•		
•		
		 -
•	• •	
•	• •	
•	• •	
		 -

NANYANG JUNIOR COLLEGE JC2 PRELIMINARY EXAMINATION

Higher 1

MATHEMATICS

Paper 1

8865/01

10 September 2018

3 hours

Additional Materials:	Cover Page
	Answer Paper
	List of Formulae (MF26)

READ THESE INSTRUCTIONS FIRST

Write your name and class on all the work you hand in.

Write in dark blue or black pen on both sides of the paper.

You may use a HB pencil for any diagram or graph.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer **all** the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

You are expected to use a graphic calculator.

Unsupported answers from a graphic calculator are allowed unless a question specifically states otherwise.

Where unsupported answers from a graphic calculator are not allowed in a question, you are required to present the mathematical steps using mathematical notations and not calculator commands.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

Section A: Pure Mathematics [40 marks]

1 David went to a seafood restaurant on three different days to eat lobster, fish and crab. He observed that the price per kilogram of lobster and fish remained constant for all his three visits and the price per kilogram of crab was the same for his first two visits but increased by 20% on his third visit. In addition, the restaurant gave a fifty dollars discount for any bill exceeding \$400. The mass of lobster, fish and crab that he ordered as well as the bill before discount for each visit are shown in the table below.

	First visit	Second visit	Third visit
Lobster (kg)	3.20	4.50	5.60
Fish (kg)	1.50	1.20	2.00
Crab (kg)	6.00	5.20	4.80
Bill before discount (\$)	289.39	309.43	422.76

Find the price per kilogram of lobster, fish and crab during his first visit to the restaurant. [4]

2 The volume of a solid sphere is decreasing at a constant rate of $2 \text{ cm}^3 \text{ s}^{-1}$. Find the rate of change of its total surface area when its radius is 2 cm. [4] [It is given that the surface area of a sphere is $4\pi r^2$ and the volume of a sphere is $\frac{4}{3}\pi r^3$, where *r* is the radius of the sphere.]

3 (a) Differentiate
$$\frac{(e-e^{-x})^2}{e^x}$$
 with respect to x. [3]

(**b**) Find
$$\int \frac{2}{\sqrt{5x-2}} dx$$
, simplifying your answer. [2]

4 The curve *C* has equation $y = e^{-2x+3}$.

- (i) Sketch the graph of *C*, stating the exact coordinates of any points of intersection with the axes and the equations of any asymptotes. [2]
- (ii) Find the equation of the tangent to *C* at the point x = 1, giving your answer in the form y = mx + c, where *m* and *c* are exact constants to be determined. [3]
- (iii) This tangent meets the *x*-axis at x = p. Find the exact area of the region bounded by *C*, the tangent, the line x = 2 and the *x*-axis. [4]
- (iv) Find the range of values of k for which C and $y = \frac{1}{k}e^{-x+3} e^3$ do not intersect. [4]

Question 5 is printed on the next page

A cardboard, with negligible thickness, is in the shape of a square with side 20 cm. The shaded portions are to be cut off the cardboard and the remaining cardboard will be folded into a box with a top as shown in the diagram above. The volume of the box is $V \text{ cm}^3$.

- (i) Show that $V = 2w^3 40w^2 + 200w$. [2]
- (ii) Given that *w* can vary, using differentiation, find the exact length of *w* when the volume of the box is a maximum.

A company manufactures the box for sandwiches and sells x (in thousands) of them per month. The monthly revenue \$*R* is given by the equation $R = 10x - \frac{x^2}{10}$.

(iii) Sketch the graph of R against x, stating the coordinates of the intersections with the axes.

[2]

(iv) State the maximum monthly revenue of the company and the number of sandwich boxes they must sell to achieve it. [2]

In addition, the monthly cost \$*C* in producing *x* sandwich boxes (in thousands) is given by the equation C = 50 + 2x.

- (v) Denoting the monthly profit receives by the company monthly be *P*, find an equation relating *P* and *x*.
- (vi) Justify whether maximum revenue and profit can be achieved at the same time by producing the same number of sandwich boxes. [2]

Section B: Statistics [60 marks]

6	Find the number of different arrangements of the eleven letters in the word
	'PERSONALITY' if the arrangements are such that
	(i) P, E and R are together, [2]
	(ii) S, O and N are separated, [2]
	(iii) P, E and R are together or S, O and N are separated. [3]
7	A manufacturer produces balloons of which 40% are oval and 60% are round. 20 balloons
	are randomly selected and packed into a packet.
	(i) In a randomly selected packet of balloons, find the probability that
	(a) 14 of them are round, [1]
	(b) at least half of them are round. [2]
	(ii) 6 packets of balloons are randomly selected. Find the probability that less than 4 of
	them have at least half of the balloons that are round. [2]
	(iii) Instead of packing 20 balloons into one packet, the manufacturer decides to pack 80
	balloons into one packet. 60 packets of balloons are randomly selected. Find the
	probability that on average, at most 49 balloons are round. [3]

Question 8 is printed on the next page

8 A recent study done on the graduates from *SSS* University aims to explore the relationship between their final grade point average (GPA) and their starting salaries. The starting salaries, *y* thousand dollars, of a random sample of 8 graduates from the university with GPA *x* are given in the following table.

x	3.2	4.8	2.3	3.6	1.8	4.5	2.7	3.4
у	4.1	5.2	3.5	4.3	3.2	5.8	3.4	4.7

- (i) Give a sketch of the scatter diagram of the data. [2]
- (ii) Find the product moment correlation coefficient and comment on its value in the context of the data.
- (iii) Find the equation of the regression line of y on x in the form y = ax + b. Sketch this line on your scatter diagram. [2]
- (iv) Use the equation of your regression line to calculate an estimate of the starting salary for a graduate who have a GPA of 4.2. State two reasons why you would expect this to be a reliable estimate.
- 9 A bag contains 3 red balls and 7 blue balls. Whenever a red ball is drawn, it will be replaced in the bag and whenever a blue ball is drawn, it is not replaced. 3 balls are drawn one after another. Construct a probability tree showing this information. [2]
 Find the probability that [1]
 (i) all the balls are blue, [1]
 - (ii) at least one of the balls is blue,
 (iii) exactly two of the balls are blue.
 (2]
 (2]
 (2]
 (2]
 (2]
 (2]
 (2]
 (3]

6

10 The mean mass of cereal in a packet is printed as 475 grams on its packaging. The manager suspects that the mean mass may not be 475 grams. He took 30 randomly chosen packets and measured their mass and the data is summarized as follows.

$$\sum x = 14127$$
, $\sum x^2 = 6655913$

- (i) Find the unbiased estimates of the population mean and variance. [2]
- (ii) Test at the 5% significance level whether the manager's suspicion is correct. [5]
- (iii) State, with a reason, whether it is necessary to assume the mass of cereal in a packet has a normal distribution. [1]
- (iv) The manager now wants to change the mean mass printed on the packaging to *m* grams. Based on the sample above and using 5% significant level, find the maximum mean mass in grams (to the nearest whole number) that should be printed so that it will not overstate the actual mass of the cereal.
- Every morning, a student needs to reach the bus stop at 7:30am to catch a bus to school. If he reaches school after 8:00am, he will be considered late. Assume that the waiting times for a bus is normally distributed with mean 8 minutes and variance 5 minutes², and the duration of the bus journey is normally distributed with mean 20 minutes and variance 4 minutes².
 - (i) On a randomly chosen day, find the probability that he will be late for school. [3]
 - (ii) In 20 days, what is the expected number of days he will be late for school? [1]
 - (iii) In order to reduce the probability of him being late for school, he has to reach the bus stop earlier than 7:30am. Find the latest time he needs to reach the bus stop for this probability to be less than 0.01. [3]
 - (iv) Find the probability that the mean time taken to travel from the bus stop (including waiting for the bus) to school in 40 days is between 28 and 29 minutes.
 - (v) Bus fare is charged at \$0.085 per minute. Find the probability he has to pay more than \$8.60 for 5 days. [3]

Solutions

1	Let x , y and z be the price per kilogram of the lobsters, fish and crabs	B1: define x, y, z
	respectively during his first visit.	M1: 2 out of 3
	3.20x + 1.50y + 6.00z = 289.39	equations
	4.50x + 1.20y + 5.20z = 309.43	correct
	5.60x + 2.00y + 4.80(1.2z) = 422.76 - 50	equations
	Using GC,	correct
	x = 34.70, y = 12.90, z = 26.50	A1
2	Let V, A, r be the volume, total surface area, radius of the hemisphere	
	respectively.	
	Given that $\frac{dV}{dt} = -2$, find $\frac{dA}{dt}$ when $r = 2$.	M1: for
	$V = \frac{4}{3}\pi r^3 \implies \frac{\mathrm{d}V}{\mathrm{d}r} = 4\pi r^2$	$\frac{\mathrm{d}V}{\mathrm{d}r} = 4\pi r^2$
	Since $dV = dV dr$	
	Since, $\frac{dt}{dt} = \frac{dr}{dr} \frac{dt}{dt}$	
	$-2 = 4\pi(2)^2 \frac{\mathrm{d}r}{\mathrm{d}t}$	
	$\frac{\mathrm{d}r}{\mathrm{d}r} = -\frac{1}{\mathrm{d}r}$	M1: for
	$dt = 8\pi$	$\frac{\mathrm{d}r}{\mathrm{d}r} = -\frac{1}{\mathrm{d}r}$
	To find $\frac{dA}{dt}$:	$dt = 8\pi$
	$A = 4\pi r^2$	
	$\frac{\mathrm{d}A}{\mathrm{d}A} = 8\pi r$	M1: for
	dr	dA one
	From $\frac{dA}{dt} = \frac{dA}{dt} \frac{dr}{dt}$	$\frac{1}{\mathrm{d}r} = 8\pi r$
	dt dr dt	
	$\left \frac{dA}{dt} = 8\pi(2) \left(-\frac{1}{8\pi} \right) \right = -2 \text{ cm}^2 \text{s}^{-1}$	A1: for correct
	Hence, the surface area is decreasing at the rate of 2 cm ² s ⁻¹ when $r = 2$ cm.	answer $\frac{dA}{dA} = -2$
		answer $\frac{dt}{dt} = -2$
3	(a)	
	$d \left(e - e^{-x}\right)^2$	
	$\frac{1}{dx} \frac{1}{e^x}$	
	$= \frac{d}{d^{2}} \frac{e^{2} - 2e^{1-x} + e^{-2x}}{e^{2x}}$	M1: expanding
	$dx e^x$	M11::-1:.
		IVIT: alviding

This document consists of **7** printed pages.

	$=\frac{d}{dx}(e^{2-x}-2e^{1-2x}+e^{-3x})$	correctly
	$dx = -e^{2-x} + 4e^{1-2x} - 3e^{-3x}$	A1
	(b) $\int \frac{2}{\sqrt{5x-2}} dx$ $= 2 \int (5x-2)^{-\frac{1}{2}} dx$ $= 2 \frac{(5x-2)^{\frac{1}{2}}}{\frac{1}{2}(5)} + C$ $= \frac{4}{\sqrt{5x-2}} + C$	M1: for integrating correctly A1
4	(a)(i) $(0,e^3)$ y=0 x	B1: shape of the graph (must cut the <i>y</i> axis) B1: equation of the asymptote and coordinates of <i>y</i> -intercept.
	(ii) $y = e^{-2x+3}$ $\frac{dy}{dx} = -2e^{-2x+3}$ When $x = 1$, $y = e$ $\frac{dy}{dx} = -2e$ $y - e = -2e(x-1)$ $y = e - 2e(x-1)$ $= -2ex + 3e$ (iii)	M1: differentiate M1: correct values of y and $\frac{dy}{dx}$ A1
	y = -2ex + 3e When $y = 0, x = p$	M1: $p = \frac{3}{2}$

	2ep = 3e	
	$p = \frac{3}{2}$	
	1 2 1(2)	
	$\int_{1}^{2} e^{-2x+3} dx - \frac{1}{2} \left(\frac{3}{2} - 1 \right) (-2e + 3e)$	M1: integration
	$\begin{bmatrix} 2 & 2 \\ -2x+3 \end{bmatrix}^2$ 1 (1)	and find the area
	$= \left \frac{e^{-ax}}{-2} \right - \frac{1}{2} \left(\frac{1}{2} \right) (e)$	of triangle
	$\begin{bmatrix} -2 \\ -1 \end{bmatrix}_{1} 2 (2)$	M1: substituting
	$=-\frac{e}{2}+\frac{e}{2}-\frac{e}{4}$	the correct
		limits
	$=-\frac{1}{2e}+\frac{1}{4}$	A1
	(b) For the 2 curve to intersect	
	2x+3 1 $x+3$ 3	
	$e^{-2x+3} = -\frac{e^{-x+3}}{k} - e^{3}$	
	$k\mathrm{e}^{-2x}\mathrm{e}^3 = \mathrm{e}^{-x}\mathrm{e}^3 - k\mathrm{e}^3$	
	$k\mathrm{e}^{-2x} = \mathrm{e}^{-x} - k$	M1: equate and
	Let $y = e^{-x}$	simplify them
	$ky^2 - y + k = 0$	M1: form
	For y to have no solution so that they don't intersect	equation M1:
	1 - 4(k)(k) < 0	Discriminant <
	(1-2k)(1+2k) < 0	0
	$k < -\frac{1}{2} or k > -\frac{1}{2}$	A1: for both
5	(i) V = (20 - 2w)(10 - w)w	M1: longth y
	(v - (20 - 2w)(10 - w)w) - 2(10 - w) ² w	breadth
	$= 2(100 - 20w + w^{2})w$	M1· algebraic
	$= 200w - 40w^2 + 2w^3$	manipulation
	(ii)	AG M1: correct
		differentiation
		M1: find the 2 w
		Turn over
NY.	JC H1 J2 PRELIMINARY EXAMINATION 2018	8865/01

$\frac{\mathrm{d}V}{\mathrm{d}w} = 6w^2 - 80w + 200$	
$\frac{dV}{dV} = 0$	
dw contraction of the second sec	B1 [·] testing for
$6w^2 - 80w + 200 = 0$	one of the w
$3w^2 - 40w + 100 = 0$	values with
(3w-10)(w-10) = 0	correct conclusion.
$w = \frac{10}{3}$ or $w = 10$	
When $w = \frac{10}{3}$,	B1: testing of the other w
$W = \left(\frac{10}{2}\right)^{-} \left(\frac{10}{2}\right)^{+}$	value.
	4.1
Gradient +ve 0 -ve	AI
Hence, when $w = \frac{10}{3}$, it will give a maximum volume.	
When $w = 10$,	
w $(10)^ 10$ $(10)^+$	
Gradient -ve 0 +ve	
Hence, when $w = 10$, it will give a minimum volume.	
Therefore, $w = \frac{10}{10}$.	
3	
(111)	D1: shape only
(111)	$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{pmatrix} (11) \\ R \\ \end{pmatrix} \qquad \qquad$	B1: shape only 1 st and 4 th Quadrant
(111) $R \downarrow \qquad $	B1: shape only 1^{st} and 4^{th} Quadrant B1: two x-
(111) $R \downarrow \qquad $	B1: shape only 1^{st} and 4^{th} QuadrantB1: two x-intercepts
(111) $R \uparrow \qquad $	B1: shape only 1^{st} and 4^{th} Quadrant B1: two x- intercepts coordinates. (in first quadrant)
(111) $R \uparrow \qquad $	B1: shape only 1^{st} and 4^{th} Quadrant B1: two x- intercepts coordinates. (in first quadrant)
(111) $R \uparrow \qquad $	B1: shape only 1^{st} and 4^{th} Quadrant B1: two x- intercepts coordinates. (in first quadrant)
(111) R	B1: shape only 1^{st} and 4^{th} Quadrant B1: two <i>x</i> - intercepts coordinates. (in first quadrant)
(111) R	B1: shape only 1^{st} and 4^{th} Quadrant B1: two <i>x</i> - intercepts coordinates. (in first quadrant)
	B1: shape only 1^{st} and 4^{th} Quadrant B1: two <i>x</i> - intercepts coordinates. (in first quadrant)
	B1: shape only 1^{st} and 4^{th} Quadrant B1: two x- intercepts coordinates. (in first quadrant)
(iii) R (0,0) (0,100) x	B1: shape only 1^{st} and 4^{th} Quadrant B1: two x- intercepts coordinates. (in first quadrant)
(iii) R (0,0) (0,100) R (0,100) (0,100)	B1: shape only 1 st and 4 th Quadrant B1: two <i>x</i> - intercepts coordinates. (in first quadrant)
(iii) $R \left[\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	B1: shape only 1 st and 4 th Quadrant B1: two <i>x</i> - intercepts coordinates. (in first quadrant)
(iii) R R (0,0) (0,10	B1: shape only 1 st and 4 th Quadrant B1: two <i>x</i> - intercepts coordinates. (in first quadrant) B1 B1 B1
(iii) R I I I I I I I I	B1: shape only 1 st and 4 th Quadrant B1: two <i>x</i> - intercepts coordinates. (in first quadrant) B1 B1 B1
(iii) R (0,0) (0,0) (0,10) (0,100) (0	B1: shape only 1 st and 4 th Quadrant B1: two <i>x</i> - intercepts coordinates. (in first quadrant) B1 B1 B1

	$P = 10x - \frac{x^2}{10} - (50 + 2x)$	
	x^2 50	B1
	$=8x - \frac{10}{10} - 50$	
	(vi)	
	$P = 8x - \frac{x^2}{10} - 50$	
	dP r	
	$\frac{dt}{dx} = 8 - \frac{x}{5}$	
	For maximum profit, $\frac{dP}{dx} = 0$	
	$8 - \frac{x}{5} = 0$	
	x = 40	
		B1
	Maximum profit happens when the company has to produce 40 000 boxes.	
	maximum revenue and produce 40 000 sandwich boxes to attain maximum	B1 (for
	profit, the level of production is not the same to produce maximum revenue	explaining the
(and maximum profit.	not the same)
6	(1) No. of ways = $3! 9! = 2177280$	MIAI
	(ii) No. of ways = $8! {}^{9}C_{3} 3! = 20 321 280$	M1 A1
	(iii) No. of ways where P, E and R are together and S, O and N are	
	separated = $3! 6! {}^{7}C_{3} 3! = 907 200$	M1
	\therefore No. of ways P, E and R are together or S, O and N are separated	
	= No. of ways P, E and R are together + No of ways S, O and N are	
	separated – No. of ways where P, E and K are together and S, O and N are separated	
	$= 2\ 177\ 280 + 20\ 321\ 280 - 907\ 200 = 2\ 1591\ 360$	
		M1 A1
7	(i)(a) Let X be the random variable denoting the number of balloons out of 20 that	
	are round.	
	$X \sim B(20, 0.6)$	
	P(X=14) = 0.12441 = 0.124	B1
	(i)(b) $P(V \ge 10)$	
	$P(X \ge 10)$	
	$=1-P(X\leq 9)$	M1
	= 0.87249	A 1
	= 0.872	AI
	(μ) Let Y be the random variable denoting the number of packets out of 6 with at	
l		l

	least half of the balloons round.	
	$Y \sim B(6, 0.87249)$	
	P(Y < 4)	N (1
	$= P(Y \leq 3)$	MII
	= 0.030738	
	= 0.0307	Al
	Let W be the random variable denoting the number of balloons (in a packet) out of 80 that are round	
	$W \sim B(80, 0.6)$	
	$\overline{W}_{1} = W_{1} + W_{2} + \ldots + W_{60}$	
	$W = \frac{1}{60}$	D1. CLT
	Since $n = 60$ is large, by Central Limit Theorem,	BICLI
	$\overline{W} \sim N(80(0.6), \frac{80(0.6)(0.4)}{0})$ approximately.	M1: correct
	60 60	expectation and
	$P(W \le 49)$	variance
	= 0.96145	
	= 0.961	
0		Al
8	(1), (111) $y_{7\uparrow}$	(1) B1: axes and
	65	appropriate
	y = 0.837x + 1.52	scale
	5.5 ×	B1: correct data
	5- ×	points
	4.5	(iii)
	3.5	B1: regression
	3 ×	line y on x
	2.5	
	2.	
	12	
	1-	
	05- 	
	0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 **	
	(ii)	B1: correct r
	r = 0.936 As the GPA increases, the starting solary increases in a strong linear	value
	correlation	B1: comment on
		<i>r</i> value
	(iii) $y = 0.837x + 1.52$	B1: correct
	(iv)	equation B1: correct
	v = 0.837(4.2) + 1.52 = 5.0354	answer
	Starting salary = $$503540$	B1
L		[Turn over

	P(exactly two of the balls are blue) = P(RBB) + P(BRB) + P(BBR)	
	$= \left(\frac{3}{10} \times \frac{7}{10} \times \frac{6}{9}\right) + \left(\frac{7}{10} \times \frac{3}{9} \times \frac{6}{9}\right) + \left(\frac{7}{10} \times \frac{6}{9} \times \frac{3}{8}\right)$	M1
	$=\frac{847}{1800}$ or 0.471 (to 3 sig fig)	A1
	(iv)	
	P(the first ball drawn is blue exactly 2 of the 3 balls drawn are blue)	
	$= \frac{P(\text{the first ball drawn is blue AND exactly 2 of the 3 balls drawn are blue})}{P(\text{exactly 2 of the 3 balls drawn are blue})}$	
	$= \frac{P(BRB)+P(BBR)}{P(exactly 2 of the 3 balls drawn are blue)}$	
	$-\left(\frac{7}{10}\times\frac{3}{9}\times\frac{6}{9}\right) + \left(\frac{7}{10}\times\frac{6}{9}\times\frac{3}{8}\right)$	M1: numerator
	<u> </u>	WIT. Humerator
	1800	M1:denominator
	$=\frac{85}{121}$ or 0.702	A1
10	(i) n = 30,	
	$\overline{x} = \frac{\sum x}{n} = \frac{14127}{30} = 470.9 = 471$ (to 3 sig. fig)	B1
	$s^{2} = \frac{1}{n-1} \left(\sum x^{2} - \frac{\left(\sum x\right)^{2}}{n} \right) = \frac{1}{29} \left(6655913 - \frac{\left(14127\right)^{2}}{30} \right) = 120.99 = 121 \text{ (to 3)}$	B1
	sig fig)	
	(b)	
		1

Let μ denote the population mean mass of packets of cereals	
<i>H</i> ₀ : $\mu = 475$	M1:Test & Definition
<i>H</i> ₁ : $\mu \neq 475$	
Under H_0 , $\overline{X} \sim N\left(475, \frac{120.99}{30}\right)$ by Central Limit Theorem. $Z = \frac{\overline{X} - 475}{\sqrt{\frac{120.99}{30}}} \sim N(0, 1)$	M1: For Correct values
At 5% significant level, reject H_0 if <i>p</i> -value ≤ 0.05	M1: rejection level
Using GC, <i>p</i> -value = $0.041192 \le 0.05$ Reject H ₀ and conclude that 5% significance level, there is sufficient	A1: for p value
evidence to suggest that the manager's suspicion is correct, i.e. a packet of	
cereal may not be 475 grams.	M1:Conclusion
(c) It is not necessary to assume that the weight of packets of cereals have a normal distribution because the sample size is large, the distribution of the sample mean is approximately normal by the Central Limit Theorem.	B1
(d) $H_0: \mu = m$ $H_1: \mu < m$ Under $H_0, \overline{X} \sim N\left(m, \frac{120.99}{30}\right)$ by Central Limit Theorem.	M1: Test
$Z = \frac{\overline{X} - m}{\sqrt{\frac{120.99}{30}}} \sim N(0,1)$ At 1% significant level, reject H_0 if <i>p</i> -value ≤ 0.05	M1: Statement
Since we do not want to reject H_0	
$P(\overline{X} \le 470.9) \ge 0.05$	M1:Correct p formula
$P(Z \le \frac{120.99}{\sqrt{\frac{120.99}{30}}}) \ge 0.05$ $\frac{470.9 - m}{\sqrt{120.99}} \ge -1.64485$	M1: standardizing
$\sqrt{\frac{30}{30}}$	A1: Correct InvNorm

	$m \leq d$	474.2	
	The	A1	
11	(i)	Let W and J denote the average waiting time and journey time	
		W: N(8,5)	
		J: N(20,4)	
		Let T denote the sum of the waiting and journey time	
		T: N(28,9)	B1
		P(T > 30) = 0.25249 = 0.252 (to 3 sig fig)	M1, A1
	(ii)	Expected number of days late = $20 \times 0.25249 = 5.05$ (to 3 sig fig)	A1
	(iii)	Let t be the time that is exceeded by less than 1% of his waiting and	
		journey time	
		P(T > t) < 0.01	M1
		P(T < t) > 0.99	
		<i>t</i> > 34.98	A1
		To nearest minutes $t = 35$ minutes	
		So the latest time he can be at the bus stop is 7:25am if he is to have	A 1. 7.25am
		less than 1% chance of being late.	//////////////////////////////////////
	(:)	\overline{L} at \overline{T} he the mass term line time for 40 days	
	(1V)	Let <i>I</i> be the mean traveling time for 40 days	
		\overline{T} : N(28, $\frac{9}{40}$)	B1
		$P(28 < \overline{T} < 29) = 0.48249 = 0.482$ (to 3 sig fig)	A1
	(v)	Let <i>F</i> denote the bus fare per day so $F = 0.085J$	
		$F: N(0.085 \times 20, 0.085^2 \times 4)$	M1
		F: N(1.7, 0.0289)	
		For 5 days $F_1 + + F_5$: N(8.5, 0.1445)	M1
		$P(F_1 + + F_5 > 8.6) = 0.39625 = 0.396$ (to 3 sig fig)	A1