2 - b^2 = 3a + b^2$ (1) and	
	$-2ab = -ab + 3b \dots (2)$	
	From (2) $a = -3$ since $b \neq 0$	
	From (1), $9 - b^2 = -9 + b^2$	
	$b^2 = 9$	
	$b = \pm 3$	
	Possible values of w are $-3\pm3i$	
	(bi) $z^2 - 2z + 4 = 0$	
1	$z = \frac{2 \pm \sqrt{4 - 16}}{2} = 1 \pm \sqrt{3}i$	
 	$\alpha = 1 + \sqrt{3}i = 2e^{i\left(\frac{\pi}{3}\right)}$ and $\beta = 1 - \sqrt{3}i = 2e^{-i\left(\frac{\pi}{3}\right)}$	
	(ii) $\alpha^{10} - \beta^{10} = 2^{10} \left(e^{i \left(\frac{10\pi}{3} \right)} - e^{-i \left(\frac{10\pi}{3} \right)} \right)$	
	$=2^{10}\left(2i\sin\frac{10\pi}{3}\right)$	
	$=2^{10}\left(2i\sin\left(-\frac{2\pi}{3}\right)\right)$	
	$=2^{10}\left(2\left(-\frac{\sqrt{3}}{2}\right)\right)i$	
	$=-1024\sqrt{3}i$	
	$ \alpha^{10} - \beta^{10} = 1024\sqrt{3}$	
	So $\arg(\alpha^{10} - \beta^{10}) = -\frac{\pi}{2}$	
	(ci) When $z = -\sqrt{3} - 2i$,	
	LHS = $arg(-\sqrt{3} - 2i + 2\sqrt{3} + i) = arg(\sqrt{3} - i)$	
	$=-\tan^{-1}\left(\frac{1}{\sqrt{3}}\right)=-\frac{\pi}{6}(Shown)$	
4	(ii) Gradient of the half line is $\tan(-\frac{\pi}{6}) = -\frac{1}{\sqrt{3}}$	·
	Equation:	
The second secon	$y+2=-\frac{1}{\sqrt{3}}(x+\sqrt{3}), x>-2\sqrt{3}$	
	$y = -\frac{\sqrt{3}}{3}x - 3$	
	. •	

4	A curve C has parametric equations	T
7	$x = \sin t, y = \cos t$	
	(i) Find the equations of tangent and normal to C at the point with parameter t .	[3]
	(ii) Points P and Q on C have parameters p and q respectively, where	
	$0 and 0 < q < \frac{\pi}{2}. The tangent at P meets the normal at Q at the$	
	point R. Show that the x – coordinate of R is $\frac{\sin q}{\cos(p-q)}$. Hence, find in	
	similar form the y – coordinate of R in terms of p and q .	[3]
	The tangent at P meets the y -axis at the point A and the normal at Q meets the	
	y-axis at the point B. Taking $q = \frac{\pi}{2} - p$,	
.	(iii) Show that the area of triangle ARB is $\frac{1}{2}$ cosec $(2p)$.	
		[3]
	(iv) Find the Cartesian equation of the locus of point R.	
ļ		[3]
-	Solution	
	(i)	
	$x = \sin t$ $y = \cos t$	
	$\frac{\mathrm{d}x}{\mathrm{d}t} = \cos t \qquad \qquad \frac{\mathrm{d}y}{\mathrm{d}t} = -\sin t$	
	$\frac{\mathrm{d}y}{t} = \frac{-\sin t}{t}$	
	$\frac{\mathrm{d}x}{\mathrm{cos}t} = -\tan t$	
	Equation of tangent:	
	$y - \cos t = (-\tan t)(x - \sin t)$	
	$y = (-\tan t)x + (\tan t)(\sin t) + \cos t$	
	$y = (-\tan t)x + \frac{\sin^2 t}{\cos t} + \frac{\cos^2 t}{\cos t}$ $y = (-\tan t)x + \sec t$	
	$y = (-\tan t)x + \sec t$	
	Equation of normal:	
	$y - \cos t = (\cot t)(x - \sin t)$	
	$y = (\cot t)x - \cos t + \cos t$	-
	$y = (\cot t)x$	
	(ii)	
	Equation of tangent at P (with parameter p):	
	$y = (-\tan p)x + \sec p$	
	Equation of normal at Q (with parameter q):	<u>.L</u>

$$y = (\cot q)x$$
Equating the equation of tangent at P and the equation of normal at Q, we have
$$(\cot q) x = (-\tan p)x + \sec p$$

$$(\cot q + \tan p)x = \sec p$$

$$(\cot q + \tan p)x = \sec p$$

$$(\frac{\cos q}{\sin q} + \frac{\sin p}{\cos p})x = \frac{1}{\cos p}$$

$$(\frac{\cos p \cos q + \sin p \sin q}{\cos p \sin q})x = \frac{1}{\cos p}$$

$$(\frac{\cos (p - q)}{\cos p \sin q})x = \frac{1}{\cos p}$$

$$x = \frac{\sin q}{\cos (p - q)} \quad \text{(Shown)}$$
Substitute $x = \frac{\sin q}{\cos (p - q)} \quad \text{into the equation of normal at } Q,$

$$y = (\cot q)\left(\frac{\sin q}{\cos (p - q)}\right)$$

$$y = \frac{\cos q}{\cos (p - q)}$$

$$(\text{iiii})$$
Coordinates of A:
When $x = 0$, $y = \sec p$
A is $(0, \sec p)$ or $(0, \sin p \tan p + \cos p)$
Coordinates of B:
When $x = 0$, $y = 0$
B is $(0,0)$.

Since R is
$$\left(\frac{\sin q}{\cos (p - q)}, \frac{\cos q}{\cos (p - q)}\right),$$
Area of Triangle ARB
$$= \frac{1}{2}(\sec p)\left(\frac{\sin q}{\cos (p - q)}\right)$$

$$= \frac{1}{2}\left(\frac{1}{2\sin p}\right)\left(\frac{1}{2\sin p}\right)$$

$$= \frac{1}{2}\left(\frac{1}{2\sin p\cos p}\right)$$

$$= \frac{1}{2}\cos e(2p) \quad \text{(Shown)}$$

•

	(iv)	T A 12		
	When $q = \frac{\pi}{2} - p$,	Alternatively,		
	1 2	Since $p = \frac{\pi}{2} - q$,		
	$\sin\left(\frac{\pi}{2}-p\right)$	1		
	$x = \frac{\sin\left(\frac{\pi}{2} - p\right)}{\cos\left(2p - \frac{\pi}{2}\right)}$	$x = \frac{\sin q}{\cos\left(\frac{\pi}{2} - 2q\right)}$		
	$\cos\left(2p-\frac{\pi}{2}\right)$	§		
	$=\frac{\cos p}{\sin 2p}$	$=\frac{\sin q}{\sin 2q}$		ı
-	$\sin 2p$	$\sin 2q$		ı
	$= \frac{\cos p}{\cos p}$	$=\frac{\sin q}{2\sin q\cos q}$		
	$2\sin p\cos p$	$2\sin q\cos q$		ļ
	$=\frac{1}{1}$	$=\frac{1}{2\cos q}$		ł
	$-\frac{2\sin p}{2}$	$2\cos q$		į
		Alternatively,		
	$y = \frac{\cos\left(\frac{\pi}{2} - p\right)}{\cos\left(2p - \frac{\pi}{2}\right)}$			
	$y = \frac{2}{(-\pi)}$	$y = \frac{\cos q}{\cos\left(\frac{\pi}{2} - 2q\right)}$		
	$\cos\left(2p-\frac{\pi}{2}\right)$	$\left \frac{\cos\left(\frac{\pi}{2}-2q\right)}{2} \right $		
	i j	· ·		
	$=\frac{\sin p}{\sin 2p}$	$=\frac{\cos q}{\sin 2q}$		
ľ	sin p	$_{-}\cos q$		
	$=\frac{1}{2\sin p\cos p}$	$=\frac{2\sin q\cos q}{2\sin q\cos q}$		
	1	1		
	$-\frac{2\cos p}{2}$	$-\frac{2\sin q}{}$		
	Using $\sin^2 p + \cos^2 p = 1$,	Alternatively,		ļ
	$(1)^2 (1)^2$	Using $\sin^2 q + \cos^2 q = 1$,		ł
	$\left(\frac{1}{2x}\right)^{2} + \left(\frac{1}{2y}\right)^{2} = 1$ $\frac{1}{4x^{2}} + \frac{1}{4y^{2}} = 1, x > 0, y > 0$	$\left(\frac{1}{2y}\right)^2 + \left(\frac{1}{2x}\right)^2 = 1$		i
	1 1 1	$\left \left(\frac{\overline{2y}}{} \right) \right ^{+} \left(\frac{\overline{2x}}{} \right)^{-1} $		ı
	$\frac{1}{4x^2} + \frac{1}{4y^2} = 1, x > 0, y > 0$	$\frac{1}{1} + \frac{1}{1} - 1$ $r > 0$ $r > 0$		ı
		$\frac{1}{4x^2} + \frac{1}{4y^2} = 1, x > 0, y > 0$		
			• • •	
			•	:
			-	

Section B: Statistics [60 marks]

5	Nicole decides to celebrate her birthday with 9 boys and 2 girls whose names			
	are Vanessa and Sally. (a) (i) They have a dinner at a restaurant that can only offer them a rectangular			
	table as shown in the following diagram, with seats labelled A to L as			
	shown.			
	A B C D E F			
	G H I J K L			
	Find the number of ways in which at least one girl must be seated at the			
	seats A, F, G and L.	[2]		
	(ii) Find the number of ways in which they can sit if instead, the restaurant	503		
	offers them 2 indistinguishable round tables of 6.	[2]		
	(iii) After the dinner, they went for a movie together. They bought tickets for			
	seats in a row. Find the number of ways where Nicole and Vanessa must be seated together but not Sally.	[2]		
	(b) After the celebration, Nicole plays a card game with Vanessa. The pack of	[2]		
	20 cards are numbered 1 to 20. The two friends take turns to draw a card			
	from the pack. If a prime number is drawn, the player wins the game. If a			
	composite number (4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20) is drawn, the player			
	loses the game and the other player wins. If the number '1' is drawn, the			
	card is returned and the other player draws the next card. Nicole draws the			
	first card. Find the probability of her winning the game.	[3]		
	3	3		
}				
	Solution			
	Solution (i) Number of ways = $12! - \binom{9}{4} 4!8!$	•		
	(i) Number of ways = $12! - \binom{9}{4} 4!8!$ $-\binom{9}{4} 4!$ (for the selection and the arrangement of the 4 guys to be seated at A, F, G and L.)			
· ·	(i) Number of ways = $12! - \binom{9}{4} 4!8!$ $-\binom{9}{4} 4!$ (for the selection and the arrangement of the 4 guys to be seated at A,			
-	(i) Number of ways = $12! - \binom{9}{4} 4!8!$ $-\binom{9}{4} 4!$ (for the selection and the arrangement of the 4 guys to be seated at A, F, G and L.)			
	(i) Number of ways = $12! - \binom{9}{4}4!8!$ $-\binom{9}{4}4!$ (for the selection and the arrangement of the 4 guys to be seated at A, F, G and L.) $= 357073920$ OR Number of ways = $12! - \binom{9}{8}8!4!$			
	(i) Number of ways = $12! - \binom{9}{4}4!8!$ $-\binom{9}{4}4!$ (for the selection and the arrangement of the 4 guys to be seated at A, F, G and L.) $= 357073920$ OR Number of ways = $12! - \binom{9}{5}8!4!$ $-\binom{9}{5}8!$ (for the selection of the 5 guys that is to be seated at B, C, D, E, H, I, J,			
	(i) Number of ways = $12! - \binom{9}{4}4!8!$ $-\binom{9}{4}4!$ (for the selection and the arrangement of the 4 guys to be seated at A, F, G and L.) $= 357073920$ OR Number of ways = $12! - \binom{9}{5}8!4!$			
	(i) Number of ways = $12! - \binom{9}{4}4!8!$ $-\binom{9}{4}4!$ (for the selection and the arrangement of the 4 guys to be seated at A, F, G and L.) $= 357073920$ OR Number of ways = $12! - \binom{9}{5}8!4!$ $-\binom{9}{5}8!$ (for the selection of the 5 guys that is to be seated at B, C, D, E, H, I, J, K with the 3 girls)			
	(i) Number of ways = $12! - \binom{9}{4}4!8!$ $-\binom{9}{4}4!$ (for the selection and the arrangement of the 4 guys to be seated at A, F, G and L.) $= 357073920$ OR Number of ways = $12! - \binom{9}{5}8!4!$ $-\binom{9}{5}8!$ (for the selection of the 5 guys that is to be seated at B, C, D, E, H, I, J, K with the 3 girls) $= 357073920$			
	(i) Number of ways = $12! - \binom{9}{4}4!8!$ $-\binom{9}{4}4!$ (for the selection and the arrangement of the 4 guys to be seated at A, F, G and L.) $= 357073920$ OR Number of ways = $12! - \binom{9}{5}8!4!$ $-\binom{9}{5}8!$ (for the selection of the 5 guys that is to be seated at B, C, D, E, H, I, J, K with the 3 girls) $= 357073920$ OR Number of ways = $12! - \binom{8}{3}9!3!$			

r — — — — —		
	$\binom{12}{5}$ 5!5!	
	(ii) Number of ways = $\frac{\binom{12}{6}5!5!}{2!}$	
	$-\operatorname{For}\left(\frac{12}{6}\right)5!5!$	
	= 6652800	
	(iii) Number of ways = $9! \binom{10}{2} 2!2!$	
	Alternative solution $10 \times 9 \times 2 = 65318400$	
	- For $\binom{10}{2}$ 2! (the selection of the slots to separate Nicole and Vanessa with	
	Sally)	<u> </u>
	= 65318400	<u> </u>
	(b)	-
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	Probability of Nicole winning $= \frac{8}{20} \left[1 + \left(\frac{1}{20} \right)^2 + \left(\frac{1}{20} \right)^4 + \dots \right] + \frac{11}{20} \left[\frac{1}{20} + \left(\frac{1}{20} \right)^3 + \left(\frac{1}{20} \right)^5 + \dots \right]$	
	First -1^{st} infinite series, Second -2^{nd} infinite series	
	$= \frac{8}{20} \cdot \frac{1}{1 - \left(\frac{1}{20}\right)^2} + \frac{11}{20} \cdot \frac{\frac{1}{20}}{1 - \left(\frac{1}{20}\right)^2} = \frac{3}{7}$	
6	In a telephone enquiry service, 92% of calls to it are successfully connected.	
	The probability of any call being successfully connected is constant. A random sample of 60 calls is taken each day.	
	(i) State, in context, an assumption needed for it to be well modelled by a	
	binomial distribution.	[1]
	(ii) On a given day, it is found that at most 55 calls went through successfully. Find the probability that there are at least 50 successful calls in the sample of 60.	[2]
	(iii) Estimate the probability that the number of successful calls on any day is less than 55 in a sample of 60.	[4]
	(iv) The number of successful calls is recorded daily for 70 consecutive days. Find the approximate probability that the average number of successful calls in a day is not more than 55.	[2]

	Solution		
		sfully connected is independent	from the event
	of other calls being successful		
	(ii) Let X be the random variable of X and X are X an	denoting the number of success	ful calls, out of
	a sample of 60 calls. $X \sim B(60, 0.92)$		
-	$P(X \ge 50 \mid X \le 55)$		
	· · · · · · · · · · · · · · · · · · ·		
	$=\frac{P(50 \le X \le 55)}{P(X \le 55)}$		
	$= \frac{P(X \le 55) - P(X \le 49)}{P(X \le 55)}$		
	0.52982 - 0.074926		
	$=\frac{0.52982-0.074920}{0.52982}$		
	= 0.986 (3s.f.)		
	(iii) Let Y be the random variable	denoting the number of calls that	at are not
	successfully connected, out of	_	
	$Y \sim B(60, 0.08)$		
	Since $n = 60$ is large, $np = 60(0.08)$	(3) = 4.8(<5)	
	$\therefore Y \sim \text{Po}(4.8)$ approx		
		Number of calls that are not	
		successfully connected	
	54	6	
	53 52	7	
-		8	
	P(less than 55 successful calls)		
	= P(at least 6 calls that are not su	ccessfully connected)	
	$=P(Y \ge 6)$		
	$=1-P(Y\leq 5)$		
	= 0.349 (3s.f.)		
	(iv) $X \sim B(60, 0.92)$		
	Since $n = 70$ is large, by Central L	imit Theorem,	
	$\overline{X} \sim N \left(55.2, \frac{4.416}{70}\right)$ approx		
	$A \sim N(33.2, \frac{70}{70})$ approx		
	$P(\bar{X} \le 55) = 0.213 \text{ (to 3 s.f)}$		
	Alternative solution:		
	Let W be the random variable den	oting the number of successful	calls out of a
	sample of 4200.		
	$W \sim B(4200, 0.92)$	- 226 5	
	Since n is large, $np = 3864 > 5$, $nq = W \sim N(3864, 309.12)$ approx	= 330>3	
	• • • •		
	$. P(W \le 55 \times 70) \xrightarrow{CC} P(W < 3850.5)$	= 0.221 (to 3 s.f)	

		
7	(a) Tickets are sold for the closing ceremony of an international swimming	
	competition. It is desired to sample 1% of the spectators to find their	
	opinions of the goodie bags received during the closing ceremony.	
	(i) Give a reason why it would be difficult to use a stratified sample.	[1]
	(ii) Explain how a systematic sample could be carried out.	[2]
	(b) The random variable X has the distribution $N(18,3^2)$ and the random	
	variable Y has the distribution $N(\mu, \sigma^2)$. The random variable T is related to	
	X and Y by the formula $T = \frac{X_1 + X_2 + 3Y}{4}$, where X_1 and X_2 are two	
	independent observations of X. Given that $P(T < 10) = P(T > 30) = 0.0668$,	
	find the value of σ and the exact value of μ .	[5]
	(c) A survey done on students in a particular college found that the amount of time a student spends on social media in a week is normally distributed with mean 7 hours and variance 4 hours ² .	
	Five students are randomly chosen. Find the probability that the fifth student is the second student who spends more than 10 hours a week on social	
	media.	[2]
	Solution (a) The state of the s	
	(ai) Though the tickets issued might have a serial number indicated, but some people who have purchased the tickets, may not turn up for the closing ceremony and so it is difficult to obtain the actual sampling frame.	
	(ii) To have a sample consisting of 1% of the spectators present, the sampling	
	interval will be 100. Randomly select a number between 1 to 100 say r . So at	
	the entrance point, every rth person for each interval of 100 will be selected for	
	the survey until the sample is obtained.	<u> </u>
	(b) $E(T) = 20$	
	$\frac{1}{4}(2(18)+3\mu)=20$	
	$\mu = \frac{44}{3}$	
•	$Var(T) = Var\left(\frac{X_1 + X_2 + 3Y}{4}\right)$	
	$=\frac{1}{4^2}\left(2\operatorname{Var}(X)+3^2\operatorname{Var}(Y)\right)$	
	$=\frac{1}{4^2}(2(3^2)+9\sigma^2)=\frac{9}{8}+\frac{9}{16}\sigma^2$	
	P(T < 10) = 0.0668	
	$P\left(Z < \frac{10 - 20}{\sqrt{\frac{9}{8} + \frac{9}{16}\sigma^2}}\right) = 0.0668$	

	$\frac{10-20}{}=-1.500$	
	$\frac{10-20}{\sqrt{\frac{9}{8} + \frac{9}{16}\sigma^2}} = -1.500$	
	V8 16	
	$\left(\frac{10-20}{-1.500}\right)^2 = \frac{9}{8} + \frac{9}{16}\sigma^2$	
	$\left(\frac{-1.500}{-1.500}\right)^{-\frac{1}{8}+\frac{1}{16}0}$	
and the second	$\sigma = 8.77533 = 8.78(3sf)$	
	(c) Let X be the random variable "time taken by a randomly chosen student on social media".	
-	$X \sim N(7,2^2)$	
	Required probability	
	$=4\left[P\left(X>10\right)\right]^{2}\left[P\left(X\leq10\right)\right]^{3}$	
24 g 4	= 0.014508	
	= 0.0145 (3 s.f)	
	·	
8	An advertising display contains a large number of light bulbs which are	,
	continually being switched on and off every day in a week. The light bulbs fail	
	independently at random times. Each day the display is inspected and any failed	
	light bulbs are replaced. The number of light bulbs that fail in any one-day period	
	has a Poisson distribution with mean 1.6.	
	(i) State, in the context of the question, one assumption that needs to be made	
	for the number of light bulbs that fail per day to be well modelled by a	
	Poisson distribution.	[1]
	(ii) Estimate the probability that there are fewer than 17 light bulbs that needs	
		[2]
		[-7
		F47
11,00		[4]
	period of n consecutive days exceeds 0.999. Write down an inequality in	
	terms of n to express this information, and hence find the least value of n .	[4]
(75ms	Solution	
- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	(i) The average number of light bulbs that fail in a given time interval is	
1 2	proportional to the length of the time interval.	
	(ii) Let V be the random variable denoting "the number of light bulbs that needs	
	to be replaced in 20 days."	1
	$V \sim \text{Po}(20 \times 1.6)$	
	$V \sim \text{Po}(32)$	
	Since $\lambda = 32 > 10$, $V \sim N(32, 32)$ approximately	
	for the number of light bulbs that fail per day to be well modelled by a Poisson distribution. (ii) Estimate the probability that there are fewer than 17 light bulbs that needs to be replaced in a period of 20 days. (iii) Using a suitable approximation, find the probability that there will be not fewer than 20 days with more than two light bulbs that will need to be replaced per day in a period of 8 weeks. (iv) The probability of at least three light bulbs having to be replaced over a period of n consecutive days exceeds 0.999. Write down an inequality in terms of n to express this information, and hence find the least value of n. Solution (i) The average number of light bulbs that fail in a given time interval is proportional to the length of the time interval. (ii) Let V be the random variable denoting "the number of light bulbs that needs to be replaced in 20 days." V ~ Po(20×1.6) V ~ Po(32)	[1] [2] [4]

THE TAX PRINT

									
	$P(V < 17) \xrightarrow{c.c} P(V$	< 16.5)		-					
	= 0	.003071	551						
	= 0	.00307							
	(iii) $P(X > 2) = 1 - P(X > 2)$	$Y \leq 2) =$	0.21664						
	Let Y be the random v	ariable d	enoting "	the num	ber of da	ys in wh	ich at lea	ast	
	three light bulbs will n								
		<i>Y</i> ~B(5€	5, 0.2166	4)	-				
	Since $n = 56$ is large, $n = 56$	p = 12.1	32 (>5),	nq = 43.	.868				
		<i>Y</i> ~N(12	2.132, 9.5	5036) ap	proxima	tely			
.	$P(Y \ge 20) \xrightarrow{c.c.} P(Y \ge 20)$	z > 19.5)	· }		_	-			
	= 0.0084228	,							
	= 0.00842	-							
-	(iv) Let W be the rando	om varia	ble deno	ting "the	number	of light	bulbs tha	it need	
	to be replaced in n cor					01,118,11		11000	
		<i>W</i> ∼ Po	•						
	$P(W \ge 3) > 0.999$		(-1017)						
	$1 - P(W \le 2) > 0.999$				*				
	$1 - 0.999 > P(W \le 2)$								
	$e^{-(1.6n)}(1.6n)^0$	$e^{-(1.6n)}$	$(1.6n)^1$	$e^{-(1.6n)}(1$	$(6n)^2$				
	$0.001 > \frac{e^{-(1.6n)}(1.6n)^0}{0!}$	+ 1	+	2!					
	$e^{-(1.6n)} + e^{-(1.6n)}(1.6n) +$	$-e^{-(1.6n)}(1$	$(28n^2)$ <	0.001					}
	$n = 7, \ P(W \le 2) = 0.0$			0.001					
	$n = 8$, $P(W \le 2) = 0.0$								
	$n = 9$, $P(W \le 2) = 0.0$								
	Least value of n is 8.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			•				
	Zouse varies of it is of								
9	(a) Observations of 10	pairs of		(x,y) are so		the table	below.	10	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			$\frac{3}{a}$ $\frac{6}{1.2}$			 	2.11	
	7 0.5 7 0.0	0.0	0.55	4 1 1.2	71 1.50	1.55	1.0,		
	It is known that the	-			_		of y	on x is	
	y = 0.17321x + 0.2413								[2]
	(b) A student wanted to crimes (c) and the mean								
	of data was obtained.	an years	oi school	ing (s).0	1.the Otte	mucis. 1	iic ioiiov	villg set	
	Year	2009	2010	2011	2012	2013	2014	2015]
	Mean years of schooling (s)	9.7	10.1	10.2	10.3	10.5	10.6	10.7	
	No. of commercial crimes (c)	3359	3504	4080	3507	3947	5687	8329	

	(i) Draw a scatter diagram for these values.	[2]
	(ii) One of the values of c appears to be incorrect. Circle this point on your	[2]
	diagram and label it P .	[1]
	It is thought that the number of commercial crimes (c) can be modelled by one	
	of the formulae after removing the point P.	
	$(A) c = a + b\left(100^{s}\right)$	
ŀ	(B) $c = a + bs$	
	(C) $c = a + b \ln s$	
]	where a and b are non-zero constants.	
	(iii) With reference to the scatter diagram, explain clearly which model is the	
	best model for this set of data. For the case identified, find the equation of	
	a suitable regression line.	[2]
	(iv) Using the regression line found in (iii), estimate the number of commercial	
	crimes (to the nearest whole number) when the mean years of schooling	
	reaches 11.	[2]
	(v) Comment on the reliability of your answer in part (iv).	[1]
ļ		
-	Solution	
<u> </u>	(a) Using GC, $\overline{x} = 5.5$	
	$\overline{y} = \frac{10.95 + a}{10}$	
 		
	Since $(\overline{x}, \overline{y})$ lies on the regression line,	
	$\frac{10.95 + a}{10} = 0.17321(5.5) + 0.24133$	
	$a = 0.98985 \approx 0.99$ (correct to 2 decimal places)	
	(b) (i) and (ii)	
	<i>c</i> ▲	
	900)+	
	×	
	Yand	
	(10.7, 8329)	
	7 Total Control of the Control of th	
	600-	
1		•
	5000-	
	$\frac{P}{\bullet}$	
1. P	4 m (9.7, 3359)	
	, , , , , , , , , , , , , , , , , , ,	
	3000	
	· · · · · · · · · · · · · · · · · · ·	
	0 	i I
	19.5 10.0 16.5 11.0	
L		

	(iii) From the gootter diagram (after removing the god!	
	(iii) From the scatter diagram (after removing the outlier), as s increases, c increases at an increasing rate. Hence model (A) is the best model.	
	From GC, $c = 2862.048513 + (1.965434 \times 10^{-18})(100^{\circ})$	
	(iv) When $s = 11$,	
	 	
	$c = 2862.048513 + (1.965434 \times 10^{-18})(100^{11})$	
	≈ 22516	
	(v) The estimate is unreliable because the data substituted is outside the data	
	range and so the linear relationship between c and 100s may not hold.	
10	In the latest Pokkinon Roll game, players go to a battle arena to use their	
10	Pokkinon character to battle against each other. Alvin and Billy are interested to	
	know how long it takes before someone wins a battle. The time taken by a	
	randomly chosen player to win a game follows a normal distribution.	
	(a) Alvin claims that on average, it will take at most 190.0 seconds to win a battle.	
	To verify his belief, he surveyed a randomly chosen sample of 45 Pokkinon	
	Roll gamers and found out that the mean is 195.0 seconds with a variance of	
	206.0 seconds^2 .	
•	Carry out an appropriate test at 1% level of significance whether there is any]
	evidence to doubt Alvin's claim. State an assumption needed for the	[5]
	calculation.	
	(b) Billy also obtained his own data by recording the time taken, in seconds, by	
	5 randomly chosen gamers as shown below. 188.0 190.0 k 186.0 187.0	
	However, he believes that it will take 190.0 seconds on average to win a	
	battle. When he conducted the test at 4.742% level of significance, his	
•	conclusion is one where the null hypothesis is not rejected. The sample mean	
	time taken is denoted by \overline{x} .	
	Given that s^2 is the unbiased estimate of the population variance and that the	
	maximum range of values of \bar{x} is $188 \le \bar{x} \le a$, write down an equation	
	involving s and a .	[1]
	Hence or otherwise find the values of a and k , leaving your answers to the	
	nearest integer.	[5]
	Solution	
	(a) Assume that the time taken to win any battle is independent of other battles.	
	Let Y denote the time taken to win a randomly chosen battle	
 -		-
	$s^2 = \frac{45}{44}(206) = 210.68$	
	$H_0: \mu = 190$	
	$H_1: \mu > 190$	
	Under H_0 $\overline{Y} \square N \left(190, \frac{210.68}{45}\right)$	
	$\mu = 190, \ \overline{y} = 195, \ n = 45, \ s = \sqrt{210.68}$	
	Using G.C, p-value is 0.0104	
	Since p value > 0.01, we do not reject H_0 and conclude that there is insufficient	
	evidence to doubt Alvin's claim at 1% level of significance.	<u></u>

] [(b) $H_0: \mu = 190$	
	$H_1: \mu \neq 190$	
	2-tailed T-test at 4.742% level of significance	
	$T \square t(4)$	
	$a = \frac{2.82844s}{\sqrt{5}} + 190$	
	a = 1.26s + 190	
	$188 \le \overline{x} \le a$	
	$-2\sqrt{5}$ \bar{x} -190 $\sqrt{5}$ $(a-190)$	
	$\frac{s}{\sqrt{5}} \le \frac{s}{\sqrt{5}}$	
	$\frac{-2\sqrt{5}}{s} \le \frac{\overline{x} - 190}{\frac{s}{\sqrt{5}}} \le \frac{\sqrt{5}(a - 190)}{s}$ Since $\frac{-2\sqrt{5}}{s} = -2.82844$ $\frac{s = 1.5811}{s} = -2.82844$	
4	s = 1.5811	
	$s^2 = 2.5$	
	So $a = \frac{2.82844(1.5811)}{\sqrt{5}} + 190 = 192$	
	OR by symmetry of curve, $a = 192$	
	$\sum x = 751 + k$	
	$\sum x^2 = 141009 + k^2$	
	$s^{2} = \frac{1}{4} \left[141009 + k^{2} - \frac{(751 + k)^{2}}{5} \right]$	
	So $2.5 = \frac{1}{4} \left[141009 + k^2 - \frac{(751 + k)^2}{5} \right]$	
	$k = 189$ or $k = 186.5$ (rejected since $188 \le \overline{x} \le a$)	
<u>- </u>	· · · · ·	

THE END
