

General Certificate of Education Ordinary Level JUYING SECONDARY SCHOOL, SINGAPORE

Secondary Four Express/Five Normal Academic Preliminary Examination

CAMENIT BASS	,	,				
CANDIDATE NAME						
CENTRE NUMBER	S				INDEX NUMBER	
ADDITIONA Paper 1	L MATI	IEMATIC	s			4049/01 22 August 2024 2 hours 15 minutes
Candidates answ	er on the (Question Pap	er.			
READ THESE IN	STRUCTIO	NS FIRST				
Write your Centre Write in dark blue You may use a p Do not use staple	or black pencil for ar	en. Iy diagrams d	or graphs.		•	in.
Answer all quest The number of m		en in bracket	s[]at the	end of each	question or p	part question.
If working is need Omission of esse The total number	ntial worki	ng will result	in loss of m		answer.	
The use of an ap If the degree of a the answer to the For π , use either	ccuracy is ee significa	not specified ant figures. G	in the questive answers	stion, and if	the answer is	

This document consists of 18 printed pages.

Mathematical Formulae

1. ALGEBRA

Quadratic Equation

For the equation $ax^2 + bx + c = 0$,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Binomial expansion

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{r}a^{n-r}b^r + \dots + b^n,$$

where n is a positive integer and $\binom{n}{r} = \frac{n!}{r!(n-r)!} = \frac{n(n-1)\dots(n-r+1)}{r!}$

2. TRIGONOMETRY

Identities

$$\sin^2 A + \cos^2 A = 1$$

$$\sec^2 A = 1 + \tan^2 A$$

$$\csc^2 A = 1 + \cot^2 A$$

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\sin 2A = 2\sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$$

$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$$

Formulae for $\triangle ABC$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$\Delta = \frac{1}{2}ab \sin C$$

Answer ALL the questions

1 (a) The function f is defined, for all values of x, by $f(x) = (2x - x^2)e^x$. Find the range of values of x such that f(x) is a decreasing function. [4]

(b) The gradient function of the curve is 2(p+1)x + 2, where p is a constant. Given that the tangent to the curve at (2, -2) is parallel to y + 2x - 5 = 0, find the value of p. The diagram shows a chocolate bar in the form of a triangular prism and the cross-section of the chocolate bar is an isosceles triangle with AB = AC.

 $MC = \left(\sqrt{2} + \frac{1}{2}\right)$ cm and $\angle ACB = 45^{\circ}$.

(a) Find the exact length of AC.

[3]

(b) Given that the volume of the chocolate bar is $(25 + 22\sqrt{2})$ cm³, find the length of AD in the form $(a + b\sqrt{2})$ cm, where a and b are integers. [4]

3

The diagram shows a circle, centre O, with diameter AB. The points D and F lie on the circle. The point E is such that EB and EF are tangents to the circle.

(a) Given that the points C and D are midpoints of BE and AE respectively, prove that angle $DCE = 90^{\circ}$. [3]

(b) Given that triangle BEF is equilateral, prove that $\angle BEF = \angle BAF$. [2]

4 (a) Find the remainder when
$$6x^3 - 13x^2 + 17x - 6$$
 is divided by $2x - 1$. [2]

(b) Show that there is only one real root of the equation
$$6x^3 - 13x^2 + 17x - 6 = 0.$$
 [3]

5 Solve the following equations.

(a)
$$5^x - 5^{\frac{x}{2}+1} = 6$$
, [3]

(b)
$$2 \lg(x-3) - \lg(x+7) = \frac{1}{\log_{100} 10}$$
. [4]

- 6 (a) State the values between which the principal value of $\sin^{-1} x$ must lie. [1]
 - (b) Find the principal value of tan⁻¹ 1 in radian in exact form. [1]
- Given that $\cot \theta = -\frac{3}{4}$ and that $\tan \theta$ and $\cos \theta$ have opposite signs, without evaluating θ , find the exact values of each of the following.
 - (a) $\cos(-\theta)$, [2]

(b) $\sin 2\theta$ [2]

8. The approximate mean distance x (in millions of kilometres) from the centre of the Sun and the period of the orbit T (in Earth years) are recorded in the table.

	Mercury	Venus	Mars	Uranus
x	58	108	228	2871
T	0.24	0.62	1.88	84.11

It is believed that the planets orbiting around the Sun obey a law of the form $T = kx^n$, where k and n are constants.

(a) Express the equation in a form suitable for drawing a straight line graph and draw the graph using appropriate scaling on both axes. [4]

(c)	Using the graph, find the orbital period of the Earth, if the distance between the stance	the
	Earth and the Sun is about 149.6×10^6 km. Give your answer correct to the	
	nearest integer.	[2]
(d)	If the orbital period of the Jupiter is 11.86 Earth years, estimate the distance of the Jupiter from the Sun in low using your graph	
	the Jupiter from the Sun in km using your graph.	[2]

(b) Use your graph to estimate the value of k and of n, to two significant figures. [3]

9. (a) Express
$$\frac{2x^3+2x^2-7x+4}{x(x-1)^2}$$
 in partial fractions.

(b) Hence evaluate
$$\int_2^4 \frac{4x^3+4x^2-14x+8}{3x(x-1)^2} dx$$
.

10. (a) Find the range of values of k for which the line 2x - y = 5 intersects the curve xy = kx - 2 at two distinct points. [4]

(b) Find the smallest integer value of h for which the graph $y = 2x^2 - 4x + h$ lies entirely above the line y = 3 for all values of x. [3]

11. (a) Prove the identity
$$\frac{1+\cos\theta}{\sin\theta} + \frac{\sin\theta}{1+\cos\theta} = 2\csc\theta$$
. [4]

(b) Hence, find all the angles from
$$0^{\circ} \le \theta \le 360^{\circ}$$
 which satisfy the equation
$$\frac{1+\cos 2\theta}{\sin 2\theta} + \frac{\sin 2\theta}{1+\cos 2\theta} = \tan 75^{\circ}.$$
 [3]

12. Find the derivatives of each of the following, simplifying your answer.

(a)
$$y = 3\left(1 - \frac{x}{3}\right)^4$$
 [1]

(b)
$$f(x) = (2-3x)(\sqrt{1-4x})$$
 [3]

(c)
$$\frac{dy}{dx} = \frac{2(3x-2)}{4+x}$$
 [2]

13.

The diagram shows a glass window ABCDEF, consisting of a rectangle ABEF of height 3x cm and width y cm and a trapezium BCDE in which CD = x cm and BC = 2y cm. ABC is a straight line and $DE = 10\sqrt{2}$ cm. Given that x can vary,

(a) show that the area of the glass window
$$S = 7x(\sqrt{50 - x^2})$$
, [3]

(b) find the value of x for which S has a stationary value and determine whether this value of S is a maximum or a minimum.[5]

14. It is given that f(x) is such that $f'(x) = \cos 4x - \sin 2x$. Given also that $f\left(\frac{\pi}{2}\right) = \frac{1}{4}$, show that $f''(x) + 4f(x) = 3 - 3\sin 4x$. [5]

General Certificate of Education Ordinary Level JUYING SECONDARY SCHOOL, SINGAPORE Secondary Four Express/Five Normal Academic Preliminary

CANDIDATE NAME			
CENTRE NUMBER	S	INDEX NUMBER	
ADDITIONA Paper 1	AL MATHEMATICS	4049/0 22 August 20 2 hours 15 minut	24
Candidates ans	wer on the Question Paper.		
READ THESE IN	NSTRUCTIONS FIRST		
Write in dark blu You may use a p	re number, index number and name on the or black pen. pencil for any diagrams or graphs. les, paper clips, highlighters, glue or		
Answer all ques The number of n		end of each question or part question.	
Omission of esse	eded in any question it must be shown ential working will result in loss of ma er of marks for this paper is 90.	n with the answer. arks.	
If the degree of a the answer to the	pproved scientific calculator is expect accuracy is not specified in the quest ree significant figures. Give answers r your calculator value or 3.142.	tion, and if the answer is not exact, give	
	This document consists of 1	8 printed pages	

Mathematical Formulae

1. ALGEBRA

Quadratic Equation

For the equation $ax^2 + bx + c = 0$,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Binomial expansion

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{r}a^{n-r}b^r + \dots + b^n,$$

where n is a positive integer and $\binom{n}{r} = \frac{n!}{r!(n-r)!} = \frac{n(n-1)\dots(n-r+1)}{r!}$

2. TRIGONOMETRY

Identities

$$\sin^2 A + \cos^2 A = 1$$

$$\sec^2 A = 1 + \tan^2 A$$

$$\csc^2 A = 1 + \cot^2 A$$

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\sin 2A = 2\sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$$

$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$$

Formulae for $\triangle ABC$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$\Delta = \frac{1}{2}ab \sin C$$

Answer ALL the questions

BI

M1

1 (a) The function f is defined, for all values of x, by $f(x) = (2x - x^2)e^x$.

Find the range of values of x such that f(x) is a decreasing function.

[4]

$$f'(x) = (2 - 2x)e^x + (2x - x^2)e^x$$
$$= e^x(2 - x^2)$$

Decreasing Function:

$$f'(x) < 0$$

$$e^{x}(2-x^{2}) < 0$$
Since $e^{x} > 0$,

$$2-x^2<0$$

$$x^2 - 2 > 0$$

$$(x+\sqrt{2})(x-\sqrt{2})>0$$
 M1

$$x < -\sqrt{2} \qquad \qquad x > \sqrt{2} \qquad \qquad \text{A1}$$

(b) The gradient function of the curve is 2(p+1)x + 2, where p is a constant. Given that the tangent to the curve at (2, -2) is parallel to y + 2x - 5 = 0, find the value of p.

$$\frac{dy}{dx} = 2(p+1)x + 2$$

$$2(p+1)x + 2 = -2$$
 M1
 $(p+1)x = -2$ M1

When x = 2,

$$2p + 2 = -2$$

$$p = -2$$

The diagram shows a chocolate bar in the form of a triangular prism and the cross-section of the chocolate bar is an isosceles triangle with AB = AC.

$$MC = \left(\sqrt{2} + \frac{1}{2}\right)$$
 cm and $\angle ACB = 45^{\circ}$.

(a) Find the exact length of AC.

$$\cos 45^{\circ} = \frac{\sqrt{2} + \frac{1}{2}}{AC}$$

$$AC = \frac{2(\sqrt{2} + \frac{1}{2})}{\sqrt{2}}$$

$$= \frac{2\sqrt{2} + 1}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}$$

$$= 2 + \frac{\sqrt{2}}{2} \qquad \text{or } \frac{4 + \sqrt{2}}{2}$$
A1

(b) Given that the volume of the chocolate bar is $(25 + 22\sqrt{2})$ cm³, find the length of AD in the form $(a + b\sqrt{2})$ cm, where a and b are integers. [4]

$$Vol = \frac{1}{2} \times \left(\frac{4+\sqrt{2}}{2}\right) \times \left(\frac{4+\sqrt{2}}{2}\right) \times AD$$

$$25 + 22\sqrt{2} = \frac{9+4\sqrt{2}}{4}AD$$

$$AD = \frac{25+22\sqrt{2}}{\frac{9+4\sqrt{2}}{4}}$$

$$= \frac{100+88\sqrt{2}}{9+4\sqrt{2}} \times \frac{9-4\sqrt{2}}{9-4\sqrt{2}}$$

$$= \frac{900-400\sqrt{2}+792\sqrt{2}-704}{49}$$

$$= \frac{196+392\sqrt{2}}{49}$$

$$= A + 8\sqrt{2}$$
M1
A1

3

The diagram shows a circle, centre O, with diameter AB. The points D and F lie on the circle. The point E is such that EB and EF are tangents to the circle.

(a) Given that the points C and D are midpoints of BE and AE respectively, prove that angle $DCE = 90^{\circ}$.

$$\angle ABC = 90^{\circ}$$
 (tangent perpendicular radius) M1
DC parallel AB (mid point theorem) M1
Angle DCE = 90° (corresponding angles) A1

(b) Given that triangle *BEF* is equilateral, prove that $\angle BEF = \angle BAF$. [2]

$$\angle EBF = \angle BAF$$
 (alternate segment theorem) M1

Since
$$\angle EBF = \angle BEF$$
,
 $\angle BEF = \angle BAF$ (shown)
A1

4 (a) Find the remainder when $6x^3 - 13x^2 + 17x - 6$ is divided by 2x - 1. [2] When $x = \frac{1}{2}$,

Remainder =
$$6\left(\frac{1}{2}\right)^3 - 13\left(\frac{1}{2}\right)^2 + 17\left(\frac{1}{2}\right) - 6$$
 M1
= 0 A1

(b) Show that there is only one real root of the equation

$$6x^{3} - 13x^{2} + 17x - 6 = 0.$$

$$(2x - 1)(6x^{2} - 10x + 12) = 0$$

$$x = \frac{1}{2}$$

$$6x^{2} - 10x + 12 = 0$$

$$3x^{2} - 5x + 6 = 0$$
[3]

Discriminant:

$$b^2 - 4ac = 25 - 4(3)(6)$$

= -47 B1

Since -47 < 0,

 $3x^2 - 5x + 6 = 0$ has no real roots, hence equation has only 1 real root which is $x = \frac{1}{2}$.

5 Solve the following equations.

(a)
$$5^{x} - 5^{\frac{x}{2}+1} = 6$$
, [3]
Let $y = 5^{\frac{x}{2}}$
 $y^{2} - 5y - 6 = 0$ M1
 $y = 6$ $y = -1$ (reject) A1

$$\frac{x}{2}\lg 5 = \lg 6$$

$$x = 2.23$$
 B1

(b)
$$2 \lg(x-3) - \lg(x+7) = \frac{1}{\log_{100} 10}$$
. [4]

$$\lg \frac{(x-3)^2}{x+7} = \frac{\lg 100}{\lg 10}$$
 M2

$$100 = \frac{(x-3)^2}{x+7}$$
 M1

$$x^2 - 106x - 691 = 0$$

$$x = 112$$
 or $x = -6.16$ (rej)

6 (a) State the values between which the principal value of
$$\sin^{-1} x$$
 must lie. [1]
$$-90^{\circ} \le \sin^{-1} x \le 90^{\circ}$$
$$-\frac{\pi}{2} \le \sin^{-1} x \le \frac{\pi}{2}$$

(b) Find the principal value of
$$tan^{-1} 1$$
 in radian in exact form. [1]

Principal value =
$$\frac{\pi}{4}$$

Given that $\cot \theta = -\frac{3}{4}$ and that $\tan \theta$ and $\cos \theta$ have opposite signs, without evaluating θ , find the exact values of each of the following.

(a)
$$\cos(-\theta)$$
, [2]
 $\tan \theta = -\frac{4}{3}$, lies in 4th quadrant M1
 $\cos(-\theta) = \cos \theta$
 $= \frac{3}{5}$ A1

(b)
$$\sin 2\theta$$
 [2]

$$= 2 \sin \theta \cos \theta$$

$$= 2 \left(-\frac{4}{5}\right) \left(\frac{3}{5}\right)$$

$$= -\frac{24}{25}$$
A1

8. The approximate mean distance x (in millions of kilometres) from the centre of the Sun and the period of the orbit T (in Earth years) are recorded in the table.

	Mercury	Venus	Mars	Uranus
x	58	108	228	2871
T	0.24	0.62	1.88	84.11

It is believed that the planets orbiting around the Sun obey a law of the form $T = kx^n$, where k and n are constants.

(a) Express the equation in a form suitable for drawing a straight line graph and draw the graph using appropriate scaling on both axes. [4]

 $\lg T = \lg k + n \lg x$

(b) Use your graph to estimate the value of k and of n, to two significant figures. [3]

Lg k = -3.2
k = 0.00063 (0.00063 to 0.00079)
n =
$$\frac{2-9-3.2)}{3.5-0}$$
 = 1.49 = 1.5 (1.4 to 1.6)

(c) Using the graph, find the orbital period of the Earth, if the distance between the Earth and the Sun is about 149.6×10⁶ km. Give your answer correct to the nearest integer. [2]

$$\lg 149.6 = 2.17 = \lg x$$

 $\lg T = 0 \Rightarrow T = 1$ (0.79 to 1.25)

(d) If the orbital period of the Jupiter is 11.86 Earth years, estimate the distance of the Jupiter from the Sun in km using your graph.

[2]

lg 11.86 = 1.07

 $\lg x = 2.9 = 794000000 \text{ km}$ (631000000 to 10000000000 km)

9. (a) Express
$$\frac{2x^3+2x^2-7x+4}{x(x-1)^2}$$
 in partial fractions.

[5]

$$=2+\frac{6x^2-9x+4}{x(x-1)^2}$$

B1

Let
$$\frac{6x^2 - 9x + 4}{x(x - 1)^2} = \frac{A}{x} + \frac{B}{x - 1} + \frac{C}{(x - 1)^2}$$

 $6x^2 - 9x + 4 = A(x - 1)^2 + Bx(x - 1) + Cx$

When x = 0,

$$4 = A$$

B1

When x = 1,

$$6 - 9 + 4 = C$$

$$C = 1$$

B1

When x = -1,

$$6+9+4=4(4)+2B-1$$

$$2B = 4$$

$$B=2$$

B1

$$\frac{2x^3 + 2x^2 - 7x + 4}{x(x-1)^2} = 2 + \frac{4}{x} + \frac{2}{x-1} + \frac{1}{(x-1)^2}$$
 B1

(b) Hence evaluate
$$\int_2^4 \frac{4x^3 + 4x^2 - 14x + 8}{3x(x-1)^2} dx$$
. [4]

$$\int_{2}^{4} \frac{4x^{3} + 4x^{2} - 14x + 8}{3x(x - 1)^{2}} dx = \frac{2}{3} \int_{2}^{4} \frac{2x^{3} + 2x^{2} - 7x + 4}{x(x - 1)^{2}} dx$$

$$= \frac{2}{3} \int_{2}^{4} \left[2 + \frac{4}{x} + \frac{2}{x - 1} + \frac{1}{(x - 1)^{2}} \right] dx$$

$$= \frac{2}{3} \left[2x + 4 \ln x + 2 \ln(x - 1) - \frac{1}{x - 1} \right]_{2}^{4} \qquad M1$$

$$= \frac{2}{3} \left[8 + 4 \ln 4 + 2 \ln 3 - \frac{1}{3} - 4 - 4 \ln 2 - 2 \ln 1 + 1 \right]$$

$$= \frac{2}{3} \left[\frac{14}{3} + 4 \ln 2 + 2 \ln 3 \right] \qquad M1$$

$$= 6.42 \qquad A1$$

10. (a) Find the range of values of k for which the line 2x - y = 5 intersects the curve xy = kx - 2 at two distinct points. [4] x(2x - 5) = kx - 2 $2x^2 - 5x - kx + 2 = 0$ B1

Intersects at 2 distinct points:

$$(-5-k)^2 - 4(2)(2) > 0$$
 M1
 $k^2 + 10k + +9 > 0$
 $(k+1)(k+9) > 0$

$$k < -9$$
 $k > -1$ A2

(b) Find the smallest integer value of h for which the graph
$$y = 2x^2 - 4x + h$$
 lies entirely above the line $y = 3$ for all values of x. [3]

$$2x^2 - 4x + h - 3 > 0$$

Curve lies above line:

$$b^2 - 4ac < 0 M1$$

$$(-4)^2 - 4(2)(h-3) < 0$$

smallest integer value of
$$h = 6$$

11. (a) Prove the identity
$$\frac{1+\cos\theta}{\sin\theta} + \frac{\sin\theta}{1+\cos\theta} = 2\csc\theta$$
. [4]
$$LHS = \frac{1+\cos\theta}{\sin\theta} + \frac{\sin\theta}{1+\cos\theta}$$

$$= \frac{1+2\cos\theta+\cos^2\theta+\sin^2\theta}{\sin\theta(1+\cos\theta)}$$

$$= \frac{2(1+\cos\theta)}{\sin\theta(1+\cos\theta)}$$
M1

$$= 2\csc\theta$$
 A1
$$= RHS$$
 (shown)

(b) Hence, find all the angles from $0^{\circ} \le \theta \le 360^{\circ}$ which satisfy the equation

$$\frac{1+\cos 2\theta}{\sin 2\theta} + \frac{\sin 2\theta}{1+\cos 2\theta} = \tan 75^{\circ}.$$
 [3]

 $2\csc 2\theta = \tan 75^{\circ}$

$$\sin 2\theta = \frac{2}{\tan 75^{\circ}}$$
 M1

basic angle =
$$\sin^{-1} \frac{2}{\tan 75^{\circ}}$$

= 32.404858° M1

$$2\theta = 32.404858^{\circ}, 180^{\circ} - 32.404858^{\circ}, 32.404858^{\circ} + 360^{\circ}, 540^{\circ} - 32.404858^{\circ}$$

 $\theta = 16.2^{\circ}, 73.8^{\circ}, 196.2^{\circ}, 253.8^{\circ}$ A1

12. Find the derivatives of each of the following, simplifying your answer.

(a)
$$y = 3\left(1 - \frac{x}{3}\right)^4$$
 [1]
$$\frac{dy}{dx} = 12\left(-\frac{1}{3}\right)\left(1 - \frac{x}{3}\right)^3$$

$$= -4\left(1 - \frac{x}{3}\right)^3$$

(b)
$$f(x) = (2 - 3x)(\sqrt{1 - 4x})$$
 [3]

$$f'(x) = -3(\sqrt{1 - 4x}) + \frac{1}{2}(-4)(2 - 3x)(1 - 4x)^{-\frac{1}{2}} \qquad M1$$

$$= (1 - 4x)^{-\frac{1}{2}}[-3(1 - 4x) - 4 + 6x] \qquad M1$$

$$= \frac{18x - 7}{\sqrt{1 - 4x}} \qquad A1$$

(c)
$$\frac{dy}{dx} = \frac{2(3x-2)}{4+x}$$
 [2]
$$\frac{d^2y}{dx^2} = \frac{6(4+x)-(6x-4)}{(4+x)^2}$$
 M1
$$= \frac{28}{(4+x)^2}$$
 A1

13.

The diagram shows a glass window ABCDEF, consisting of a rectangle ABEF of height 3x cm and width y cm and a trapezium BCDE in which CD = x cm and BC = 2y cm. ABC is a straight line and $DE = 10\sqrt{2}$ cm.

(a) show that the area of the glass window $S = 7x(\sqrt{50 - x^2})$, [3] Looking at triangle,

$$4y^2 + 4x^2 = 200$$
$$y^2 + x^2 = 50$$
B1

Total area
$$A = 3xy + \frac{1}{2}(x + 3x)(2y)$$
 M1
= $7x(\sqrt{50 - x^2})$

(b) find the value of x for which S has a stationary value and determine whether this value of A is a maximum or a minimum. [5]

$$\frac{dS}{dx} = 7(\sqrt{50 - x^2}) + \frac{1}{2}(-2x)(7x)(50 - x^2)^{-\frac{1}{2}}$$

$$= (50 - x^2)^{-\frac{1}{2}}[7(50 - x^2) - 7x^2]$$

$$= \frac{350 - 14x^2}{\sqrt{50 - x^2}}$$
B1

Stationary value of S:

Given that x can vary,

$$\frac{dS}{dx} = 0$$
 M1
$$350 - 14x^2 = 0$$

$$x = 5$$

$$x = -5 \text{ (rej)}$$

A1

	x = 4.9	x = 5	x = 5.1
$\frac{dS}{dx}$	2.72	0	-2.89
shape			

Proof B1 (can be 1st or 2nd derivative)

When x = 5, S is a maximum

B1

14. It is given that f'(x) is such that $f'(x) = \cos 4x - \sin 2x$. Given also that $f\left(\frac{\pi}{2}\right) = \frac{1}{4}$, show that $f''(x) + 4f(x) = 3 - 3\sin 4x$. [5]

$$f''(x) = -4\sin 4x - 2\cos 2x$$
 B1

$$f(x) = \int (\cos 4x - \sin 2x) dx$$
$$= \frac{\sin 4x}{4} + \frac{\cos 2x}{2} + c$$
B1

When $x = \frac{\pi}{2}$,

$$\frac{1}{4}=-\frac{1}{2}+c$$

$$c = \frac{3}{4}$$

$$f(x) = \frac{\sin 4x}{4} + \frac{\cos 2x}{2} + \frac{3}{4}$$
 B1