

EUNOIA JUNIOR COLLEGE JC2 PRELIMINARY EXAMINATIONS 2021 General Certificate of Education Advanced Level Higher 2

PHYSICS

9749/01

Paper 1 Multiple Choice

22 September 2021

1 hour

Additional Materials: Multiple Choice Answer Sheet

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

Do not use paper clips, glue or correction fluid.

Write your name, civics group and registration number on the Answer Sheet in the spaces provided.

There are thirty questions on this paper. Answer all questions. For each question there are four possible answers A, B, C and D.

Choose the one you consider correct and record your choice in soft pencil on the separate Answer Sheet.

Read the instructions on the Answer Sheet very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this booklet.

The use of an approved scientific calculator is expected, where appropriate.

This document consists of 18 printed pages and 0 blank page.

speed of light in free space,	С	=	$3.00 \times 10^8 \; m \; s^{-1}$
permeability of free space,	μ_{\circ}	=	$4\pi\times10^{-7}~H~m^{-1}$
permittivity of free space,	٤٥	=	$8.85 \times 10^{-12} \; F \; m^{-1}$
			$(1/(36 \ \pi)) \times 10^{-9} \ F \ m^{-1}$

elementary charge, $e = 1.60 \times 10^{-19} \text{ C}$ the Planck constant, = $6.63 \times 10^{-34} \text{ J s}$ unified atomic mass constant, $u = 1.66 \times 10^{-27} \text{ kg}$ $m_{\rm e} = 9.11 \times 10^{-31} \, \rm kg$ rest mass of electron, rest mass of proton, $1.67 \times 10^{-27} \text{ kg}$ molar gas constant, = 8.31 J K⁻¹ mol⁻¹ the Avogadro constant, = $6.02 \times 10^{23} \text{ mol}^{-1}$ the Boltzmann constant, $k = 1.38 \times 10^{-23} \text{ J K}^{-1}$

gravitational constant, $G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$ acceleration of free fall, $g = 9.81 \text{ m s}^{-2}$

Formulae

uniformly accelerated mo	tion.
--------------------------	-------

$$s = ut + \frac{1}{2}at^2$$

$$v^2 = u^2 + 2as$$

$$W = \rho \Delta V$$

$$p = \rho gh$$

$$\phi = -\frac{Gm}{r}$$

$$T/K = T / ^{\circ}C + 273.15$$

$$\rho = \frac{1}{3} \frac{Nm}{V} \langle c^2 \rangle$$

$$E = \frac{3}{2}kT$$

$$x = x_0 \sin \omega t$$

$$v = v_0 \cos \omega t$$

$$= \pm \omega \sqrt{(x_o^2 - x^2)}$$

$$I = Anvq$$

$$R = R_1 + R_2 + ...$$

$$1/R = 1/R_1 + 1/R_2 + ...$$

$$V = \frac{Q}{4\pi\varepsilon_{o}r}$$

$$x = x_0 \sin \omega t$$

$$B = \frac{\mu_o I}{2\pi d}$$

$$B = \frac{\mu_o NI}{2r}$$

$$B = \mu_o nI$$

$$x = x_0 \exp(-\lambda t)$$

$$\lambda = \frac{\ln 2}{t_{\frac{1}{2}}}$$

1 A byte (b) comprises 8 bits.

How many bits are there in 2 terabytes (2Tb)?

- **A** 2×10^9
- $B = 16 \times 10^9$
- **C** 2×10^{12}
- $D \quad \cdot \quad 16\times 10^{12}$
- 2 The speed *v* of waves on a stretched wire is given by the equation

$$V = T^p \mu^q$$

where T is the tension in the wire and μ is the mass per unit length of the wire.

What are the values of p and q?

- ρ A $-\frac{1}{2}$
- q
- B --
- $\frac{1}{2}$
- $c = \frac{1}{2}$
- $-\frac{1}{2}$
- D $\frac{1}{2}$
- $\frac{1}{2}$
- A car moves to the right with uniform acceleration along a straight road. Oil leaks from the car at the rate of one drop every three seconds. The diagram shows the distances between three successive oil drops on the road.

What is the acceleration of the car?

- A $0.33 \,\mathrm{m \, s^{-2}}$
- B $0.66\,\mathrm{m\,s^{-2}}$
- C 1.2 m s⁻²
- **D** 2.0 m s^{-2}

4 A ball is dropped from rest and falls towards the ground. Air resistance is negligible.

Which graph shows the variation with speed of the height of the ball above the ground?

5 Three coplanar forces act on a block.

Which diagram shows the directions of the forces such that the block could be in equilibrium?

6 Liquid Q has twice the density of liquid R.

At depth x in liquid R, the pressure due to the liquid is 4 kPa.

At which depth in liquid Q is the pressure due to the liquid 9 kPa?

- A $\frac{8x}{9}$
- $B = \frac{9x}{8}$
- **C** 2*x*
- $D = \frac{18x}{4}$

A lift consisting of a passenger car supported by a cable runs over a light, frictionless pulley to a balancing weight. The balancing weight falls as the passenger car rises.

Some masses are shown in the table.

	mass/ kg
Passenger car	520
Balancing weight	800
passenger	80

What is the magnitude of the acceleration of the car when carrying just one passenger and when the pulley is free to rotate?

- $A = 0.14 \text{ m s}^{-2}$
- **B** 1.4 m s⁻²
- **C** 8.0 m s⁻²
- **D** 9.8 m s⁻²

A device for spraying paint consists of a box with its axes horizontal and vertical. One of its vertical faces contains small holes. Paint is fed into the box under pressure via a vertical tube and exits through the holes as fine streams moving horizontally.

The paint is ejected at a speed of 3.0 m s $^{-1}$ through 27 holes, each of area 0.4 mm 2 . The density of the paint is 900 kg m $^{-3}$.

What is the horizontal force required to hold the device stationary as it ejects the paint?

- **A** 21 mN
- B 29 mN
- C 44 mN
- **D** 87 mN

A rock R of mass $1.0 \times 10^{27}\,\mathrm{kg}$ is at a large distance from a star S and is travelling at a speed of $1.0 \times 10^4\,\mathrm{m\ s^{-1}}$. The star has mass $1.0 \times 10^{30}\,\mathrm{kg}$. The rock travels around the star on the path shown so that it reverses its direction of motion and, when finally at a large distance from the star again, has the same speed as initially.

Which statement is correct?

- A The change in the momentum of S is in the direction of arrow X.
- B The change in the velocity of S is approximately $20 \,\mathrm{m\,s^{-1}}$.
- C The magnitude of the change of momentum of R is 10³ times greater than the magnitude of the change of momentum of S.
- D The momentum of R does not change.

The force diagram shows an aircraft accelerating. At the instant shown, the velocity of the aircraft is 50 m s⁻¹.

At which rate is its kinetic energy increasing?

- A 2.4 MW
- **B** 12 MW
- **C** 15 MW
- D 25 MW

11 The diagram shows a 'ballistic pendulum'.

A pellet of mass m travelling at a speed u hits a stationary block of mass M. The pellet becomes embedded in the block and causes the block to move immediately after the impact.

What is the maximum height gained by the block after impact?

$$A = \frac{1}{2g}mu^2$$

$$\mathbf{B} = \frac{1}{2g}(M+m)u^2$$

$$C = \frac{1}{2g} \left(\frac{m}{M+m} \right) u^2$$

$$D = \frac{1}{2g} \left(\frac{mu}{M+m} \right)^2$$

A hydroelectric power station uses the gravitational potential energy of water to generate electrical energy.

In one particular power station, the mass of water flowing per unit time is 1.5×10^5 kg s⁻¹. The water falls through a vertical height of 140 m.

The electrical power generated is 100 MW. What is the efficiency of the power station?

- **A** 5.6%
- **B** 4.3%
- C 49%
- **D** 77%

A string passes through a smooth thin tube, with objects of masses *m* and *M* attached to its ends. The tube is swung so that the object with mass *m* travels in a horizontal circle of constant radius *r* at constant speed *v* as shown.

Which of the following expressions is equal to M?

- $A \qquad m\sqrt{1+\left(\frac{v^2}{rg}\right)^2}$
- $\mathsf{B} = \frac{m \mathsf{v}^2 \mathsf{r}}{g}$
- $\mathbf{C} = \frac{mv^2g}{r}$
- $\mathbf{D} = \frac{mv^2}{rg}$

14 Two isolated planets A and B have masses M_A and M_B respectively. Their centres are a distance D apart and they rotate with a uniform angular velocity ω about an axis which is perpendicular to the line joining their centres.

If the distance of planet A from the axis of rotation is R, which of the following does not give the expression for the centripetal force on planet B?

- $\frac{GM_AM_B}{D^2} \qquad \qquad \mathbf{B} \qquad \frac{GM_AM_B}{(D-R)^2} \qquad \qquad \mathbf{C} \qquad M_AR\omega^2 \qquad \qquad \mathbf{D} \qquad M_B(D-R)\omega^2$

A fixed mass of ideal gas undergoes changes of pressure and volume starting at L and ending at N, as shown.

Which graph shows how temperature changes with volume?

Temperature / K Μ Volume / m3

The diagram below shows the displacement-time graph for a system oscillating freely with 16 negligible damping.

D

The system is **now** placed in an environment with **significant** damping and set into oscillation. At time t = 0 s, the displacement of the object is 0 m. Which one of the following graphs best describes how the potential energy of the system varies with time?

Α

Potential energy /J

В

Potential energy /J

С

D

Potential energy /J

- 17 A wave of frequency 27 Hz travels at 48 m s⁻¹ through a medium.
 - What is the phase difference between two points 2.0 m apart?

There is no phase difference.

They are out of phase by a quarter of a cycle.

They are out of phase by one-eighth of a cycle.

They are out of phase by 0.78 of a cycle.

Α

В

D

							÷			
	,									
18		we waves X and Y hat Y is $2.0A_0$. The wav							$5A_0$ and the amplitude tant wave.	le
	Г-	r the resultant	ئىلمىمانىن	المستقمة مطلمة	maximu	m possib	ole intensit	.V _		
	го	r the resultant wave	, wnat i	is the ratio			le intensit			
•	Α	2.6	B 7		С	16		D	49	
40				-1-1 - 6		F00			N 1:55 W	
19	A ora	beam of monochroi	natic III oratino	gnt of wa Lisiplaced	velength 12 m aw	500 nm av from ti	is inciden Je screen	t no and	rmally on a diffraction the horizontal distant	on
	be.	tween the two secon	nd-orde	r maxima	is 1.5 m.	ay nonra	10 3010011	ana	the nonzontal distall	-
	W	nat is the number of	lines p	er millimet	ter of the	grating?				
	Α	530 lines per mm	1							
	В	625 lines per mm								
		•								
	С	1250 lines per m	m							
	D	1740 lines per m	m							
			-							
20			_			•••				
		nusical instrument is d is open and flared,			ong tube v	vith a mo	uthpiece a	at on	e end. The other	
	GII	л ю орон ани пагеи,	as sile	/V¥11.					ğ	
					·					
EJC 20	021		-	9749/01	I/J2H2PRELI	M/2021				
				www.testpa	apersfree.co	m				

A musician maintains stationary sound waves with a node at the mouthpiece and an antinode at the other end. The lowest frequency of sound that the instrument can produce is 80 Hz.

Which different frequencies of sound can be produced by the instrument?

- A 80 Hz, 160 Hz, 240 Hz
- B 80 Hz, 160 Hz, 320 Hz
- C 80 Hz, 240 Hz, 400 Hz
- D 80 Hz, 240 Hz, 480 Hz

The diagram shows a point charge situated at Y in front of an earthed metal sheet X. Two points P and Q are situated between X and Y and have electric field strengths E_P and E_Q respectively.

Which of the following expressions is correct?

- A $E_P = 0$
- $\mathbf{B} \qquad E_{\mathrm{Q}} = 0$
- C $E_0 > E_P$
- D $E_P > E_Q$
- A charged oil droplet of mass *m* is falling, initially freely, in a vacuum between two horizontal metal plates that are separated by a distance *x*.

A potential difference (p.d.) V is then applied across the plates. This results in the oil droplet continuing to accelerate downwards but with a reduced acceleration a.

The polarity of the applied p.d. is then reversed so that the direction of the electric force on the droplet is reversed. This results in the downwards acceleration of the oil droplet increasing to 5a.

What is the magnitude of the charge on the oil droplet?

- $A \quad \frac{max}{V}$
- $B 2 \frac{max}{V}$
- c $3\frac{max}{V}$
- D $4\frac{max}{V}$

A uniform copper rod of cross-sectional area 8.0 mm^2 has 8.2×10^{28} conduction electrons per cubic metre. A current flows through the rod when a potential difference of 3.0 V is applied across it.

Given that the drift velocity of electrons in the rod is 2.3×10^{-5} m s⁻¹, determine the resistance of the rod?

- Α 0.08 Ω
- B 0.16 Ω
- C 0.80 Ω
- **D** 1.2 Ω

24 A cell of negligible internal resistance is connected to a network of resistors and a voltmeter, as shown.

The reading on the voltmeter is zero.

What is the resistance of resistor R?

- $\mathbf{A} = 0 \Omega$
- **B** 2.40 Ω
- C 14.4 Ω
- **D** 72.0 Ω
- A long solenoid S has 15 turns per unit length. A circular loop of wire C is placed over S as shown in the diagram below. S and C are coaxial. A current I_S of 0.20 A is passed through S and a current I_C of 0.90 A is passed through C in the directions shown.

The radius of S is 0.80 m and the radius of C is 1.6 m.

What is the magnitude of the resultant magnetic flux density at the centre of C?

- A OT
- **B** 1.0×10^{-6} T
- **C** 3.4×10^{-6} T
- **D** $4.1 \times 10^{-6} \text{ T}$

A conducting rod slides at constant velocity *v* across an incomplete conducting square CDEF. The area bounded by the square is in a uniform magnetic field *B* that points directly out of the page.

How does the induced e.m.f. change as the rod slides from point C to F?

- A constant
- B increasing
- C first increasing, then decreasing
- D first decreasing, then increasing

27 An alternating sinusoidal supply is connected to a resistor.

How does the power that dissipates in the resistor change when the frequency of the alternating supply doubles?

- A Power drops to half the initial value.
- B Power stays the same.
- C Power doubles.
- D Power quadruples.

28 The diagram below shows some of the lowest energy levels for the hydrogen atom.

The atom is at is ground state.

-13.60 eV

Which of the following will result in excitation to the highest possible energy level?

- A A photon of energy 10.20 eV incident on the atom.
- B An electron of energy 11.50 eV colliding with the atom.
- C An electron with de Broglie wavelength of 3.50×10^{-10} m colliding with the atom.
- D A photon of wavelength 9.95×10^{-8} m incident on the atom.
- 29 The dots in the diagram below shows location of an electron detected at several intervals of time.

What is the order of magnitude of the minimum uncertainty in the determination of its momentum?

- A $10^{-12} \text{ kg m s}^{-1}$
- B 10⁻²⁴ kg m s⁻¹
- $C = 10^6 \, kg \, m \, s^{-1}$
- $D = 10^{10} \, \text{kg m s}^{-1}$

30 Electrons gain kinetic energy by accelerating through a large potential difference before striking the target metal to produce X-ray.

What is the percentage change to the minimum wavelength of the X-ray spectrum produced if the potential difference is reduced by half?

- A decrease by 25 %
- B decrease by 50 %
- **C** increase by 50 %
- D increase by 100 %

EUNOIA JUNIOR COLLEGE JC2 PRELIMINARY EXAMINATIONS 2021 General Certificate of Education Advanced Level Higher 2

PHYSICS

MARK SCHEME

9749/01

September 2021

Paper 1 Multiple Choice

Question	Key	Question	Key	Question	Key
1	D	6	В		
2	С	7	В	11	D
3	Α	8	D	12	С
4	С	9		13	Α
5	В	_	В	14	В
		10	С	15	D
16					··
	-	21	С	26	С
	-	22	В	27	В
	D	23	D		
	Α	24	D		
20	<u> </u>	25	С		
16 17 18 19 20	Ā	21 22 23 24	C B D		

Qn	Solution
no.	
1	2 Terabyte = 2×10^{12} bytes = $2 \times 10^{12} \times (8 \text{ bits}) = 16 \times 10^{12}$ bits
2	units of $v = units$ of $T^p \mu^q$
	$m s^{-1} = (kg m s^{-2})^p (kg m^{-1})^q$
	$m s^{-1} = kg^{p+q} m^{p-q} s^{-2p}$
	$-1 = -2p \rightarrow p = \frac{1}{2}$ $1 = p - q \rightarrow q = -\frac{1}{2}$
	$1 = p - q \longrightarrow q = -\frac{1}{2}$
3	$S = ut + \frac{1}{2}at^2$
	Considering first 2 points: $9.0 = u(3.0) + \frac{1}{2}a(3.0)^2 (1)$
	Considering first and third points: $21.0 = u(6.0) + \frac{1}{2}a(6.0)^2(2)$
	$(2)-2\times(1):3.0=\frac{1}{2}a\Big[(6.0)^2-2(3.0)^2\Big]$
4	Let <i>H</i> be to initial height and <i>h</i> be the height at time <i>t</i> .
DEJC 202	1

	$v^2 = u^2 + 2as$
	$v^2 = 2g(H - h)$
	$v^2 + 2gh = 2gH$
	$h = -\frac{1}{2g}v^2 + 2gH$
	$y = -k_1 x^2 + k_2$
	Hence it is a negative quadratic graph with vertical intercept k_2
5	When 3 non-parallel forces act on body, all 3 must intersect at a point to achieve rotational equilibrium.
	For option C, there is a resultant force with a rightward component and a downward component.
	For D, there is an anticlockwise moment due to the rightmost force about the centre of the block.
6	$P = h\rho g$
	$P_R = X \rho_R g = 4 (1)$
	$P_{Q} = h2\rho_{R}g = 9 (2)$
	$\frac{(2)}{(1)} = \frac{2h}{x} = \frac{9}{4}$
	$h = \frac{9}{8}X$
	8
7	$W_{balance} - T = m_{balance} a$
	(800)(9.81) - T = (800)a (1)
	$T - W_{car+man} = m_{car+man}a$
	T - (600)(9.81) = 600a (2)
	(1) + (2):
	(200)(9.81) = 1400a
	$a = 1.4 \text{ m s}^{-2}$
8	E N 42 (27)(000)(0.4 40-6)(2.0) ² 0.097 N
	$F = N\rho A v^2 = (27)(900)(0.4 \times 10^{-6})(3.0)^2 = 0.087 \text{ N}$
9	$p_i = p_f$
	$(1.0 \times 10^{27})(1.0 \times 10^4) - (1.0 \times 10^{30})u_s = (1.0 \times 10^{27})(-1.0 \times 10^4) + (-1.0 \times 10^{30})v_s$
	$v_s - u_s = 20$
-	

10	change in KE not work do
	- Het work done
	time time(net force)(displacement)
	-time
	= (net force) displacement time
	time
	= (net force)(velocity)
	$= (500 - 200) \times 10^{3} (50)$
	= 15 MW
ļ	
11	intitial momentum = final momentum
	mu = (M+m)v
	gain in GPE = loss in KE
	$(M+m)gh = \frac{1}{2}(M+m)v^2$
	/ 2
	$h = \frac{v^2}{2g} = \frac{1}{2g} \left(\frac{mu}{M+m} \right)^2$
	29 29 (M+III)
12	officional useful output
	efficiency = $\frac{\text{useful output}}{\text{input}} \times 100\%$
	$= \frac{\text{electrical power}}{\underline{mgh}} \times 100\%$
	t
	$=\frac{100 \text{ MW}}{100\%} \times 100\%$
	$=\frac{100 \text{ MW}}{\frac{m}{t}gh} \times 100\%$
	$= \frac{100 \text{ MW}}{1.5 \times 10^5 (9.81)(140)} \times 100\%$
	1.5 × 10° (9.81)(140)
12	= 49%
13	$\uparrow_{\mathcal{T}}$
	θ m
	M
	mg
	$igg\downarrow Mg$
	The horizontal company of the second
	The horizontal component of tension T provides the centripetal force.
	$T = Mg \dots (1)$
	$T \sin \theta = mg \dots (2)$
	$T\cos\theta = m\frac{v^2}{r}$ (3) Solving using $\sin^2\theta + \cos^2\theta = 1$, $M = m\sqrt{1 + \left(\frac{v^2}{rg}\right)^2}$
	$r = m - m - m - m = m / 1 + \left \frac{v}{m} \right $

Gravitational force on A and on B = $\frac{GM_AM_B}{D^2}$

For A:
$$\frac{GM_{A}M_{B}}{D^{2}} = M_{A}R\omega^{2}$$

For B:
$$\frac{GM_{A}M_{B}}{D^{2}} = M_{B}(D-R)\omega^{2}$$

Using Formula PV = nRT,
 It is observed that T_M is lowest, T_N is the highest.
 Using the same formula, T and V relationship between M and N is linear since P is constant.

16 There are 2 cycles of the potential energy variation in one period.

In the case of significant damping, the natural frequency of the system (or the frequency at which resonance occurs) would decrease. This means that the period of oscillation of the system will increase.

17 In terms of number of cycles,

phase difference =
$$\frac{\Delta x}{\lambda} = \frac{2.0}{v_f} = \frac{2.0}{48/27} = 1.125$$

Difference of 1.125 is the same as 0.125 of a cycle since the cycle repeats itself.

 $\frac{\text{maximum possible intensity}}{\text{minimum possible intensity}} = \left(\frac{\text{maximum possible amplitude}}{\text{minimum possible amplitude}}\right)^2$ $= \left(\frac{2.0A_0 + 1.5A_0}{2.0A_0 - 1.5A_0}\right)^2$ = 49

	5
19	$\tan \theta = 0.75 / 1.2$
	θ = 32.005°
	$d \sin \theta = n \lambda$
	$d = (2)(500 \times 10^{-9}) / \sin (32.005^{\circ})$
	$= 1.887 \times 10^{-3} \text{mm}$
	$d^{-1} = 529.9$
	= 530 lines per mm
ļ	
20	Fundamental: N A \rightarrow λ = 4L \rightarrow f = 80 Hz
	1 st overtone: NANA $\rightarrow \lambda = 4/3$ 1 \rightarrow f = 3 x 80 Hz = 240 Hz
	2 nd overtone: NANANA $\rightarrow \lambda = 4/5$ L $\rightarrow f = 5 \times 80$ Hz = 400 Hz
	000
21	Field lines are closer at Q
	compared to P, hence larger field
	strength at Q.
	P Q Y
	= X
_	
22	case 1:
	$W-F_E=ma$
	$W-q\frac{V}{x}=ma$
	$\frac{VV - Q - ma}{X}$
	2000 2
	case 2:
	$W + F_{E} = ma$
	l. V
	$W+q\frac{V}{u}=m(5a)$
	X
	(2) (1) 2 V
	(2) - (1): $2q\frac{V}{x} = 4ma$
	$q = 2\frac{\text{max}}{1}$
	V
23	
-23	I = nqvA
ĺ	= $(8.2 \times 10^{28})(1.6 \times 10^{-19})(2.3 \times 10^{-5})(8.0 \times 10^{-6})$ = 2.41 A
İ	Resistance of the rod = $V/I = 3.0/2.41 = 1.2 \Omega$
ļ	
+	
- <u></u> -	

-	24	Since there is no p.d. across the voltmeter, the p.d.s across 14.4Ω and 4.80Ω resistors are
1		the same.
		5.00 2.00
I		$\frac{1}{1000} = \frac{1}{1000}$

$$\frac{8.88}{R'} = \frac{2.88}{4.80}$$

$$R' = 12.0\Omega$$
Hence
$$\left(\frac{1}{R} + \frac{1}{14.4}\right)^{-1} = 12.0\Omega$$

$$R = 72.0\Omega$$

25
$$B_S = \mu_0 n I = 4\pi \times 10^{-7} \times 15 \times 0.20$$

$$B_C = \frac{\mu_0 NI}{2r} = \frac{4\pi \times 10^{-7} \times 0.90}{2 \times 1.6}$$

$$B_{resultant} = B_S - B_C = 3.4 \times 10^{-6} \text{ T}$$

E.m.f. is induced in the part of the length of the rod that forms a closed loop with the square. This length first increases than decreases, thus the e.m.f. induced will first increase, then decrease.

OR: Part of the rod forms a closed loop with the square. Magnetic flux linkage with this loop changes as the rod moves. The e.m.f. induced in the loop is proportional to the rate of increase of the area of the loop. This rate of increase of loop area first increases then decreases. Thus induced e.m.f. increases, then decreases.

Power is independent of frequency. The area under the power-time remains the same regardless of frequency.

$$E = \frac{p^2}{2m} = \frac{\left(\frac{h}{\lambda}\right)^2}{2m} = 12.31 \text{ eV}$$

The electron can lose part of its kinetic energy and will result in excitation to -1.51 eV.

Note: Option D is not the answer because the photon will not be absorbed as its energy is not exactly equal to the difference between the energy levels.

29
$$\Delta x \Delta p \ge h$$

Since $\Delta x = 3.0 \times 10^{-10} \text{ m}$
 $\Delta p \ge \frac{h}{3.0 \times 10^{-10}} = \frac{6.63 \times 10^{-34}}{3.0 \times 10^{-10}}$

$$\Delta p \ge 2.21 \times 10^{-24} \ kg \ m \ s^{-2}$$

30 KE = qV = hc/
$$λ_{min}$$

If V is reduced by ½, $λ_{min}$ is increased to 2 times (100 %)