

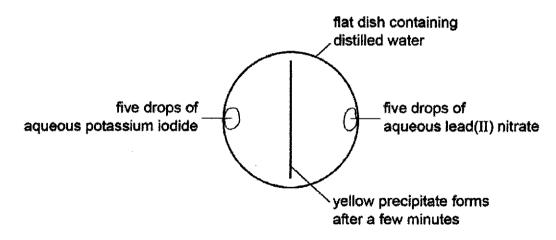
HILLGROVE SECONDARY SCHOOL **END-OF-YEAR EXAMINATION 2019** SECONDARY THREE EXPRESS

CANDIDATE NAME		()	CLASS	-
CENTRE NUMBER	S		NDEX IUMBER		
PURE CHE	EMISTRY				6092
TOTAL OTTE					7 Oct 2019
				2 hou	ur 15 minutes
Additional Ma	aterials: Optical Answer Sheet (O	AS)		08.00 A.M	l. to 10.15 A.M.
READ THES	E INSTRUCTIONS FIRST				
You may use Write in dark Do not use st	ame, class and register number of an HB pencil for any diagrams, of blue or black pen. taples, paper clips, glue or correc	graphs, tables ction fluid.	s or rough v	vorking.	
The use of ar	n approved scientific calculator is e marks if you do not show your v	expected, wl working or if y	nere approp ou do not u	priate. use appropi	riate units.
For each que	irty questions on this section. An estion, there are four possible and one you consider correct and recet.	swers A. B. C	and D.	oencil on th	ne separate
Section B an Answer all q Write your an The number		the question at the end of e	paper. each questi	ion or part o	question.
A copy of the	e Periodic Table is printed on pa	ge 25.		For Exami	ner's Use
•			Sec	tion A	30
			Sec	tion B	40
			Sec	ction C	30
Parent's/ Gu	uardian's Signature:		T	OTAL	100
Setter: Mr San	mson Cher This document consists of 2	4 printed pag	es and 02	blank page	S .

Section A: Multiple Choice Questions [30 marks]

Answer all questions.

Choose the most correct answer and shade your choice in the Answer Sheet provided.


1 The diagram shows a cup of tea.

Which row describes the water molecules in the air above the cup compared with the water molecules in the cup?

	moving faster	closer together
A	✓	✓
В	✓	*
C	*	✓
D	×	*

2 A yellow precipitate is formed in the experiment shown.

How is the precipitate formed?

- A Particles collide, diffuse and then react.
- B Particles collide, react and then diffuse.
- C Particles diffuse, collide and then react.
- D Particles diffuse, react and then collide.

3 A student was provided with only a thermometer, a stopwatch and a beaker.

What could the student measure?

- A 10.5 g solid and 24.8 cm³ liquid
- B 10.5 g solid and 25°C
- C 24.8 cm³ liquid and 45 seconds
- p 25°C and 45 seconds
- 4 The table gives the density and solubility in water of four gases.

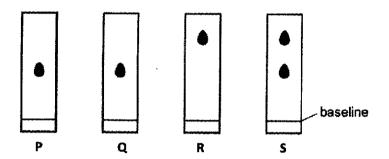
gas	density	solubility in water
1	denser than air	insoluble
2	denser than air	soluble
3	less dense than air	insoluble
4	less dense than air	soluble

Which row correctly shows whether the method of collection could or could not be used to collect each gas?

		method of collection	
	gas	upward delivery	displacement of water
A	1	no	no
В	2	no	yes
С	3	yes	yes
D	4	yes	yes

5 Mixture 1 contains silicon(IV) oxide and water.

Mixture 2 contains sodium hydroxide and water.


Which method of separation could be used to obtain each of the required products from each mixture?

	mixture 1		mixture 2	
	to obtain silicon(IV) oxide	to obtain water	to obtain sodium hydroxide	to obtain water
A	crystallisation	distillation	filtration	filtration
В	crystallisation	filtration	filtration	distillation
С	filtration	distillation	crystallisation	filtration
D	filtration	filtration	crystallisation	distillation

6 Chromatography experiments are carried out on four substances, P, Q, R and S.

The same solvent is used in each experiment.

The resulting chromatograms are shown below.

Which statement is not correct?

- A P and Q are pure substances.
- B P and Q have the same R_f values.
- C R and S are pure substances.
- **D S** is a mixture of substances.
- 7 Potassium, K, forms a compound with fluorine, F.

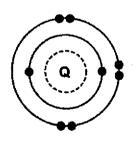
Which statements about this compound are correct?

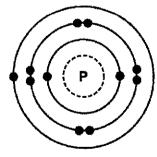
- 1 The compound is ionic.
- 2 The formula of the compound is KF.
- 3 The compound is soluble in water.
- A 1, 2 and 3
- B 1 and 2 only
- C 1 and 3 only
- D 2 and 3 only
- 8 Which elements are in the compound BaCO₃?
 - A barium and cobalt
 - B boron, actinium and oxygen
 - C carbon, oxygen and barium
 - D oxygen, calcium and boron

9 The table below describes the structures of four particles.

particle	number of protons	number of neutrons	number of electrons
0	8	8	8
O ² -	8	8	X
Na	11	Y	11
Na⁺	11	12	Z

What are the correct values of X, Y and Z?


	X	Y	Z
Α	9	11	10
В	9	11	11
С	10	12	10
D	10	12	11


10 The table shows the atomic structure of four atoms.

Which atom is not a metal?

	electrons	neutrons	protons
Α	18	22	18
В	19	20	19
С	19	21	19
D	20	20	20

11 The electronic structures of atoms P and Q are shown.

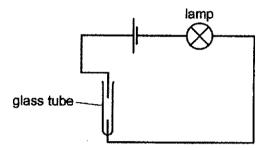
key ● = electron

 \boldsymbol{P} and \boldsymbol{Q} react to form an ionic compound.

What is the formula of this compound?

A PQ₂

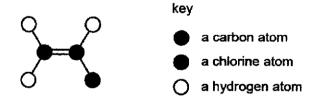
C P₂Q₆


B P₂Q

D P₆Q₂

12 Which row shows the correct formula for the corresponding compound?

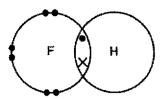
	compound	formula
A	ammonium chloride	NH ₃ C <i>l</i>
В	copper(II) sulfide	CuS
С	iron(II) sulfide	Fe ₂ S
D	silver nitrate	Ag_2NO_3


13 The diagram shows an incomplete circuit.

Which substance, when added to the glass tube, will cause the lamp to light up?

- A aqueous sodium chloride
- B aqueous sugar
- C solid sodium chloride
- D solid sugar

14 The diagram shows a molecule of vinyl chloride.



What is the formula of vinyl chloride?

- A CH₂Cl₃
- B CH₃Cl₂

- C C₂HCl₃
- D C₂H₃Cl

15 The diagram shows a molecule of hydrogen fluoride.

Which statement correctly describes how the molecule of hydrogen fluoride is formed?

- A The hydrogen and fluorine share a pair of electrons.
- B The hydrogen and fluorine share a pair of protons.
- C The hydrogen gives fluorine an electron.
- D The hydrogen gives fluorine a proton.
- 16 Nitrogen and hydrogen react together to form ammonia.

$$N_2 + 3H_2 \rightarrow 2NH_3$$

When completely reacted, 7 tonnes of nitrogen gives 8.5 tonnes of ammonia.

How much nitrogen will be needed to produce 34 tonnes of ammonia?

A 7 tonnes

C 28 tonnes

B 8.5 tonnes

D 34 tonnes

17 124 g of phosphorous vapour has the same volume as 71 g of chlorine gas at the same temperature and pressure.

What is the formula of a molecule of phosphorus?

A P₈

C P₂

B P₄

D P

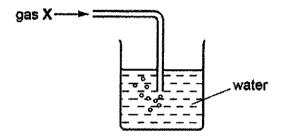
18 The relative formula mass, M_r of copper(II) sulfate, CuSO₄, is 160.

Which mass of sulfur is present in 160 g of copper(II) sulfate?

A 16 g

C 64 g

B 32 g


D 128 g

19 An element E is burnt in air. A white solid oxide is formed.

The oxide is tested with a damp red litmus paper. The paper turns blue.

What is element E?

- A calcium
- B carbon
- C iodine
- D sulfur
- 20 Gas X is passed into water as shown.

The pH of the water changes from 7 to 10.

What is gas X?

A ammonia

C nitrogen

B carbon dioxide

- D sulfur dioxide
- 21 Which property is not characteristic of a base?
 - A It reacts with a carbonate to form carbon dioxide.
 - B It reacts with an acid to form a salt.
 - C It reacts with an ammonium salt to form ammonia.
 - D It turns Universal Indicator paper blue.
- 22 An alloy contains copper and zinc.

Some of the zinc has become oxidised to zinc oxide.

What is the result of adding an excess of dilute sulfuric acid to the alloy?

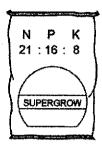
- A A blue solution and a white solid remains.
- B A colourless solution and a brown solid remains.
- C The alloy dissolves completely to give a blue solution.
- **D** The alloy dissolves completely to give a colourless solution.

23 The results of three tests on a solution of compound X are shown.

test	result
aqueous potassium hydroxide added	white precipitate formed, soluble in excess
aqueous ammonia added	white precipitate formed, soluble in excess
dilute hydrochloric acid added	bubbles of gas

What is compound X?

- A aluminium carbonate
- B aluminium chloride
- C zinc carbonate
- D zinc chloride
- 24 Equations for the effect of water on anhydrous cobalt(II) chloride and anhydrous copper(II) sulfate are shown.


$$CoCl_2(s) + 6H_2O(l) \rightarrow CoCl_2.6H_2O(s)$$

$$CuSO_4(s) + 5H_2O(l) \rightarrow CuSO_4.5H_2O(s)$$

Which statement is not correct?

- A Both reactions can be reversed by changing the conditions.
- B Both reactions can be used as a test for water.
- C The colour change observed when hydrated copper(II) sulfate is heated is from blue to white.
- **D** The colour change observed when water is added to anhydrous cobalt(II) chloride is from pink to blue.

25 Which composition of chemical compounds could be used to produce the fertiliser shown?

- A NH₄NO₃, Ca₃(PO₄)₂
- B NH₄NO₃, CO(NH₂)₂
- C NH₄NO₃, K₂SO₄, (NH₄)₂SO₄
- D (NH₄)₃PO₄, KCl
- 26 The equation explains the colour change that occurs when aqueous potassium chromate(VI) is added to aqueous potassium dichromate(VI).

As a result of adding an excess of aqueous potassium hydroxide to aqueous potassion dichromate(VI), what happens to the oxidation state of the chromium and the pH of the reaction mixture?

	oxidation state of the chromium	pH of the mixture
Α	decreases	decreases
В	decreases	increases
С	stays the same	decreases
D	stays the same	increases

27 The equations for three reactions are shown.

1 CuO + H₂
$$\rightarrow$$
 Cu + H₂O

2
$$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$$

$$3 2H_2 + O_2 \rightarrow 2H_2O$$

Which statement about the reactions is not correct?

- A in reaction 1, copper(II) oxide is reduced to copper.
- B In reaction 2, carbon monoxide is oxidised to carbon dioxide.
- c In reactions 1 and 3, hydrogen is oxidised to water.
- **D** In reaction 2, iron(III) oxide is oxidised to iron.
- 28 An element has the following properties.
 - It forms coloured compounds.
 - It acts as a catalyst.
 - It melts at 1539°C.

In which part of the Periodic Table is the element found?

A Group I

C Group VII

B Group IV

- **D** transition elements
- 29 The Group I elements lithium and potassium are tested.

Which element has the higher melting point and which element reacts more vigorously with water?

	higher melting point	more vigorous reaction with water
Α	lithium	lithium
В	lithium	potassium
С	potassium	lithium
D	potassium	potassium

30 In the Haber process, nitrogen and hydrogen react to form ammonia.

What is the source of the hydrogen?

A air

C oil

B ethanol

D sulfuric acid

Section B: Short Structured Questions [40 marks]

Answer all questions.

Write your answers in the spaces provided.

1 Aqueous silver nitrate reacts with aqueous potassium halides to form precipitates.

The precipitates are unstable and break down to form solid silver and a halogen.

These reactions are summarised in the chemical equations below (X represents the symbol for the halogen).

reaction 1: AgNO₃ (......) + KX (......) \rightarrow AgX (......) + KNO₃ (......)

reaction 2: 2AgX → 2Ag + X₂

- (a) Complete the equation for reaction 1 by filling in the missing state symbols. [1]
- (b) Table 1.1 shows the colours of some halide precipitates and the observations made when the precipitates are left to stand.

Table 1.1

silver halide	colour of silver halide	observations on standing
silver chloride	white	rapid formation of grey solid
silver bromide	cream	slow formation of grey solid
silver iodide		no visible change after several minutes

i)	Complete Table 1.1 to show the colour of silver iodide.	[1]
(ii)	What conclusion can you make from the table about the relationship reactivity of the halogen and the rate of breakdown of the silver halide?	between
	······	[1]
		[total: 3]

An e	lement, M, has the electron distribution 2. 6. 16. 3.
(a)	Which group in the Periodic Table is element M likely to be in?
	[1]
(b)	Predict whether element M is a poor or a good conductor of electricity. Give a reason for your answer.
(c)	Binary compounds contain two atoms per molecule, for example HCI. Identify an element which could form a binary compound with element M.
	[1]
(d)	Predict the formula of the sulfate of M . The formula of the sulfate ion is SO ₄ ²⁻ .
	[1]
(e)	The hydroxide of M is a white powder which is insoluble in water. Using named reagents, describe how you could show that this hydroxide is amphoteric.
	[2]
	[total: 6]

3 Fig. 3.1 shows the substances present in a bottle of orange fruit drink.

ORANGE FRUIT DRINK

Contains: orange juice, malic acid, citric acid and natural colours (carotenes)

NO ARTIFICIAL COLOURS (E NUMBERS)

Fig. 3.1

(a)	A pie	ece of pH indicator paper was dipped in the drink.
	(i)	Predict the pH value obtained.
	(ii)	Why does the pH indicator paper give a more reliable result than adding Universal Indicator solution to the drink?
		[1]
(b)		cribe an experiment you could carry out to show that only natural colours were ent in the drink.
	A sp	ace has been left if you want to draw a diagram to help you answer the question.
		[4]
		fatal)

- 4 This question is about isotopes.
 - (a) Fig. 4.1 shows a symbol representing an atom of an isotope of fluorine.

¹⁹F

Fig. 4.1


		9-		
	In your answer, i the position	on of the protons, neutror	sotope of fluorine. ns and electrons in the atom nd electrons present in the	
	*******			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	***************************************	·····		
			·····	
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	***************************************			[5]
(b)	Give one medic	al use of radioactive isoto	pes.	
				[1]
(c)		e following isotopes is use ound the correct answer.	ed as a source of energy?	
	¹²⁷ I	²³⁵ U	¹³¹ Xe	⁶⁶ Zn

[1]

[total: 7]

[total: 8]

5 Fig. 5.1 shows bar charts comparing the concentration of ions in two samples of water, sample A and sample B.

		mass = mg [2]
(b)	Des	cribe a test for chloride ions.
	test	
	resu	/t[2]
(c)	Silic	on in river water comes from silicate rocks. Some of these contain silicon(IV) oxide.
	(i)	Explain why silicon(IV) oxide is an acidic oxide.
		[1]
	(ii)	Suggest whether silicon(IV) oxide has a high or low melting point. Explain your answer.
		[2]

- The hydroxides of the Group I metals are soluble in water. Most other metal hydroxides are insoluble in water.
 - (a) (i) Fig. 6.1 shows a method to prepare crystals of lithium chloride from lithium hydroxide.

Fig. 6.1

25.0 cm³ of aqueous lithium hydroxide is pipetted into the conical flask. A few drops of an indicator are added. Dilute hydrochloric acid is added slowly to the alkali until the indicator just changes colour. The volume of acid needed to neutralise the lithium hydroxide is noted.

A neutral solution Describe how you not contain an indi	could obtain a neu		
		 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	[2]

	(ii)	You cannot prepare a neutral solution of magnesium chloride by the same method. Describe how you could prepare a neutral solution of magnesium chloride.
		······································
		[3]
(b)		concentration of the hydrochloric acid was 2.20 mol/dm³. The volume of acid led to neutralise the 25.0 cm³ of lithium hydroxide was 20.0 cm³.
		LiOH + HCl → LiCl + H2O
	Calc	ulate the concentration of the aqueous lithium hydroxide.
		concentration = mol/dm ³ [2]
(c)	Whic	um chloride forms three hydrates. They are LiCl.H ₂ O, LiCl.2H ₂ O and LiCl.3H ₂ O. th one of these three hydrates contains 45.9% of water? w how you arrived at your answer.
	•••••	
	•••••	
		[3]
		[total: 10]

[1]

Section C: Long Structured Questions [30 marks]

Answer all questions.

Write your answers in the spaces provided.

7 The modern Periodic Table was put together by Dmitri Mendeleev, based on the element's properties. One such property is the first ionisation energy.

First ionisation energy is defined as the energy required to remove one mole of electrons from one mole of gaseous atoms of that element, forming one mole of gaseous cations.

For example, the first ionisation energy of sodium would be the energy required for the following process:

$$Na(g) \rightarrow Na^{+}(g) + e^{-}$$

Fig. 7.1 shows the first ionisation energies of the elements in Periods 2 and 3.

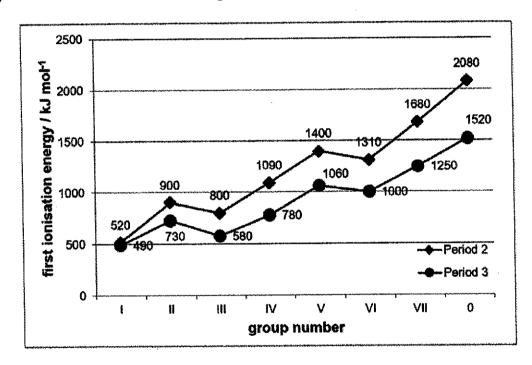


Fig. 7.1

- (a) Using information from Fig. 7.1, state the following:
 - (i) the name of the element with first ionisation energy of 1000 kJ mol⁻¹
 - (ii) the first ionisation energy of magnesium.

[1]

[total: 10]

(b)	With the	reference to Fig. 7.1, describe the general trend in the first ionisation energies of elements across a period.
		[2]
(c)	(i)	In the space below, draw the 'dot-and-cross' diagram of an atom of each of the group I elements in Period 2 and Period 3. Show all the electrons.
		[2]
	(ii)	Hence, or otherwise, suggest why the first ionisation energies for Period 2 elements are higher than those of the corresponding Period 3 elements.
(d)	ionis	g data from Fig. 7.1, describe the relationship between the reactivity and first ation energies of group I elements.

	•••••	
		[2]

8	Methyl orang	ge and methyl re	d are both dy	es which can	be used as ph	I indicators.
---	--------------	------------------	---------------	--------------	---------------	---------------

(a)	The	melting	point	of	methyl	red	is	180°	C.
-----	-----	---------	-------	----	--------	-----	----	------	----

(i)

(i)	With the aid of a diagram, describe the arrangement and movement of the particles of methyl red at room temperature.
	,,,,
	[3]
(ii)	A chemist prepares a sample of methyl red and finds that it melts over the range 173°C to 177°C.
	Suggest why the melting point of this sample was different from the actual value.
	[4]

- (b) A concentrated solution of methyl orange was placed at the bottom of a beaker containing an organic solvent.
 - After 5 hours, the orange colour had spread throughout the solvent.
 - Fig. 8.1 shows the set-up at the start and after 5 hours.

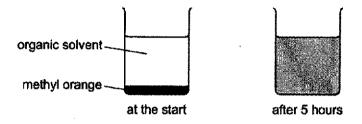


Fig. 8.1

	Use	the kinetic particle model of matter to explain this observation.	
			• • • • • •
			••••
			• • • • •
	•••••		
	•••••		[3]
(c)	Meth	nyl orange is used as an indicator.	
	(i)	What colour is methyl orange when placed in dilute sulfuric acid?	
			[1]
	(ii)	Show, using an ionic equation, the formation of the ion that is responsible for tacidic properties of sulfuric acid in water.	ihe
			[2]
		[total:	10]

9	The	re are thre	e types of glant structur	e – ionic, metallic and g	iant covalent.	
	(a)	In an ioni	ic compound, the ions a	re held in a lattice by st	rong forces.	
		Explain t	he term lattice.			
						[2]
	(b)	Describe	the bonding in a typical	l metal.		
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				

						[3]
	(c)	The elec	trical conductivities of the	ne three types of glant s	structure are given in Ta	ble 9.1.
				Table 9.1		
			type of structure	conductivity of solid	conductivity of liquid	
			ionic	poor	good	
			metallic	good	good	
			giant covalent	poor	poor	
			the differences in ele e and the difference, if e.			
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
						•••••
					•••••	[5]
						[total: 10]

⊕ End of Paper
 ⊕

24

BLANK PAGE

BLANK PAGE

The Periodic Table of Elements

III IV V VI VII		5 6 7 8 7 10 10 10 10 10 10 10 10 10 10 10 10 10	14 15 16 1/ Si P S C/ History phosphorus sulfur orhioting 31 32 35.5	28 32 34 35 34 35 34 35 35 35 35 35 35 35 35 35 35 35 35 35	copper zinc gallium germanium ansetto selentum brownine 64 65 70 73 75 79 80	48 50 51 52 53 50 51 52 53	Ag carmium indium in an antimory tellurium todium indium 122 128 127	70 80 81 82 83	teed blemuth potonium estadine	Ro 112 Cn Cn FF
	-	20 0 m	၉၈∄အ	8 R	selenium 79	25 £	terburium 128	25 6		116 Lv
>		~ S quarter	E or officer	8 %	areantc 75	क र्व	antimony 122	8 i	205 205	
2		e ∩ § ₹	¥ ∞ § %	8 8	germanium 73	20	5 45 €	8	218	₹œ
-		တက် နိုင်	13 A.I. stumblum 27	રું હૈ	pellium 70	\$ 7	- 100 - 100	& i	that um 204	
	* • • • • • • • • • • • • • • • • • • •	······································		8 2	i 8 8	∞ 7		80		5.2
			:	23 Cj.	i de de	47	2 2 2	7.0	2 8 E	E &
9				8 Z	<u> </u>	8.	Palled mulballum 106	78	Paris	£ 8
goon				22.5) 3 C	3	Z met	u	Ir Indium 192	8 ₹
	H hydrogen 1			26	<u> </u>	4	roffenum Con	76	S miles	8 4
				56 E	manganese FS	3	To	75	S	5 €
		umber od nass		75	Shrendam Shrendam	42	Michael Michae	74	2	
	Ş	proton (atomic) number atomic symbol name		23	vanackum K4	14		73	Ta	105 204
		proton ato		2 F	Ganisa Ac		Zinoonium	_	Ŧ.	
			.	21	Scarce C	8	> title		lenthanoide	89 103 adinoide
-		4 8 6 c	Mg Paddum	នេះ	3 19 5	386	*tronffum		E B	1
I	1	o⊐ ∰r	= 8 § 8			_	5 da	مام	CS Superstrum	5 PP (

175 T776 Items of the Property
Yb Ybridium 173 No
Tm fluidium (69) (01) Mid mendelevium
100 T
Ho hohrium 186 99 BS Establishium
dysprositum 163 Cf Cf
159 159 159 Derivatium
Gd Company of the control of the con
Eu Eu 152 757 757 758
Sm Smarthin 150 Pu Put Put
Prin Promethium 93 Npp
25 N
59 Pr 141 141 91 Pa protectinum 231
232
57 La 139 86 86 Ac actinium

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

actinoids

26

BLANK PAGE

BLANK PAGE

HGV Sec 3E Pure Chemistry EOY Examination 2019

PartnerInLearning
More papers at 3999.testpapersfree.com

(Hillgrove Secondary School EOY 2019 Secondary 3E Pure Chemistry Mark Scheme

В	С	D	C	D	С	A	С	C	A
					nicousila Asiala				
В	В	Α	D	A .	C	В	В	Α	Α
	015-04-02 45-63-03								
Α	В	С	D	D	С	D	D	В	С

1(a)	AgNO ₃ (aq) + KX (aq) → AgX (s) + KNO ₃ (aq)	Most candidates could not identify that AgX is insoluble in water and KNO ₃ is.
	Award 1M for all correct state symbols.	Water and taves is.
(b)(i)	Yellow; CAO	Many candidates did not make the link between the lab practica (precipitation of PbI) with this question.
(ii)	As reactivity increases, the rate of breakdown decreases;	Most candidates were able to provide the correct answer.
	OWTTE	
		Many candidates continue to
2(a)	Group III	write Group number as 3.
	[R]: Group <u>3</u>	
(b)	good conductor and it is a metal / has delocalised (free) electrons;	Most candidates correctly identified the good conductor of electricity as a property of metals.
(c)	N or P or As or Sb;	
	[A] Bi	
(d)	M ₂ (SO ₄) ₃ ;	
	[A] Ga ₂ (SO ₄) ₃	
(e)	It would react with / dissolves in a named strong acid; It would react with / dissolves in in a named alkali; It shows both basic and acid properties = 1	Strong candidates were able to name hydrochloric acid / sulfuri acid as the strong acid and

	It reacts with both acids and bases / alkalis = 1	sodium hydroxide / potassium hydroxide as the strong alkali;
	Maximum 2 marks.	
3(a)(i)	less than 7;	Almost all candidates understood that acids have a phof less than 7. However, only a handful of candidates remembered that organic acids and acids found in food are weak, therefore, their pH should not fall below 3.
(11)	colour of orange drink obscures indicator colour ; OWTTE	This question required candidates to understand that fruit juices are coloured and will interfere with the reading of the colours given by the Universal Indicator.
(b)	Award 1 mark for the following correct points [Max 3] Chromatography; Apply orange drink to chromatography paper / Use of solvent; Comparison of spot heights or R _f value with E numbers and / or carotenes; Award 1 mark for conclusion spots should not have the same R _f value as E numbers /	Many candidates incorrectly assumed that having one component indicates that only natural colours are present. Very good candidates were able to conclude that the R _f values of artificial / natural colours should be compared with the colouring in the orange juice.
4(a)	ORA; One mark each for any 5 of: Protons in the nucleus / centre (of the atom)	This question was extremely well answered. Most candidates
TO SOLUTION IN THE SOLUTION IN	 Neutrons in the nucleus / centre (of the atom) Electrons outside the nucleus / electrons surrounding the nucleus / electrons orbiting the nucleus 9 protons 9 electrons 10 neutrons 	were awarded the maximum number of marks. Very good candidates went on to describe the arrangement of electrons in an atom of Fluorine. Some candidates made a careless mistakes of stating that there are 2 valence electron shells instead of 2 electron shells.
(b)	Any suitable e.g. treating cancer / checking thyroid function / tracer (in the body);	Many candidates gave incorrect answers of x-ray, without specifying the use of radioactive isotopes as tracers. Many candidates showed confusion

		between radiation (x-ray) and radioactive isotopes.
(c)	Uranium (circle) ;	This question was
5(a)(i)	Any 1 from: more Cl - in A more HCO ₃ - in A more Ca ²⁺ in A more Na ⁺ in B more K ⁺ in B more SiO ₃ ²⁻ in B more Mg ²⁺ in B	Candidates scored well for this question.
(ii)	ORA 1.5 mg ;; (100/1000) x 15 ; OR 0.1 x 15 ;	Most candidates scored full marks for this question.
(b)		
(c)(i)		Most candidates understood that acidic oxides react with bases but did not mentioned that acidic oxides will not reactive with acids.
(ii)	High melting point (no marks) Strong covalent bonds / many covalent bonds in a giant covalent molecule; High amount of (heat) energy required to overcome the bonds;	This question is poorly done, with many candidates mistaking that silicon dioxide exists as a simple covalent molecule.

6(a)(i)	repeat experiment without indicator ; using same quantity / volume of acid ;	Most candidates lost marks due to the incorrect use of amount instead of volume of acid;
T Tolkie de	Full credit should include same volume of lithium hydroxide.	
(ii)	add magnesium metal / carbonate / oxide / hydroxide to (hot) (hydrochloric) acid; condition: until in excess or no more dissolves or reacts; condition: filter (to remove unreacted solid);	Candidates who did not do well in this question either misread the question or mistook magnesium chloride to be an insoluble salt.
(b)	number of moles of HCl = $0.020 \times 2.20 = 0.044$ number of moles of LiOH = 0.044 ; concentration of LiOH = $0.044 / 0.025 = 1.76$ (mol/dm³);	Almost all candidates were awarded 2 marks for these questions.
	Correct answers scores 2 marks immediately.	
(c)	(for LiCl.2H ₂ O) Mass of one mole = 78.5; Percentage water = 36 / 78.5 x 100 45.9 so is LiCl.2H ₂ O only award the marks if marker can follow the reasoning and it gives 45.9% of water note: if correct option given, mark this and ignore the rest of the response.	
	Allow: max 2 for applying a correct method to another hydrate, [1] for the method and [1] for the correct value, working is ESSENTIAL	

7(a)(i)	C sulfur;	Common incorrect answers
(/(/		were Selenium
<u></u> .,	[lg] S	
(ii)	730 kJ mol ⁻¹ ;	
	[R] missing unit	
(b)	First ionisation energy increases across a period;	Penalise units if not written (once)
	Reference to Fig. 9.1;	Most candidates who scored well here quoted data from Fig. 7.1
(c)(i)		This question was well answered. There are a handful of candidates who identified the wrong period, hence, full credit could not be awarded.
(ii)	outermost electron is further from the positively charged nucleus / more fully filly inner shells; (electrostatic) attraction weaker / less effective;	Most candidates understood the principle that electrons further from the nucleus will experience a weaker force of attraction. However many candidates negate their marks by incorrectly referring to the electron shells rather than on the valence electrons. A handful of candidates also incorrectly mentioned atoms having multiple valence electron shells.
(d)	As reactivity increases, the first ionisation energy decreases; from 520 (kJ mol ⁻¹) to 490	Candidates who scored well in this question were able to relate the increasing reactivity of Group I elements down the group. However, similar to question (b), many candidates lost marks due to non-reference to the Fig / not quoting data.

	The state of the s	
8(a)(i)	diagram: shows solid state criteria for mark: at least 3 layers of particles very closely packed ccupies more than 50% of space provided particles of the same / similar size arrangement: very closely packed and vibrating; movement: vibrate in fixed position;	
(ii)	the sample is impure ;	Almost all candidates answered this question correctly.
(b)	any 3 from: □ diffusion □ particles move / motion of particles □ (movement is) random / in any direction / in all directions □ particles spread out / particles mix □ particles move from high to low concentration	
(c)	red;	
(d)	H ⁺ ion / hydrogen ion ; $H_2SO_4(aq) \rightarrow 2H^+(aq) + SO_4^{2-}(aq) ;$	Candidates did not identify the ion responsible for the acidic properties of sulfuric acid Candidates found this equation challenging.
9(a)	regular arrangement / repeating pattern NOT structure ; condition: ions ; [R] molecules / atoms	This question was extremely poorly answered. Many candidates referred to molecules / atoms when it was indicated in the question that "ions are held in lattice".
(b)	delocalised / mobile / free / sea of electrons ; positive ions / cations ; [R] atoms / protons / nuclei	Common incorrect answers include describing the forces of attraction as intermolecular, describing the nuclei as an atom.

	electrostatic attraction between these electrons and ions;	
(c)	giant covalent	
	no ions ;	
	no delocalised / free / mobile / sea of electrons or all electrons;	
	ionic	
	in ionic solid ions cannot move / not mobile / fixed position ; [R] no ions or no mobile ions	
	liquid ionic compound ions can move / mobile ;	
	metallic	
	(both solid and liquid) metals have delocalised (or alternative term) electrons;	