1 The diagram below shows the graph of y = f(x). The curve has a maximum point at (a,b), a minimum point at (c,d) and cuts the y-axis at (0,k). The equation of the asymptote is y = mx, where m is a positive constant.

Sketch the graph of y = f'(x), giving equation(s) of any asymptotes and coordinate(s) of any intercepts, if it is possible to do so. [2]

2 A drone is programmed to fly from a point *O* at ground level eastwards to a point *C* at the top of a building. The point *C* is 0.1 km vertically above ground level and 0.6 km horizontally from *O*. The drone passes through two checkpoints *A* and *B* before reaching *C*. The horizontal distances and vertical heights of *A* and *B* are shown below.

Point	Horizontal Distance from O (km)	Vertical Height (km)
A	0.15	0.1
В	0.3	0.125

It is given that the flight path of the drone is cubic in nature. Taking O to be the origin and O, A, B and C all lie on the same vertical plane, find the cartesian equation of the flight path. [3]

The drone manufacturer is highly confident of the ability of the drone to keep to its flight path despite external factors such as wind, temperature or humidity. It claims that

"The drone on this particular programmed flight path will pass through the point at a vertical height of 0.1125 km and a horizontal distance of 0.45 km eastwards from O."

By considering the flight path of the drone, comment on the accuracy of the manufacturer's claim. [1]

- 3 (a) A point Q has position vector q and a line l has equation r = a + λd, λ∈; . A vector p, where |p|=1, is in the direction of d. Give a geometrical meaning of |p×(a-q)|.
 - (b) The vectors **a** and **b** form two adjacent sides of a triangle *OAB*, where $\mathbf{a} = OA$ and $\mathbf{b} = \overrightarrow{OB}$. The angle between **a** and **b** is θ . By considering $(\mathbf{a} \mathbf{b}) \cdot (\mathbf{a} \mathbf{b})$ and the cosine rule for the triangle *OAB*, show that $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$. [4]

4 (i) Show that
$$\frac{3}{2} - \sqrt{a + \frac{1}{4}} < 1$$
, where *a* is a positive constant. [1]

(ii) Solve the inequality
$$\frac{x^2 - x - a}{x - 1} \le 2$$
, where *a* is a positive constant. [4]

(iii) Hence solve
$$\frac{a+x-x^2}{x} \le 2$$
. [2]

5 Let
$$f(r) = \cos\left[\alpha + \left(r + \frac{1}{2}\right)\beta\right], \ \beta \neq 2k\pi, \ k \in \emptyset$$
.
(i) Find $f(r) - f(r-1)$. [2]

(ii) Show that

$$\sin \alpha + \sin (\alpha + \beta) + \sin (\alpha + 2\beta) + \dots + \sin (\alpha + n\beta) = \frac{\sin (\alpha + p\beta) \sin q\beta}{\sin \frac{1}{2}\beta} ,$$

where p and q are constants to be determined in terms of n. [4]

(iii) Deduce an expression for

$$\cos\alpha + \cos\left(\alpha + \frac{\pi}{2}\right) + \cos\left(\alpha + \pi\right) + \cos\left(\alpha + \frac{3\pi}{2}\right) + \dots + \cos\left(\alpha + \frac{n\pi}{2}\right).$$
 [2]

6 A curve C has parametric equations

$$x = 2\sin t, \qquad y = 1 + \cos t, \qquad 0 < t < \pi.$$

- (i) Show that the equation of the tangent to *C* at the point $P(2\sin p, 1+\cos p)$ is $2y+x\tan p = 2(1+\sec p)$. [4]
- (ii) The tangent at P meets the x-axis at the point A and the y-axis at the point B. The point M is the midpoint of AB. Find the cartesian equation of the curve traced by M as p varies.

- 7 Mr Wang decides to paint the walls of his room which has a total surface area of 40 m².
 He has two plans:
 - Plan A: He paints 7 m² on the first day, and on each subsequent day, he paints 0.5 m² less than the previous day.
 - Plan B: He paints 7 m² on the first day, and on each subsequent day, he paints 20% less than the previous day.
 - (i) Find an expression for the area painted on the *n*th day according to Plan A. Give your answer in terms of *n*.
 - (ii) Find the number of days required for him to complete painting his room according to Plan A.
 - (iii) Explain why Plan A cannot be used to paint a wall of arbitrary size. Find the largest area that Plan A can be applied to. [2]
 - (iv) Find algebraically the number of days needed to paint at least 70% of his room according to Plan B.[3]
 - (v) State, with a reason, which plan A or B Mr Wang should choose to complete the paint job. [1]
- 8 The curve G has equation

$$y = \frac{x+2}{x(x+k)} ,$$

where *k* is a real constant.

- (i) Find the range of values of k for which G has no stationary points. [3] In the rest of the parts of the question, let k = -2.
- (ii) Sketch G, stating clearly the equations of any asymptotes, the coordinates of the stationary points and the points where G crosses the axes. [3]
- (iii) State the values of m for which the line y = m intersects G once. [1]
- (iv) By sketching a suitable curve on the diagram in part (ii), show that the equation $x^4 - 4x^3 + 3x^2 + x - 2 = 0$ has exactly two real roots. [2]

9 (a) Showing your working clearly, find the complex numbers z and w which satisfy the simultaneous equations

$$4iz - w = 9i - 13$$
,
 $(4 + 2i)w^* = z + 3i$. [4]

- (b) The complex numbers u and v are such that $u = 5e^{\frac{7}{12}\pi i}$ and $v = 6ie^{-\frac{1}{3}\pi i}$ respectively.
 - (i) Find an exact expression of $\frac{u^2}{v^*}$, giving your answer in the form $re^{i\theta}$, where r > 0 and $-\pi < \theta \le \pi$. [4]
 - (ii) Find the three smallest positive integer values of *n* for which $\frac{u^n}{v^*}$ is purely imaginary. [2]

10 (a) (i) Find
$$\int x\sqrt{x-1} dx$$
 using integration by parts. [2]

(ii) The shape of a metal sculpture is formed by rotating the region bounded by the curve $y = \sqrt{a + x\sqrt{x-1}}$, where *a* is a positive integer, the lines x = 1 and $y = \sqrt{a+30}$, through 2π radians about the *x*-axis. Find the exact volume of the metal sculpture, giving your answer in terms of π . [4]

(b) (i) The diagram below shows a sketch of the graph of $y = \ln(1+x)$ for $0 \le x \le 1$. Rectangles each of width $\frac{1}{n}$ are drawn under the curve for $0 \le x \le 1$.

Show that A, the total area of all the rectangles, is given by

$$A = \frac{1}{n} \ln \left[\frac{(n+1)(n+2)(n+3)\mathbf{K} (2n-1)}{n^{n-1}} \right].$$
 [2]

(ii) Find the exact value of $\lim_{n \to \infty} A$.

[3]

11 To celebrate Singapore's Bicentennial in 2019, the organising committee plans to hold a banquet at the Padang. A tent for the banquet consisting of two rectangular vertical sides and two pieces of the roof is to be constructed as shown in the diagram below. The tent has a length of x m and width y m, and a total floor area of 4000 m². The vertical sides of the tent are 4 m tall, and the roof adds another $0.01y^2$ m to the overall height of the tent.

(i) Show that A, the total external surface area of the tent is given by

$$A = 8x + 4000\sqrt{\frac{6400}{x^2} + 1}.$$
 [3]

- (ii) Show that if A has a stationary value for some x, then x satisfies the equation $\frac{a}{x^6} = \frac{6400}{x^2} + 1$, where a is a constant to be determined. [3]
- (iii) If the material for the tent costs \$2.50 per m², estimate the minimum total cost of the material for the whole tent. [3]
- (iv) A scale model of the tent is to be 3D-printed in a process where the total external surface area of this model always satisfies the equation $A = 8x + 4000\sqrt{\frac{6400}{x^2} + 1}$.

If x increases at a rate of 2 units per minute, use differentiation to find the rate of change in the total external surface area at the instant when x = 200 units. [3]

12 An experiment is conducted at room temperature where two substances, *A* and *B*, react in a chemical reaction to form *X* as shown below:

$$A + B \rightarrow X$$
.

The initial concentrations in mol/dm³ of substances *A* and *B* are *a* and *b* respectively. At time *t* seconds, the concentration of *A* and *B* are each reduced by *x*, where *x* denotes the concentration of *X* at time *t*.

- (i) State the concentrations of *A* and *B* at time *t*. [1]
- (ii) It is known that the rate of change of concentration of *X* at time *t* is proportional to the product of concentration of *A* and *B* at time *t* with a constant of proportionality *k*. Write down a differential equation involving *x*, *a*, *b*, *t* and *k*. [1]
- (iii) State the maximum value of x if $a \le b$. Justify your answer. [2]

In the rest of the parts of the question, assume a=b.

(iv) The initial concentration of X is zero. Solve the differential equation in part (ii), leave your answer in terms of x, a and t.
Express the solution in the form x = f(t) and sketch x = f(t) relevant in this context. Label the graph as S₁.

It is known that the rate of change of concentration of *X* is doubled with every 10°C rise in the temperature. The experiment above is repeated but at a temperature 20°C above the room temperature. The concentration of *X* for this 2nd experiment at time *t* is now denoted by x_2 . Let S_2 be the solution curve for the 2nd experiment.

(v) State an equation relating the rate of change of concentration of x and the rate of change of concentration of x₂ at time t. [1]

There is no need to solve for S_2 for the rest of the parts of the question.

- (vi) On the same diagram as in part (iv), sketch the solution curve for S_2 . Show clearly the relative positions of S_1 and S_2 and their behaviour when $t \to \infty$. [2]
- (vii) It is given that S_1 passes through the point $(1, \alpha)$ and S_2 passes through the point $(1, \beta)$. Using the rate of change of concentration of X for the two experiments, state the inequality relating α and β in this context, justifying your answer. [2]

Section A: Pure Mathematics [40 marks]

1 (a) Find
$$\int \frac{x+1}{x^2+3x+9} \, dx$$
. [4]

Use the substitution $x = \cos \theta$ to find the exact value of $\int_{0}^{\frac{1}{\sqrt{2}}} \frac{x^2}{\sqrt{1-x^2}} dx$. [4] **(b)**

2 Using the standard series from the list of Formulae (MF26), show that the series (i) expansion for $\frac{1}{1+\sin x}$ can be approximated to $1-x+x^2-\frac{5}{6}x^3$ when x is sufficiently small. [3]

(ii) Let
$$f(x) = \frac{1}{1 + \sin x^3}$$
. Using the expansion in part (i), find $f^{(9)}(0)$. [2]

(iii) "The series expansion of
$$\left(1+\frac{x}{a}\right)^b$$
 is equal to the series expansion

of $\frac{1}{1-\sin x}$ as far as the term in x^3 where a and b are constants."

Write down the series expansion of $\left(1+\frac{x}{a}\right)^{b}$ and $\frac{1}{1-\sin x}$ as far as the term in x^{3} . [4]

Hence justify if the above statement is valid.

3 The function f is defined as

f: x a
$$\begin{cases} ae^{a-x} & \text{for } 0 \le x < a, \\ \left| \frac{1}{a} (x-a)^2 - a \right| & \text{for } x \ge a. \end{cases}$$

- Sketch the graph of y = f(x), indicating clearly the axial intercepts. Show that f^{-1} **(i)** does not exist. [4]
- If the domain of f is restricted to [0, k], determine the largest value of k in terms (ii) of *a* such that f^{-1} exists. [1]

Use the domain found in part (ii) for the rest of the question.

(iii) Define f^{-1} in similar form. [4]

(iv) Show that
$$\operatorname{ff}\left(\frac{a}{2}\right) = a e^{\frac{a}{2}} \left(2 - e^{\frac{a}{2}}\right)$$
 where $0 < a \le \ln 2$. [2]

4 A line *l* has equation $x-1=\frac{y}{2}=z-3$, and a plane *p* has equation

$$\mathbf{r} = \begin{pmatrix} 5 \\ -2 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix} + \mu \begin{pmatrix} k \\ 1 \\ 4 \end{pmatrix},$$

where k is a real constant, $\lambda, \mu \in i$.

(i) Given that *l* and *p* are parallel, show that
$$k = -1$$
. [3]

Use k = -1 for the rest of the parts of the question.

- (ii) Hence show that l and p do not intersect. [2]
- (iii) Find the exact distance between l and p. [3]
- (iv) A point A on l has coordinates (2,2,4) and N is the foot of the perpendicular from A to p. Find the coordinates of N. Hence find the coordinates of the reflection of N in l.

Section B: Statistics [60 marks]

5 A discrete random variable *Y* takes non-negative integer values with probabilities given as follows:

У	0	1	2	 п	
$\mathbf{P}(Y=y)$	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	 $\frac{1}{2^{n+1}}$	

(i) Find the probability that *Y* is odd. [2]
(ii) *Y*₁ and *Y*₂ are two independent observations of *Y*. Find the probability that the

i) Y_1 and Y_2 are two independent observations of *Y*. Find the probability that the sum of Y_1 and Y_2 is less than 4, given that their sum exceeds 2. [4]

- 6 Six married couples are to be seated in a row at a concert. Find the number of ways they can sit if
 - (i) each couple is to sit together, [2]
 - (ii) all women are next to one another and all men are next to one another, such that no man can sit next to his wife. [3]

After the concert, one particular married couple leaves. The rest go to a restaurant where they sit at a round table. Find the probability that each man sits next to his wife, and men and women alternate. [2]

[Turn over

7 An engineering team from a car manufacturer wants to test their cars' braking system. The car travels along a stretch of road with speed *v* km/h. When the brakes are applied, the car comes to rest after travelling a further distance of *d* metres. A random sample of 6 pairs of values of *v* and *d* collected by a trainee mechanic from the engineering team is shown below.

v	30	40	50	60	70	80
d	5.00	5.30	6.45	8.50	17.00	25.90

(i) Draw a scatter diagram for these values, labelling the axes clearly. [2]

It is thought that the distance travelled *d* can be modelled by one of the following models.

Model I : d = av + b or Model II : $d = e^{pv+q}$

where a, b, p and q are constants.

- (ii) Find the value of the product moment correlation coefficient between
 - (a) v and d,
 - **(b)** v and $\ln d$. [2]
- (iii) The trainee mechanic proposed that Model II is a better model than Model I.Use your answers to parts (i) and (ii) to explain why the trainee mechanic is right.
 - [2]
- (iv) Find the equation of the regression line of $\ln d$ on v. [1]
- (v) Using the regression line in part (iv), find the value of v if the driver applies his brakes immediately upon seeing an obstacle that is 10 metres away and stops just in time before crashing into it. [1]
- (vi) The original data set contains 7 pairs of data with regression line d = 0.4256v 11.74. The trainee mechanic found that he does not have the value of d when v = 75 from his record. Find the missing value of d correct to 2 decimal places. [3]

8 Mrs Lee claimed that the mean time taken by students to finish a meal during recess is not more than 20 minutes. Two students, Jack and Jill, decided to work together to test if Mrs Lee's claim is true. A total of 50 students were selected. The time, *x* minutes, by each of the 50 students to finish a meal during recess was recorded. The results are summarised by

$$\sum x = 1380, \quad \sum x^2 = 83000.$$

- (i) Find unbiased estimates of the population mean and variance of the time taken by a student to finish a meal during recess. [2]
- (ii) Stating a necessary assumption, carry out a test of Mrs Lee's claim at the 5% level of significance.
- (iii) Explain, in the context of the question, the meaning of "at the 5% level of significance". [1]
- (iv) Jack and Jill have just learnt hypothesis testing. Jack carried out the test as in part (ii) while Jill performed a 2-tail test at 5% level of significance. Without performing any further test, explain whether Jill has the same conclusion as Jack.
- **9** A bag contains 2 red balls, 3 yellow balls and 1 blue ball. Sue and Ben play a game where each takes turns to draw a ball from the bag, with replacement. The number of red balls obtained in *n* fixed draws from the bag is denoted by *R*.
 - (i) State, in context, an assumption satisfied by *R* for it to be well modelled by a binomial distribution. [1]
 - (ii) Sue and Ben each draws n times from the bag. Find the least n such that the probability of both getting a total of at most 10 red balls is not more than 0.5.
 - (iii) Sue and Ben each draws 5 times from the bag. The player with more red balls drawn wins. Otherwise, the game ends in a draw. Find the probability that Sue wins the game if she draws more than 3 red balls. [3]

In a variation of the game, Sue draws balls at random from the bag, one at a time without replacement, and stops when she obtains 2 yellow balls. The total number of balls Sue has to draw from the bag before she stops is denoted by *T*. Find E(T) and Var(T). [5]

[Turn over

[3]

10 Each morning, Tony drives from his home to his office and has to pass 4 traffic lights on his way. He has to reach his office by 8.50 am. The driving time to his office and the time held up at a traffic light junction, in minutes, may be assumed to follow normal distributions with means and standard deviations as summarized below:

	Mean	Standard deviation
Driving time	14	2.1
Time held up at a traffic light junction	μ	0.2

Tony leaves home at 8.30 am. If the probability that Tony is not late is 0.713, show that $\mu = 1.2$, correct to 1 decimal place. State an assumption needed in your calculations. [4]

- (i) For 10 mornings, Tony leaves home at 8.30 am. Find the probability that he arrives late at his office for the third time on the 10th day. [2]
- (ii) Find the probability that Tony's driving time to his office is less than 10 times the time he is held up at a traffic light junction. [2]
- (iii) Find the probability that Tony's driving time to his office and the total time he is held up at the 4 traffic light junctions differs by more than 8 minutes. [3]

Assume μ is unknown.

(iv) The time held up at a traffic light junction is recorded on *n* randomly chosen occasions. Find the smallest *n* so that it is at least 98% certain that the sample mean time Tony is held up at a traffic light junction is within 5 seconds of μ .

[3]

UII IIV	Suggested Solution	Marking Scheme
1 [2]	y	G1 – Shape with at least 2 features correct
	y = f'(x) = m	G1 – all features correct SR: The maximum point could be in the first or second quadrant
	$(a,0) (c,0) \rightarrow x$	1. x-intercept $(a, 0)$
		2. x-intercept $(c,0)$
		3. H.A $y = m$ (above x-axis)
		4. <i>y</i> -intercept above H.A $y = m$
2 [4]	Let required equation be $y = ax^3 + bx^2 + cx + d$, $a, b, c, d \in i$. Substitute (0,0) into equation, $\therefore d = 0$	$\mathbf{B1} - d = 0 \ [\text{SOI}]$
	0.15 ³ a + 0.15 ² b + 0.15c = 0.1 0.3 ³ a + 0.3 ² b + 0.3c = 0.125 0.6 ³ a + 0.6 ² b + 0.6c = 0.1 Using GC, $a = \frac{50}{27}, b = -\frac{5}{2}, c = 1$ Required equation is $y = \frac{50}{27}x^3 - \frac{5}{2}x^2 + x$ (*) Substitute x = 0.45 into (*), y = 0.1125 ∴ the manufacturer's claim is accurate.	M1 – Formulate system of equations with at least 1 equation correct A1 – Correct equation B1 – Correct conclusion with substitution of $x = 0.45$ into (*) (SOI)
3(a) [1]	Q Q $p \times (a-q) = 0$ $p \times (a-q) = 0$ $p_{n'} = 0$	B1 – Correct Geometrical

Qn	Suggested Solution	Marking Scheme
	OR $\begin{vmatrix} p \times (a-q) \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	
3(b) [4]	By cosine rule, $\begin{vmatrix} b - a \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	B1 – Writing 3 rd side of Δ as $\begin{vmatrix} b - a \\ b - a \end{vmatrix}$ M1 – Apply cosine rule to obtain $\begin{vmatrix} b - a \\ b - a \end{vmatrix}^2 = \begin{vmatrix} a \\ b \\ b - a \end{vmatrix}^2 = \begin{vmatrix} a \\ b \\ b \\ cos \theta \end{vmatrix}$ M1 – Write $\begin{vmatrix} b - a \\ b \\ b - a \\ cos \theta $
4(i) [7]	$ \sqrt{\frac{1}{4}} = \frac{1}{2} $ Since $a > 0$, $a + \frac{1}{4} > \frac{1}{4} > 0$ $\sqrt{a + \frac{1}{4}} > \frac{1}{2}$ $-\sqrt{a + \frac{1}{4}} < -\frac{1}{2}$ $\therefore \frac{3}{2} - \sqrt{a + \frac{1}{4}} < 1$ (shown) $a + \frac{1}{4} > \frac{1}{4} > 0$	AG1 – Make use of $a > 0$, compare $\sqrt{a + \frac{1}{4}} > \frac{1}{2}$ to show $\frac{3}{2} - \sqrt{a + \frac{1}{4}} < 1$
(ii)	$\frac{\frac{x^{2} - x - a}{x - 1} \le 2}{\frac{x^{2} - x - a}{x - 1} - 2 \le 0}$	M1 – Place all terms on one side and take common denominator (Algebraic method)

Qn	Suggested Solution	Marking Scheme
	$x^2 - x - a - 2x + 2 = 0$	M1 - Attempt to factorise
	$\frac{1}{x-1} \leq 0$	$x^2 - 3x + 2 - a$
	$x^2 - 3x + 2 - a$	by completing the square or
	$\qquad \qquad $	using formula
	Method 1: (Algebraic method)	
	$(x-\frac{3}{2})^2 - (\frac{3}{2})^2 + 2 - a$	
	$\frac{z-z}{x-1} \leq 0$	
	$\frac{(x-\frac{3}{2})^2 - (\frac{1}{4}+a)}{x-1} \le 0$	
	$\frac{x-1}{(1-3)^2} = (\sqrt{1+4a})^2$	M1 – Find all the critical values
	$\frac{(x-\frac{1}{2})^{2}-(\sqrt{\frac{1+1}{4}})}{2} \leq 0$	and attempt to using a number
	x-1	line determine range of x
	$\frac{(x-\frac{3}{2}+\frac{\sqrt{1+4a}}{2})(x-\frac{3}{2}-\frac{\sqrt{1+4a}}{2})}{2} < 0$	
	x-1	
	$\left[\left(\frac{3}{1+a} \right) \right] = \left[\frac{3}{1+a} \right] \left[\frac{3}{1+a} \right] \right]$	
	$\left\ \left\ x^{-} \left(\frac{1}{2} - \sqrt{4} + u \right) \right\ x^{-} \left(\frac{1}{2} + \sqrt{4} + u \right) \right\ $	A1 – Correct answer
	$\frac{1}{x-1} \leq 0$	
	$\begin{pmatrix} 3 & \sqrt{1} \end{pmatrix}$	
	Since a is a positive constant, $\left \frac{a}{2} - \sqrt{\frac{a}{4}} + a\right < 1$ (from (i))	(Craphical mathed)
		(Graphical method)
	And $\left \frac{3}{2} + \sqrt{\frac{1}{4}} + a\right > \frac{3}{2} > 1$	M1 – Attempt to sketch graph to
	$(2 \sqrt{4}) 2$	locate parts of the graph below
		<i>x</i> -axis
	- + - +	
	$\frac{3}{2} - \frac{\sqrt{1+4a}}{2}$ $\frac{3}{2} + \frac{\sqrt{1+4a}}{2}$	
	$\therefore x \le \frac{3}{2} - \frac{\sqrt{1+4a}}{2}$ or $1 < x \le \frac{3}{2} + \frac{\sqrt{1+4a}}{2}$	M1 Attempt to find u
		intercepts of graph
	Method 2: (Graphical method)	
	$x-2-\frac{a}{x-2} \le 0$ $x-2$	
	x-1 $x-1$ $x-1$	
	$y \land x = 1$ $y = x - 2$ $x^2 - x$	A1 – Correct answer
	$\overline{-2x+2-a}$	
	$\frac{-2x+2}{2}$	
	-a	

Page **3** of **18**

Qn	Suggested Solution	Marking Scheme
	$x^2 - 3x + 2 - a$	
	Let $\frac{x-1}{x-1} = 0$	
	$\therefore x^2 - 3x + 2 - a = 0$	
	$\therefore x = \frac{3 \pm \sqrt{9 - 4(2 - a)}}{4}$	
	$-3 + \sqrt{1+4a}$	
	$\frac{-2}{2} - \frac{-2}{2}$ $r^{2} - 3r + 2 - a$	
	Since $\frac{x-3x+2-a}{x-1} \le 0$,	
	$\therefore x \le \frac{3}{2} - \frac{\sqrt{1+4a}}{2}$ or $1 < x \le \frac{3}{2} + \frac{\sqrt{1+4a}}{2}$	
	Replace x in $\frac{x^2 - x - a}{x - 1} \le 2$ with $1 - x$, we obtain	M1 – Replace x with $1 - x$
	$(1-x)^2 - (1-x) - a < 2$	
	$\frac{1}{(1-x)-1} \leq 2$	
	$\frac{1 - 2x + x^2 - 1 + x - a}{2} \le 2$	
	$\frac{-x}{x^2 - x - a} \le 2$	
	-x $a+x-x^2$	
	$\frac{1}{x} \leq 2$	
	Hence $2 \sqrt{1+4a}$	A1 – Correct answer
	$1 - x \le \frac{5}{2} - \frac{\sqrt{1+4a}}{2}$ or $1 < 1 - x \le \frac{5}{2} + \frac{\sqrt{1+4a}}{2}$	
	: $x \ge -\frac{1}{2} + \frac{\sqrt{1+4a}}{2}$ or $-\frac{1}{2} - \frac{\sqrt{1+4a}}{2} \le x < 0$	
5(i)	1 1	M1 – Apply factor formula
[8]	$f(r) - f(r-1) = \cos[\alpha + (r+\frac{1}{2})\beta] - \cos[\alpha + (r-\frac{1}{2})\beta]$	
	$=-2\sin(\alpha+r\beta)\sin\frac{1}{2}\beta$	
	(By factor formula)	A1 – Correct answer
5(ii)	$\sum_{n=1}^{n} [f(r) - f(r-1)] = \sum_{n=1}^{n} [-2\sin(\alpha + r\beta)\sin^{1}\beta]$	M1 – Able to use part (i)
	$\sum_{r=0}^{n} [1(r) - 1(r-1)] - \sum_{r=0}^{n} [-2\sin(\alpha + rp)\sin(\frac{\pi}{2}p)]$	
	$=-2\sin\frac{1}{\alpha}\beta\sum_{n}^{n}\sin(\alpha+r\beta)$	
	$2 - \frac{1}{r=0}$	

Qn	Suggested Solution	Marking Scheme
	$\sin \alpha + \sin(\alpha + \beta) + \sin(\alpha + 2\beta) + + \sin(\alpha + n\beta)$	
	$=\sum_{n=1}^{n}\sin(\alpha+r\beta)$	
	r=0	
	$\sum_{n=1}^{n} \sin(\alpha + r\beta)$	M1 – Attempt to use MOD,
	r=0	must show the cancellation and at least 2 rows in front and at the
	$=-\frac{1}{1}\sum_{n=1}^{n}[f(r)-f(r-1)]$	end
	$2\sin\frac{1}{2}\beta^{r=0}$	
	$\int f(0) - f(1) $	
	+f(1) - f(2)	
	$=-\frac{1}{1}$	
	$2\sin\frac{1}{2}\beta$ + f(n-1) - f(n-2)	
	$\frac{2}{1+f(n)-f(n-1)}$	
	$=-\frac{1}{1}[f(n)-f(-1)]$	
	$2\sin\frac{1}{2}\beta$	M1 – Apply factor formula
	$=-\frac{1}{\alpha+1}\left\{\cos\left[\alpha+(n+\frac{1}{2})\beta\right]-\cos\left(\alpha-\frac{1}{2}\beta\right)\right\}$	
	$2\sin\frac{-\beta}{2}$	
	$= -\frac{1}{(-2\sin(\alpha + \frac{n}{\beta}\beta)\sin(\frac{n+1}{\beta})\beta)}$	
	$2\sin\frac{1}{2}\beta$ $2\sin(\alpha + 2\beta)\sin(\alpha - 2\beta)\beta$	
	2	A1 – Obtain <i>a</i> and <i>b</i> correctly
	$\sin(\alpha + \frac{n}{2}\beta)\sin(\frac{n+1}{2})\beta$	
	$= \frac{2}{\sin^2 \beta}(1)$	
	$\sin \frac{2}{2}p$	
	Where $p = \frac{n}{2}$ and $q = \frac{n+1}{2}$.	
5(iii)	Sub $\beta = \pi$ Differentiate (1) wrt α :	M1 – Sub $\beta = \pi$ and attempt to
	$\cos\alpha + \cos(\alpha + \pi) + \cos(\alpha + 2\pi) + \dots + \cos(\alpha + n\pi)$	differentiate (1) wrt α
	$\cos\left(\alpha + n\pi\right) \sin\left[\left(n+1\right)\pi\right]$	
	$-\frac{\cos\left(\frac{\alpha+\frac{1}{2}}{2}\right)\sin\left[\left(\frac{-\frac{1}{2}}{2}\right)^{n}\right]}{2}$	
	$\sin \frac{\pi}{2}$	
	2	
	$=\cos\left(\alpha+\frac{n\pi}{2}\right)\sin\left[\left(\frac{n+1}{2}\right)\pi\right]$	A1 – Show all steps clearly with
		the correct answer

Qn	Suggested Solution	Marking Scheme
	Alternative Solution:	M1 – Use of
	$\cos\alpha + \cos(\alpha + \pi) + \cos(\alpha + 2\pi) + \dots + \cos(\alpha + n\pi)$	$\cos\theta = \sin\left(\frac{\pi}{2} - \theta\right)$ $\beta = -\pi$
	$=\sum_{n=1}^{n}\cos(\alpha+r\beta)$	$\cos v - \sin\left(\frac{1}{2}-v\right), p = -\pi$
	$\sum_{r=0}^{r=0} \cos(\alpha + r\beta)$	
	$=\sum_{n=1}^{n}\sin\left(\frac{\pi}{\alpha}-\alpha-r\beta\right)$	
	$\sum_{r=0}^{r=0} \left(2 \right)^{r}$	
	$=\frac{\sin\left(\frac{\pi}{2}-\alpha-\frac{n\pi}{2}\right)\sin\left[-\pi\left(\frac{n+1}{2}\right)\right]}{2}$	
	$\sin\left(-\frac{\pi}{2}\right)$	
	$=\sin\left(\frac{\pi}{2}-\alpha-\frac{n\pi}{2}\right)\sin\left[\pi\left(\frac{n+1}{2}\right)\right]$	A1 – Show all steps clearly with
	$=\cos\left(\alpha + \frac{n\pi}{2}\right)\sin\left[\pi\left(\frac{n+1}{2}\right)\right]$	the correct answer
6(i)	$\frac{\mathrm{d}x}{\mathrm{d}x} = 2\cos t$	
[4]	dt	M1 – Either $\frac{dx}{dx}$ or $\frac{dy}{dx}$ correct
	$\frac{dy}{dt} = -\sin t$	dt dt
	dt	
	$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{-\sin t}{1} = -\frac{\tan t}{1}$	dy
	$\frac{dx}{dx} 2 \cos t = 2$	AI – Correct $\frac{d}{dx}$ in terms of t
	Equation of tangent T is	
	$y - 1 - \cos p = -\frac{\tan p}{2}(x - 2\sin p)$	
	$\frac{2}{100}$ top $n = \sin^2 n$	M1 – Form equation of tangent
	$y = 1 + \cos p - \frac{\tan p}{2}x + \frac{\sin p}{\cos p}$	
	$\cos^2 n \pm \sin^2 n$ ten n	
	$=1+\frac{\cos p+\sin p}{\cos p}-\frac{\tan p}{2}x$	
	$=1 + \sec p - \frac{\tan p}{2}x$	
	$2y + x \tan p = 2(1 + \sec p)$	AG1 - Correct equation of T
6(ii)	When $y = 0$,	
[5]	$\frac{\tan p}{x} = 1 + \sec p$	M1 – Substitute $x = 0$, $y = 0$ to
	2	Also accept $r = 2 \cot p + 2 \csc q$
	$x = \frac{2 + 2\sec p}{2}$	$\frac{1}{2} = \frac{1}{2} = \frac{1}$
	tan <i>p</i>	$p \text{ or } x = \frac{1}{\tan p} + \frac{1}{\sin p}$.
	When $x = 0$, $y = 1 + \sec p$	

Qn	Suggested Solution	Marking Scheme
	Method 1:	M1 – Apply mid-point formula
	Coordinates of $M = \left(\frac{1 + \sec p}{\tan p}, \frac{1 + \sec p}{2}\right)$.	$M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$
	$y = \frac{1 + \sec p}{2} \Longrightarrow \sec p = 2y - 1$	A1 – Obtain x and y coordinates of M .
	$x = \frac{1 + \sec p}{\tan p} = \frac{2y}{\tan p}$	
	Using $1 + \tan^2 p = \sec^2 p$,	M1 – Form cartesian equation of
	$1 + \left(\frac{2y}{x}\right)^2 = (2y - 1)^2$	$1 + \tan^2 p = \sec^2 p$
	$1 + \frac{4y^2}{x^2} = 4y^2 - 4y + 1$	
	$y = yx^2 - x^2$ $x^2 = y(x^2 - 1)$	
	$y = \frac{x^2}{x^2 - 1}$	A1 – Correct cartesian equation of locus of M .
	Method 2:	M1 – Express
	Coordinates of $M = \left(\cot p + \csc p, \frac{1 + \sec p}{2}\right)$.	$M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$
	$y = \frac{1 + \sec p}{2} \Longrightarrow \sec p = 2y - 1$	A1 – Obtain x and y coordinates of M
	$x = \cot p + \csc p = \frac{\cos p + 1}{\sin p}$	
	Using $\sin^2 p + \cos^2 p = 1$,	
		M1 – Form cartesian equation of locus of M using $\sin^2 p + \cos^2 p = 1$

Qn	Suggested Solution	Marking Scheme
Qn	Suggested Solution $ \left(\frac{\cos p+1}{x}\right)^{2} + \left(\frac{1}{2y-1}\right)^{2} = 1 $ $ \frac{\left(\frac{1}{2y-1}+1\right)^{2}}{x^{2}} + \frac{1}{(2y-1)^{2}} = 1 $ $ \frac{(2y)^{2}}{(2y-1)^{2}x^{2}} + \frac{1}{(2y-1)^{2}} = 1 $ $ 4y^{2} + x^{2} = (4y^{2} - 4y + 1)x^{2} $ $ y^{2} = y^{2}x^{2} - yx^{2} $ $ x^{2} = y(x^{2} - 1) $ $ y = \frac{x^{2}}{x^{2} - 1} $	Marking Scheme A1 – Correct cartesian equation of locus of <i>M</i> .
7 [11] (i)	x - 1 By Plan A, area painted on the <i>n</i> th day = 7 - (n - 1)0.5 = 7.5 - 0.5n	B1 – Correct formula
(ii)	Total area painted on <i>n</i> days = $\frac{n}{2} [2(7) - (n-1)0.5] \ge 40$ Method 1:	M1 – Form an inequality or use GC table involving the sum of AP formula
	NORMAL FLOAT DEC REAL RADIAN MP Y1 Image: Constraint of the state of the	SR: If students form equation instead of inequality, award 1 out of 2 marks.
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A1 – Correct answer
	He will finish painting his room on the 8th day.	
	Method 2: Total area painted on <i>n</i> days =	M1 – Form an inequality or use GC table involving the sum of AP formula

Qn	Suggested Solution	Marking Scheme
	$\frac{n}{2} [2(7) - (n-1)0.5] \ge 40$ $28n - n(n-1) \ge 160$ $n^2 - 29n + 160 \le 0$	SR: If students form equation instead of inequality, award 1 out of 2 marks.
	NORMAL FLOAT AUTO REAL RADIAN MP CALCZERD Y1=X2-29X+160 CALCZERD Y1=X2-29X+160 Zero X=7.4112766 Y=0	A1 – Correct answer
	$7.41 \le n \le 21.6$ But $7.5 - 0.5n > 0 \Longrightarrow n < 15$ So $8 \le n \le 14$. Least $n = 8$. He will finish painting his room on the 8th day.	
(iii)	For $n \ge 15$, area painted on the <i>n</i> th day = 0 and painting stops. Therefore Plan A cannot be applied to an arbitrarily large wall. NORMAL FLOAT DEC REAL RADIAN MP PRESS + FOR \triangle Tb1 X Y1 7 38.5 8 42 9 45 10 47.5 11 49.5 12 51 15 52.5 15 52.5 17 51 X=14	B1 – Correct reason
	By GC or using $\frac{14}{2}[2(7) - (14 - 1)0.5] = 52.5$, largest area that Plan A can be applied to is 52.5 m ² .	B1 – Correct largest area.

Qn	Suggested Solution	Marking Scheme
(iv)	$7\frac{1-0.8^n}{2} > 0.7 \times 40$	M1 - Apply correct GP formula
	$\frac{1-0.8}{1-0.8} \ge 0.7 \times 40$	for S _n
	$\frac{1-0.8^n}{2} > 4$	M1 – Form inequality $S_n >$
	0.2	0.7×40 and attempt to solve
	$1 - 0.8^n \ge 0.8$	algebraically.
	$0.8^n \leq 0.2$	
	$n\ln 0.8 \le \ln 0.2$	A1 – Correct number of days.
	$n \ge 7.21$	
(11)	He needs 8 days to finish painting at least 70% of his room.	
(v)	The chooses Plan B, total area painted after an infinite 7	B1 – Correct conclusion with
	number of days = $\frac{1}{1-0.8}$ = 35 < 40. He cannot finish	reason with correct formula for
	painting his room. Therefore he should choose Plan A.	sum to infinity used and the answer is < 40
8[10]	x+2	
(i)	$y = \frac{1}{x(x+k)}$	
	dy = r(r+k) - (r+2)(2r+k)	dy
	$\frac{dy}{dr} = \frac{x(x+r)^2 (x+r)^2}{\left[x(x+r)\right]^2}$	M1 – Attempt to find $\frac{dy}{dr}$ using
	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} $	quotient/product rule
	$=\frac{x^2 + kx - 2x^2 - kx - 4x - 2k}{5}$	
	$\left\lfloor x(x+k)\right\rfloor^{2}$	
	$-x^2 + 4x + 2k$	
	$-\frac{1}{\left[x(x+k)\right]^2}$	
	Let $\frac{dy}{dt} = 0 \implies x^2 + 4x + 2k = 0$	
	dx	M1 - Use Discriminant < 0 to
	For no stationary points,	obtain a linear inequality involving
	Discriminant < 0	ĸ
	16-4(2k)(1) < 0	
	k > 2	
	When $k = 2$, $y = \frac{x+2}{x(x+2)} = \frac{1}{x}$, $x \neq -2$	
	\Rightarrow No stationary points when $k = 2$	A1 – correct answer $k \ge 2$
	$\therefore k \ge 2$	

Qn	Suggested Solution	Marking Scheme
8(ii)	y = 0 (-2,0) (-4.83,-0.0858) (0.828,-2.91) (0.828,-2.91) (x = 0) (x = 2)	G1 – Shape (with 2 turning points) G1 – at least 4 out of 6 features G1 – All correct 1. <i>x</i> -intercept (-2, 0) 2. min (-4.83, -0.0858) 3. max (0.828, -2.91) 4. V.A $x = 2$ 5. V.A $x = 0$ (SOI) 6. H.A $y = 0$ (SOI)
8(iii)	m = 0, -0.0858 or -2.91 (to 3s.f)	B1 – All 3 values correct
8(iv)	$r^4 - 4r^3 + 3r^2 + r - 2 = 0$	
	$x^{4} - 4x^{3} + 3x^{2} + 2x - x + 2$	
	$x^{2} - 4x^{2} + 5x^{2} + 2x - x + 2$ $x(x-2)(x^{2} - 2x - 1) = x + 2$ $x^{2} - 2x - 1 = \frac{x+2}{x(x-2)}$	M1 – attempt to find the expression of the second curve by rearranging the terms And sketch the correct curve $y = x^2 - 2x - 1$
	Shotch the arrest of $y = y^2 - 2y - 1$ in (iii)	
	Sketch the graph of $y = x - 2x - 1$ in (h) y	
	$y = x^2 - 2x - 1$ $y = \frac{x + 2}{x(x - 2)}$ x	AG1 – conclude with reference to diagram

Marking	Scheme for	HCI 2018	Prelim	Paper 1
---------	------------	----------	--------	---------

Qn	Suggested Solution	Marking Scheme
	Since the graph $y = x^2 - 2x - 1$ intersect the graph	
	$y = \frac{x+2}{x(x-2)}$ at two distinct points, there are 2 real roots to	
	the equation $x^4 - 4x^3 + 3x^2 + x - 2 = 0$.	
9[12]	$4iz - w = 9i - 13 - \dots (1)$	M1 – Either let
(a)	$(4+2i)w^* = z+3i$ (2)	$z = x + iy$, $x \in [, y \in [$ or
	Let $w = x + iy$	$w = a + ib \ a \in i$, $b \in i$ and
	4i[(4+2i)(x-iy)-3i] - (x+iy) = 9i - 13	attempt to solve the
	4i[(4x+2xi-4iy+2y-3i]-x-iy) = 9i-13	simultaneous equations
	16ix - 8x + 16y + 8yi + 12 - x - iy = 9i - 13	
	Compare real and imaginary parts $16y - 9x = -25$ (3)	M1 – Use of $w^* = x - iy$ and
	16y - yx = 25 (5) 16y + 8y - y = 9	attempt to compare real and
	16x + 7y = 9 (4)	simultaneous equation
	From (3)	sinultaneous equation
	$x = \frac{16y + 25}{9}$	
	From (4)	
	$16\left(\frac{16y+25}{9}\right) + 7y = 9$	
	256y + 400 + 63y = 81	
	319y = -319	
	y = -1	A1 – Either Obtain $w = 1 - i$ or
	$x = \frac{16(-1) + 25}{9} = 1$	z = 2 + 3i
	$\therefore w = 1 - i$	A1 - All the answers correct
	z = (4+2i)(1+i) - 3i = 2+3i	
9(bi)	$ u^2 u ^2 25$	B1 – Correct value of r i.e
	$\left \frac{u}{v^*}\right = \frac{ u }{ v^* } = \frac{23}{6}$	$\left \frac{u^{2}}{u^{2}}\right = \frac{25}{u^{2}}$
	$\arg\left(\frac{u^2}{x}\right) = 2\arg u - \arg v^* - \dots (1)$	$ v^* = 6$
	$v = 6e^{\frac{i\pi}{2}}e^{-\frac{i\pi}{3}} = 6e^{\frac{i\pi}{6}}$	B1 – Correct arg $v^* = -\frac{\pi}{6}$
	$arg v^* = -\frac{\pi}{2}$	M1 – Apply correct properties
	6 From (1)	$\arg u^2 - \arg v^*$
	rtom (1)	

Qn	Suggested Solution	Marking Scheme
9 (bii)	$\arg\left(\frac{u^{2}}{v^{*}}\right)$ $= 2\left(\frac{7\pi}{12}\right) - \left(-\frac{\pi}{6}\right)$ $= \frac{4\pi}{3}$ $\operatorname{Arg}\left(\frac{u^{2}}{v^{*}}\right) = -2\pi + \frac{4\pi}{3} = -\frac{2\pi}{3}$ $\frac{u^{2}}{v^{*}} = \frac{25}{6}e^{-i\left(\frac{2\pi}{3}\right)}$ $\frac{u^{n}}{v^{*}} = \frac{5^{n}e^{\frac{12}{12}n\pi i}}{6e^{-\frac{\pi}{6}i}}$ $= \frac{5^{n}}{6}e^{\left(\frac{7}{12}n\pi + \frac{\pi}{6}\right)i}$ To be purely imaginary $\frac{7n\pi + 2\pi}{12} = \frac{(2k+1)\pi}{2}, \ k \in \phi$ $12k + 4 = 7n$ $k = 2, \ n = 4$ $k = 9, \ n = 16$ $k = 16, \ n = 28$	A1 – Correct answer for $\frac{u^2}{v^*}$ M1 – Apply properties of $\arg\left(\frac{u^2}{v^*}\right)$ using previous part and equate it to either $\frac{(2k+1)\pi}{2}$ or $\frac{(2k-1)\pi}{2}$ OR to compare it with $\pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \pm \frac{5\pi}{2}$ or to equate real part to zero and solve for <i>n</i> A1 – All three answers for <i>n</i> are correct by observation
10[14] (a)(i)	$\int x\sqrt{x+1} dx$ = $\frac{2x}{3}(x-1)^{\frac{3}{2}} - \int \frac{2}{3}(x-1)^{\frac{3}{2}} dx$ = $\frac{2x}{3}(x-1)^{\frac{3}{2}} + \frac{4}{15}(x-1)^{\frac{5}{2}} + c$ $u = x \implies u' = 1$ $v' = \sqrt{x-1} \implies v = \frac{2}{3}(x-1)^{\frac{3}{2}}$	 M1 – Identify correct <i>u</i> and <i>v</i>' and use the correct formula for integration by parts A1 – Correct answer

Qn	Suggested Solution	Marking Scheme
Qn 10 (c)(i)	Suggested Solution y $O = \frac{1}{n} \frac{2}{n} \frac{3}{n} \frac{4}{n}$ Area of 1st rectangle = $\frac{1}{n} ln \left(1 + \frac{1}{n}\right)$ Area of 2nd rectangle = $\frac{1}{n} ln \left(1 + \frac{2}{n}\right)$ Area of 3rd rectangle = $\frac{1}{n} ln \left(1 + \frac{3}{n}\right)$ M Area of $(n-1)$ th rectangle = $\frac{1}{n} ln \left(1 + \frac{n-1}{n}\right)$	Marking Scheme M1 – Attempt to find area of $n-1$ rectangles with the area of the first and the last rectangle correct
10 (c)(ii)	Area of $(n-1)$ th rectangle $= \frac{1}{n} \ln \left(1 + \frac{n-1}{n}\right)$ $A = \frac{1}{n} \left[\ln \left(1 + \frac{1}{n}\right) + \ln \left(1 + \frac{2}{n}\right) + \ln \left(1 + \frac{3}{n}\right) + L + \ln \left(1 + \frac{n-1}{n}\right) \right]$ $= \frac{1}{n} \ln \left[\left(1 + \frac{1}{n}\right) \left(1 + \frac{2}{n}\right) \left(1 + \frac{3}{n}\right) L \left(1 + \frac{n-1}{n}\right) \right]$ $= \frac{1}{n} \ln \left[\left(\frac{n+1}{n}\right) \left(\frac{n+2}{n}\right) \left(\frac{n+3}{n}\right) L \left(\frac{2n-1}{n}\right) \right]$ $= \frac{1}{n} \ln \left[\frac{(n+1)(n+2)(n+3)K(2n-1)}{n^{n-1}} \right]$ $u = \ln(1+x) \Rightarrow u' = \frac{1}{1+x}$ $v' = 1 \Rightarrow v = x$ $\lim A = \int_{-1}^{1} \ln(1+x) dx$	AG1 – Apply laws of logarithms to show the expression given $\mathbf{M1} - \text{Use } \lim_{n \to \infty} A = \int_0^1 \ln(1+x) dx$ and apply integration by parts correctly

Qn	Suggested Solution	Marking Scheme
	$= \left[x \ln(1+x) \right]_{0}^{1} - \int_{0}^{1} 1 - \frac{1}{1+x} dx$	M1 – Rewrite as $\int_0^1 1 - \frac{1}{1+x} dx$
	$= [x \ln(1+x)]_{0}^{1} - [x - \ln(1+x)]_{0}^{1}$	and integrate correctly
	$= \ln 2 - [1 - \ln 2]$	A1 – Correct answer in exact
	$= 2 \ln 2 - 1$ units ²	form
11(i)	Floor area $xy = 4000 \Rightarrow y = \frac{4000}{x}$	
	Area $A = 2(4x) + 2x\sqrt{(0.01y^2)^2 + (\frac{y}{2})^2}$	M1 – Express <i>A</i> in terms of <i>x</i> and <i>y</i>
	$=8x+2x\sqrt{\left(0.01\frac{4000^{2}}{x^{2}}\right)^{2}+\left(\frac{4000}{2x}\right)^{2}}$	M1 – Substitute $y = \frac{4000}{x}$
	$=8x+2x\sqrt{\frac{160000^2}{x^4}+\frac{2000^2}{x^2}}$	
	$=8x+4000\sqrt{\frac{6400}{x^2}+1}$	AG1 – Able to simplify to given expression
11(ii)	$\frac{dA}{dx} = 8 + 2000 \left(\frac{6400}{x^2} + 1\right)^{-1/2} \left(-\frac{12800}{x^3}\right) = 0$	M1 – Apply Chain Rule to get $\frac{1}{2} (f(x))^{-1/2} \left(-\frac{k}{x^3}\right).$
	$\left(\frac{6400}{x^2} + 1\right) = \frac{25600000}{x^3} = 8$	M1 – Equate $\frac{dA}{dr} = 0$ and
	$\frac{3200000}{x^3} = \sqrt{\frac{6400}{x^2} + 1}$	simplify to given expression
	$\frac{1.024 \times 10^{13}}{x^6} = \frac{6400}{x^2} + 1$	A1 – Correct value of a in any form e.g. $a = 3200000^2 = 20^{10}$.
	$a = 1.024 \times 10^{13}$	
11(iii)	Y1=32000002/X^6-6400/X2-1	
	$\frac{2ero}{x=140.6342} \underline{Y=0}$ By GC, $x = 140.6342 = 141$ to 3 s.f.	B1 – Correct value of x to 3 s.f.

Qn	Suggested Solution	Marking Scheme
	$ \frac{\text{Method 1:}}{\begin{array}{c c} x & 140.63^{-} & 140.63 & 140.63^{+} \\ \hline \underline{dA} & -ve & 0 & +ve \\ \hline \underline{dA} & -ve & 0 & +ve \\ \hline \underline{dx} & & - & / \\ \hline \text{Method 2:} \\ \hline \underline{d^{2}A}_{dx^{2}} = \left(\frac{6400}{x^{2}} + 1\right)^{-1/2} \left(\frac{76800000}{x^{4}}\right) $	B1 – Apply 1st or 2nd derivative test [only award mark if value of x is correct]
	$+ \left(\frac{6400}{x^2} + 1\right)^{3/2} \left(-\frac{12800000}{x^3}\right) \left(-\frac{12800}{x^3}\right)$ > 0 when $x = 140.6342$ Hence A is minimum when $x = 141$ to 3 s.f. Minimum Cost = $\left[8(140.6342) + 4000\sqrt{\frac{6400}{140.6342^2} + 1} \right] 2.50$ = \$14317.43 (nearest cents) = \$14300 (to 3 s.f.)	B1 – Correct minimum cost
11(iv)	From (ii), $\frac{dA}{dx} = 8 - \left(\frac{6400}{x^2} + 1\right)^{-1/2} \frac{25600000}{x^3}$ When $x = 200$, $\frac{dA}{dt} = \frac{dA}{dx} \frac{dx}{dt}$ $= \left[8 - \left(\frac{6400}{200^2} + 1\right)^{-1/2} \frac{25600000}{200^3}\right]2$ = 10.0577 $= 10.1 \text{ unit}^2/\text{min (3 s.f.)}$	M1 – Attempt Chain rule to find $\frac{dA}{dx}$ or apply implicit differentiation to obtain an equation involving $\frac{dA}{dt}$ and $\frac{dx}{dt}$ M1 – Attempt to substitute $x = 200$ and $\frac{dx}{dt} = 2$ A1 – Correct answer to 3 s.f.
12(i)	the concentration of A and B at time t are $(a - x)$ and $(b - x)$ mol/dm ³ respectively	B1 – both answers correct
12(ii)	$\frac{\mathrm{d}x}{\mathrm{d}t} = k(a-x)(b-x), \ k \in \mathbf{i}^{+}$	B1 – Correct answer
12(iii)	Max value for x is a, $Q \frac{dx}{dt} = 0$ and after $x = a$ there is no more concentration of substance A for reaction to continue.	B1 – Correct Max value for <i>x</i> is <i>a</i> B1 – state correct reason

Qn	Suggested Solution	Marking Scheme
12(iv)	dx dx dx	M1 – correct method of
	$\frac{dt}{dt} = k(a-x)^{-1}$	integration $\int (a-x)^{-2} dx$
	$\int (a-r)^{-2} dr = kt$	
	$\int (u - x) - u = u$	
	$(a-x)^{-1} = kt + C$	
	$r = a - \frac{1}{1}(1)$	
	kt + C (1)	A1 – correct expression (1)
	When $t = 0$, $r = 0 \Rightarrow c = \frac{1}{2}$	accept Answer without constant
	a	M1 - Use of initial value to find
	$x = a - \frac{1}{2}$	constant
	$kt + \frac{1}{2}$	
	a	
	$x = a - \frac{a}{a}$	A1 – Correct particular solution
	akt + 1	$x = a - \frac{a}{1 + 1}$
		akt + 1
	$\mathbf{r} = q$	
	<u>x -</u> u	
	S	A1 – correct graph with
	$t \rightarrow t$	asymptote and initial value
	01	labelled
12(v)	dr. dr	B1
(')	$\frac{dt_1}{dt} = 4 \frac{dt}{dt}$	
12(vi)		B2 – one mark for each curve
		showing clearly relative position
	\uparrow^{x}	Do not Accept graphs with <i>S</i> and
	<u>x=a</u>	S_1 overlapping each other at the
	SI	tall ends
	01	
12(vii)	From the graph, $\alpha < \beta$.	B1 – correct $\alpha < \beta$
	$Q \frac{dx_1}{dx_1}$ for $S_1 > \frac{dx}{dx_1}$ for S and both curves start from the origin.	D1 compating surplain
	dt dt	$\mathbf{D}\mathbf{I}$ – correct reason explain using the concentration of the
		using the concentration of the

Qn	Suggested Solution	Marking Scheme
1 [8] (a)	$\int \frac{x+1}{x^2+3x+9} \mathrm{d}x$	M1 – Correct separation of terms
	$= \frac{1}{2} \int \frac{2x+2+1-1}{x^2+3x+9} dx$ = $\frac{1}{2} \int \frac{2x+3}{x^2+3x+9} dx = \frac{1}{2} \int \frac{1}{x^2+3x+9} dx$	M1 – Apply $\int \frac{f'(x)}{f(x)} dx$ or
	$= \frac{1}{2} \int \frac{1}{x^2 + 3x + 9} dx = \frac{1}{2} \int \frac{1}{x^2 + 3x + 9} dx$ $= \frac{1}{2} \ln x^2 + 3x + 9 - \frac{1}{2} \int \frac{1}{x^2 + 3x + 9} dx$	MF26 formula to obtain $\frac{1}{2x+3}$
	$2^{-1} \left[x + \frac{3}{2} \right]^{2} + 9 - \frac{9}{4}$	$\frac{1}{k} \operatorname{tan} \left(\frac{1}{k} \right)$ A1 - Either $\frac{1}{k} \ln \left x^2 + 3x + 9 \right $ or
	$=\frac{1}{2}\ln\left x^{2}+3x+9\right -\frac{1}{2}\int\frac{1}{(x+\frac{3}{2})^{2}+\left(\frac{\sqrt{27}}{4}\right)^{2}}\mathrm{d}x$	$\frac{1}{3\sqrt{3}} \tan^{-1} \left(\frac{2x+3}{3\sqrt{3}} \right)$
	$= \frac{1}{2} \ln \left x^2 + 3x + 9 \right - \frac{1}{3\sqrt{3}} \tan^{-1} \left(\frac{2x+3}{3\sqrt{3}} \right) + C$	A1 – Correct answer with $+C$
1(b)	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = -\sin\theta, \ \frac{1}{\sqrt{2}} = \cos\theta =>\theta = \frac{\pi}{4}$	B1 – Obtain $\theta = \frac{\pi}{4}$ and $\theta = \frac{\pi}{2}$
	$0 = \cos\theta \Longrightarrow \theta = \frac{\pi}{2}$ $\int_{0}^{\frac{1}{\sqrt{2}}} \frac{x^{2}}{\sqrt{1 - x^{2}}} dx = \int_{\frac{\pi}{2}}^{\frac{\pi}{4}} \frac{\cos^{2}\theta}{\sqrt{1 - \cos^{2}\theta}} \cdot (-\sin\theta) d\theta$	and differentiate correctly to get $\frac{dx}{d\theta} = -\sin\theta$
	$= \int_{\frac{\pi}{2}}^{\frac{\pi}{4}} (-\cos^2 \theta) \mathrm{d}\theta$	M1 –and apply substitution to the integral and obtain $\int_{\theta_1}^{\theta_2} \cos^2 \theta d\theta$
	$=\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}\cos^2\theta\mathrm{d}\theta$	M1 – Attempt to apply double
	$=\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{1+\cos 2\theta}{2} \mathrm{d}\theta$	integration $\cos 2\theta$ correctly
	$= \left[-\frac{1}{2}\theta + \frac{1}{4}\sin 2\theta \right]_{\frac{\pi}{4}}^{\frac{\pi}{2}}$	
	$=\frac{\pi}{4} - \left(\frac{\pi}{8} + \frac{1}{4}\right)$	A1 – Correct answer in exact
	$=\frac{\pi}{8}-\frac{1}{4}$	form

Marking	Scheme	for	HCI	2018	Prelim	Paper	2
---------	--------	-----	-----	------	--------	-------	---

Qn	Suggested Solution	Marking Scheme
2[9]	$\frac{1}{(1+\sin x)^{-1}-1} (\sin x) \pm (\sin x)^2 (\sin x)^3 + \frac{1}{(1+\sin x)^2} (\sin x)$	M1 – Correct binomial expansion
(i)	$\frac{1}{1+\sin x} = (1+\sin x)^{-1} = 1 - (\sin x) + (\sin x)^{-1} - (\sin x)^{-1} + \dots$	$(1+\sin x)^{-1}$
	$=1-(x-\frac{x^{3}}{3!})+(x-\frac{x^{3}}{3!})^{2}-(x-\frac{x^{3}}{3!})^{3}+\dots$	M1 – Substitute $\sin x \approx x - \frac{x^3}{3!}$
	$=1-x+x^2-\frac{5}{6}x^3+$	A1 – Correct answer
2(ii)	Replace x by x^3 ,	M1 – Replace <i>x</i> by x^3
	$\frac{1}{1+\sin x^3} = 1 - x^3 + x^6 - \frac{5}{6}x^9 + \dots$	
	$\Rightarrow \frac{f^9(0)}{9!} = -\frac{5}{6}$	
	$\Rightarrow f^{9}(0) = -\frac{5}{6} \times 9! = -302400$	A1 – Correct answer
2(iii)	$(1+\frac{x}{a})^{b} = 1 + b(\frac{x}{a}) + \frac{b(b-1)}{2}(\frac{x}{a})^{2} + \frac{b(b-1)(b-2)}{6}(\frac{x}{a})^{3} + \dots$	B1 – Correct expansion for $(1+\frac{x}{-})^b$
	$\frac{1}{1-\sin x} = 1+x+x^2 + \frac{5}{6}x^3 + \dots$	a B1 – Correct expansion for
	Coefficient of x: $\frac{b}{a} = 1 \Rightarrow a = b (1)$	$\frac{1}{1-\sin x}$
	Coefficient of x^2 : $\frac{b(b-1)}{2a^2} = 1(2)$	M1 - or at least 2 correct equation
	Sub (1) into (2):	out of 3 (eqs 1,2,4)
	$\frac{b(b-1)}{2b^2} = 1$	And attempt for attempt to solve
	$\Rightarrow \frac{(b-1)}{2h} = 1$	simult equations involving <i>a</i> and <i>b</i>
	$\Rightarrow b-1=2b$	
	$\Rightarrow b = 1 (3)$	
	Coefficient of x^3 : $\frac{b(b-1)(b-2)}{6a^3} = -\frac{5}{6}(4)$	
	Sub (1) and (2) into (4): b(b-1)(b-2) = 5	
	$\frac{b(b-1)(b-2)}{6a^3} = \frac{5}{6}$	
	$\Rightarrow \frac{b(b-1)}{2a^2} \frac{b-2}{3a} = \frac{5}{6}$	
	$\Rightarrow \frac{b-2}{3b} = \frac{5}{6}$	A1 – Correct conclusion
	$\Rightarrow h = \frac{4}{2} = (5)$	
	$\rightarrow v - \frac{1}{3} =(3)$	

Qn	Suggested Solution	Marking Scheme
	Results in (3) and (4) contradict each other. Hence the statement is invalid.	
3[11] (i)	y T	G1 – Correct shape of graph for $y = ae^{a-x}$ for $0 \le x < a$.
	y = f(x)	G1 – Correct shape of graph for $y = \left \frac{1}{a} (x-a)^2 - a \right $ for $x \ge a$
	ae^{a} $y = a$	G1 – Axial intercepts
	a $2a$ x	
	Since the line $y = a$ cuts the graph $y = f(x)$ more than once, f is not a one-one function and therefore f^{-1} does not exist.	B1 – Give a counter example to show inverse does not exist
3(ii)	Largest value of $k = 2a$	B1
3(iii)	Let $y = f(x) \Rightarrow f^{-1}(y) = x$ 1. $y = a - \frac{1}{a}(x-a)^2$ $(x-a)^2 = a^2 - ay$ $x = a \pm \sqrt{a^2 - ay}$ (reject $x = a - \sqrt{a^2 - ay} Q \ x \ge a$)	M1 – attempt to make x the subject for both expressions of f(x)
	$\therefore x = a + \sqrt{a^2 - ay}$	
	2. $y = ae^{a-x}$	M1 – at least one of the expressions of $f^{-1}(y)$ correct
	$a - x = \ln \frac{y}{a}$	
	$x = a - \ln \frac{x}{a}$ $\therefore f^{-1} : x a \begin{cases} a + \sqrt{a^2 - ax} & \text{for } 0 \le x \le a \\ a - \ln \frac{x}{a} & \text{for } a < x \le ae^a \end{cases}$	A1 – correct answer with domain, in similar form Do not award full mark if student did not explain

Qn	Suggested Solution	Marking Scheme
3(iv)	$f\left(\frac{a}{2}\right) = ae^{a-\frac{a}{2}} = ae^{\frac{a}{2}}$	
	$\mathrm{ff}\left(\frac{a}{2}\right) = \mathrm{f}\left[\mathrm{f}\left(\frac{a}{2}\right)\right]$	M1 – attempt to substitute $ae^{\frac{a}{2}}$ using the correct expression
	$= f\left(ae^{\frac{a}{2}}\right)$	
	$=a-\frac{1}{a}\left(ae^{\frac{a}{2}}-a\right)^{2}$	
	$= a - a \left(e^{\frac{a}{2}} - 1 \right)$	
	$= a e^{\overline{2}} \left(2 - e^{\overline{2}} \right)$	A1 – correct answer
	Since $0 < a \le \ln 2$	
	$0 < \frac{a}{2} \le \ln \sqrt{2}$	
	$1 < e^{\frac{a}{2}} \le \sqrt{2}$	
	$a < a \mathrm{e}^{\frac{a}{2}} \le a \sqrt{2} < 2a$	
	Alternatively,	OR
	$\begin{bmatrix} ae^{a-x} & \text{for } 0 \le x < a \end{bmatrix} = \begin{bmatrix} (a, ae^a] \end{bmatrix}$	
	$f(x) = \begin{cases} a - \frac{1}{a}(x-a)^2 & \text{for } a \le x \le 2a \end{cases} \qquad R_f = \begin{cases} 0 & a \\ 0 & a \end{cases}$	M1 – finding ff (x) with at least one of the expressions correct
	$\therefore \text{ ff}(x) = \begin{cases} a - \frac{1}{a} (ae^a - a)^2 = a - a(e^a - 1)^2 & \text{ for } 0 \le x < a \\ a - \frac{1}{a} (ae^a - a)^2 = a - a(e^a - 1)^2 & \text{ for } 0 \le x < a \end{cases}$	A1 – correct answer
	$\left[ae^{a-a+-(x-a)} = ae^{-(x-a)}\right] \text{for } a \le x \le 2$	a
	$\mathrm{ff}\left(\frac{a}{2}\right) = a - a\left(\mathrm{e}^{\frac{a}{2}} - 1\right)^2 = a\mathrm{e}^{\frac{a}{2}}\left(2 - \mathrm{e}^{\frac{a}{2}}\right)$	

Qn	Suggested Solution	Marking Scheme
	Note for students:	
	$\begin{bmatrix} \text{IOI II to exist, } \mathbf{K}_{\rm f} \subseteq \mathbf{D}_{\rm f} \end{bmatrix}$	
	$R_{f} = [0, ae^{\alpha}]$	
	$\mathbf{D}_{\mathrm{f}} = \begin{bmatrix} 0, 2a \end{bmatrix}$	
	$\Rightarrow ae^a \leq 2a$	
	$a\left(e^{a}-2\right) \leq 0$	
	Since $a > 0$, $e^{a} - 2 \le 0$	
	$a \leq \ln 2$	
	$\therefore 0 < a \le \ln 2$	
4[12]	Let $t = x - 1 = \frac{y}{2} = z - 3$, $t \in i$.	
(1)	$\therefore x = 1 + t$	
	y = 0 + 2t	
	z = 3 + i (1) (1)	D1. their connect line disc
	Hence $l: r = \begin{bmatrix} 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $t \in i$.	B1: obtain correct direction vector of l
	$\sqrt{3}$	
	$\begin{pmatrix} 2 \end{pmatrix} \begin{pmatrix} k \end{pmatrix} \begin{pmatrix} 7 \end{pmatrix}$	
	Normal of p is $\begin{vmatrix} 1 \\ -3 \end{vmatrix} \times \begin{vmatrix} 1 \\ 4 \end{vmatrix} = \begin{vmatrix} -8 - 3k \\ 2 - k \end{vmatrix}$	M1: apply cross product on 2 direction vectors
	Since l and p are parallel	
	$\begin{pmatrix} 7 \end{pmatrix}$ (1)	
	$\begin{vmatrix} -8-3k \end{vmatrix}$ and $\begin{vmatrix} 2 \end{vmatrix}$ are perpendicular.	
	$\begin{pmatrix} 2-k \end{pmatrix}$ $\begin{pmatrix} 1 \end{pmatrix}$	
	$\begin{pmatrix} 7 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix}$	AG1: apply dot product
	Hence $\begin{vmatrix} -8 - 3k \end{vmatrix}$, $2 \end{vmatrix} = 0$	$\begin{pmatrix} 7 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix}$
	$\begin{pmatrix} 2-k \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix}$	$\begin{vmatrix} -8 - 3k \end{vmatrix}$. 2 = 0 and obtain
	7 - 16 - 6k + 2 - k = 0	$\begin{pmatrix} 2-k \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix}$
	$\therefore k = -1$ (shown)	k = -1
4(ii)	<u>Method 1</u> : (using equation of p in dot product form)	
	$\begin{pmatrix} 7 \end{pmatrix} \begin{pmatrix} 5 \end{pmatrix} \begin{pmatrix} 7 \end{pmatrix}$	(7)
	$ p: r \cdot -5 = \begin{bmatrix} -2 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} -5 \\ 3 \end{bmatrix} = 48 $	M1: obtain $p: r_{0,1} = 48$

Qn	Suggested Solution	Marking Scheme
	Substitute a point $(1,0,3)$ on l into p ,	
	$\begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 7 \end{pmatrix}$	A1: show l does not lie on p
	$\begin{vmatrix} 0 \\ -5 \end{vmatrix} = 16 \neq 48$	and conclude l and p do not
	$\begin{pmatrix} 3 \end{pmatrix} \begin{pmatrix} 3 \end{pmatrix}$	intersect.
	Hence l does not lie on p .	
	\therefore <i>l</i> and <i>p</i> do not intersect. (shown)	
	<u>Method 2</u> : (using equation of p in parametric form)	
	If l and p intersect,	
	$ \begin{pmatrix} 1\\0\\3 \end{pmatrix} + t \begin{pmatrix} 1\\2\\1 \end{pmatrix} = \begin{pmatrix} 5\\-2\\1 \end{pmatrix} + \lambda \begin{pmatrix} 2\\1\\-3 \end{pmatrix} + \mu \begin{pmatrix} -1\\1\\4 \end{pmatrix} $	M1: equating l and p
	$ \begin{pmatrix} 1+t\\ 2t\\ 3+t \end{pmatrix} = \begin{pmatrix} 5+2\lambda-\mu\\ -2+\lambda+\mu\\ 1-3\lambda+4\mu \end{pmatrix} $	
	$\therefore 2\lambda - \mu - t = -4$	
	$\lambda + \mu - 2t = 2$	
	$-3\lambda + 4\mu - t = 2$	
	Solving using GC, no solution. \therefore <i>l</i> and <i>p</i> do not intersect. (shown)	A1: show system of equations has no solution and conclude l
<i>A</i> (iii)		and p do not intersect.
4(111)	<u>Method 1</u> : (using $\begin{vmatrix} a & b \\ 0 & 0 \end{vmatrix}$)	
	Using points $(1,0,3)$ on l and $(5,-2,1)$ on p ,	
	$ \begin{pmatrix} 5\\-2\\1 \end{pmatrix} - \begin{pmatrix} 1\\0\\3 \end{pmatrix} = \begin{pmatrix} 4\\-2\\-2 \end{pmatrix} $	M1: attempt to find a vector from l to p
	Hence required distance = $ \begin{pmatrix} 4 \\ -2 \\ -2 \end{pmatrix} \cdot \frac{1}{\sqrt{83}} \begin{pmatrix} 7 \\ -5 \\ 3 \end{pmatrix} $	M1: use $\begin{vmatrix} a \cdot b \\ \% \\ \% \\ \% \end{vmatrix}$ to find distance
	$=\frac{32}{\sqrt{83}}=\frac{32\sqrt{83}}{83}$ units	A1: correct answer
	<u>Method 2</u> : (using intersection of \perp line with p)	
	Using the point $(1,0,3)$ on l ,	
	Equation of line through $(1,0,3)$ and perpendicular to p is	

Qn	Suggested Solution	Marking Scheme
	$r = \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix} + s \begin{pmatrix} 7 \\ -5 \\ 3 \end{pmatrix}, s \in 1$ When line intersects p , $\begin{pmatrix} 1+7s \\ -5s \\ 3+3s \end{pmatrix}, \begin{pmatrix} 7 \\ -5 \\ 3 \end{pmatrix} = 48$ 7+49s+25s+9+9s=48 $\therefore s = \frac{32}{83}$ Hence required distance $= \begin{vmatrix} 32 \begin{pmatrix} 7 \\ -5 \\ 3 \end{vmatrix} = \frac{32\sqrt{83}}{83}$ units	M1: substitute equation of line into equation of p to find intersection M1: use $\left s \begin{pmatrix} 7 \\ -5 \\ 3 \end{pmatrix} \right $ to find required distance A1: correct answer
4(iv)	$A(2,2,4)$ $A(2,2,4)$ I $A(2,2,4)$ P $Method 1: (using part (iii))$ From (iii), $\overrightarrow{AN} = \frac{32\sqrt{83}}{83} \left[\frac{1}{\sqrt{83}} \begin{pmatrix} 7\\-5\\3 \end{pmatrix} \right] = \frac{32}{83} \begin{pmatrix} 7\\-5\\3 \end{pmatrix}$ $\therefore \overrightarrow{ON} = \overrightarrow{OA} + \overrightarrow{AN} = \begin{pmatrix} 2\\2\\4 \end{pmatrix} + \frac{32}{83} \begin{pmatrix} 7\\-5\\3 \end{pmatrix} = \frac{1}{83} \begin{pmatrix} 390\\6\\428 \end{pmatrix}$ Hence $N\left(\frac{390}{83}, \frac{6}{83}, \frac{428}{83}\right)$ [or $N(4.70, 0.0723, 5.16)$] $Method 2: (using intersection of \bot line through A with p) Equation of line through (2, 2, 4) and perpendicular to p is$	M1: attempt to find \overrightarrow{AN} using $\begin{bmatrix} 4 \\ -2 \\ -2 \end{bmatrix} \cdot n = n = n = n = n = n = n = n = n = n$

Qn	Suggested Solution	Marking Scheme
	$r = \begin{pmatrix} 2 \\ 2 \\ 4 \end{pmatrix} + \gamma \begin{pmatrix} 7 \\ -5 \\ 3 \end{pmatrix}, \gamma \in 1$ When line intersects $p, \begin{pmatrix} 2+7\gamma \\ 2-5\gamma \\ 4+3\gamma \end{pmatrix}, \begin{pmatrix} 7 \\ -5 \\ 3 \end{pmatrix} = 48$ $14+49\gamma-10+25\gamma+12+9\gamma=48$ $\therefore \gamma = \frac{32}{25}$	M1: substitute equation of line into equation of p to find intersection
	$\therefore \overrightarrow{ON} = \begin{pmatrix} 2 \\ 2 \\ 4 \end{pmatrix} + \frac{32}{83} \begin{pmatrix} 7 \\ -5 \\ 3 \end{pmatrix} = \frac{1}{83} \begin{pmatrix} 390 \\ 6 \\ 428 \end{pmatrix}$ Hence $N \begin{pmatrix} 390 \\ 22 \\ 3 \end{pmatrix}, \frac{6}{22}, \frac{428}{22} \end{pmatrix}$ [or $N(4.70, 0.0723, 5.16)$ 3 s.f]	A1: correct coordinates of <i>N</i> .
	$(83 \ 83 \ 83)^{-1}$ Let $N'(x, y, z)$ be the reflection of N in l . $\therefore \begin{pmatrix} 2\\2\\-1\\2 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} x + \frac{390}{83}\\y + \frac{6}{83}\\420 \end{pmatrix}$	M1: use mid-point theorem to find N'
	$(4) \left(z + \frac{428}{83}\right)$ $x = -\frac{58}{83}, y = \frac{326}{83}, z = \frac{236}{83}$ $\therefore N'(-\frac{58}{83}, \frac{326}{83}, \frac{236}{83}) [\text{or } N'(-0.699, 3.93, 2.84)]$	A1: correct coordinates of N'
5(i)	$P(Y \text{ is odd}) = \frac{\frac{1}{4}}{1 - \frac{1}{4}} = \frac{1}{3}$	M1 – Using correct GP sum formula with either <i>a</i> or <i>r</i> correct. A1 – correct answer.

Qn	Suggested Solution	Marking Scheme
5(ii)	$P(Y_1 + Y_2 < 4 Y_1 + Y_2 > 2)$	M1 – Getting $\frac{P(Y_1 + Y_2 = 3)}{P(Y_1 + Y_2 > 2)}$.
	$= \frac{P(2 < Y_1 + Y_2 < 4)}{(Y_1 + Y_2 = 3)} = \frac{P(Y_1 + Y_2 = 3)}{(Y_1 + Y_2 = 3)}$	$\mathbf{r} \left(I_1 + I_2 > 2 \right)$ M1 Getting 6 cases for
	$P(Y_1 + Y_2 > 2) \qquad 1 - P(Y_1 + Y_2 \le 2)$	denominator in the complement
	$P((Y_1, Y_2) = (0,3), (1,2), (2,1), (3,0))$	method, or 10 cases for
	$-\frac{1}{1-P((Y_1,Y_2)=(0,0),(0,1),(0,2),(1,0),(1,1),(2,0))}$	denominator in the direct method.
	$2\left[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right]$	A1 – Getting numerator or
	$=\frac{121648}{5}=\frac{8}{5}=\frac{2}{5}$	denominator correctly.
	$1 - \left\lfloor \frac{1}{2} \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} \right) + \frac{1}{4} \left(\frac{1}{2} + \frac{1}{4} \right) + \frac{1}{8} \frac{1}{2} \right\rfloor = \frac{5}{16} = 5$	AI – Correct answer.
6(i)	No of ways = $2^{6}6! = 46080$	M1 – Getting 2^6 or $6!$
		A1 – Correct answer.
6(11)	$\frac{\text{Method I}}{\text{Ne of more } = (1/5C)(2) - 8(4000)$	$\mathbf{M1} = \text{Getting 6! 5! or 5! 5!}$ $\mathbf{M1} = \text{Multiply by 2}$
	No of ways = $6!(C_1)5!(2) = 864000$	A1 - Correct answer.
	Method 2	
	No of ways with all women next to one another and all men	M1 – Complement method with
	next to one another = $6! 6! 2 = 1036800$	M1 - Multiply by 2.
	No of ways with couple seated at 6^{m} and 7^{m} seat together,	A1 – Correct answer.
	and all women next to one another and all men next to one another	
	=5! 5!(6)(2) = 172800	
	Required no of ways = $1036800 - 172800 = 864000$	
	No of arrangement = $(5-1)!2 = 48$	M1 – Getting $(5-1)! = 24$
	Probability required = $\frac{48}{9!} = \frac{1}{7560}$ (or 0.000132 (3 s.f.))	A1 – Correct answer.
7(i)	5. 1000	B1 – Correct relative positions of
	d	points for scatter plot
		B1 – Correct labelling of axes
	25.90	D1 – Concernationing of axes.
	5.00	
	30 80	
	50 50	
7(ii) (a)	0.902 (3 s.f.)	B1 – Correct r value

Qn	Suggested Solution	Marking Scheme
7(ii)	0.955 (3 s.f.)	B1 – Correct <i>r</i> value
(b)		
7(iii)	From the scatter plot of the data, it seems to fulfil the traits of exponential curve rather than a linear curve. For Model II, the <i>r</i> value is closer to 1 as compared to Model I. Thus Model II is better.	B1 – Correct explanation
7(iv)	$d = e^{cv+d}$	
	ln d = cv + d Regression line of ln d on v: ln d = 0.0342758025v + 0.34294554177 $ln d = 0.0343v + 0.343 (3 s f)$	B1 – Correct regression line of $\ln d$ on v .
7()	$\frac{10}{100} = \frac{10}{100}$	
7(v)	when $a = 10$, $\ln 10 = 0.0342758025v + 0.34294554177$ v = 57.2 km/h	B1 – Correct answer
7(vi)	d = 0.4256v - 11.74	
	$(\overline{d}, \overline{v})$ satisfies the regression line.	M1 – using $(\overline{d}, \overline{v})$ on regression line.
	$\Rightarrow d = 0.4256v - 11.74$	M1 – calculating \overline{d} or \overline{v}
	Let d be the distance travelled after brakes are applied.	correctly.
	$\Rightarrow \frac{(68.15+d)}{7} = 0.4256 \frac{(330+75)}{7} - 11.74$	A1 – correct answer
	$\Rightarrow 68.15 + d = (0.4256)(405) - (11.74)(7)$	
	$\rightarrow d - 22.04$ metres	
8 (i)	Let X denote the time taken to finish a meal	
	$\overline{x} = \frac{1}{n} \sum x = \frac{1380}{50} = 27.6$	B1 – correct unbiased estimate of population mean
	$s^{2} = \frac{1}{n-1} \left(\sum x^{2} - \frac{\left(\sum x\right)^{2}}{n} \right)$	B1 – correct unbiased estimate of population variance
	$=\frac{1}{49}\left(83000 - \frac{1380^2}{50}\right)$	
	$=\frac{44912}{49}=916.57$	
	=917 (3 s.f.)	
8(ii)	Let μ be the population mean time taken for a student to	B1 – Correct H_0 and H_1
	finish a meal during recess.	

Qn	Suggested Solution	Marking Scheme
	$H_0: \mu = 20$	
	$H_1: \mu > 20$ Under H_0 , test statistic, $Z = \frac{\overline{X} - 20}{\sqrt{44912/49}} \sim N(0, 1)$	M1 – Doing Z-test with correct standardisation
	$\sqrt{50}$ approximately by Central Limit Theorem, since $n = 50$ is sufficiently large. <i>p</i> -value = 0.0379 (3 s.f.) Since <i>p</i> -value = 0.0379 < 0.05, we reject H_0 at 5% level of	 A1 – Correct <i>p</i>-value A1 – Correct conclusion (award only if <i>p</i>-value is correct) B1 – Correct assumption
	significance. There is sufficient evidence to conclude that the time taken by students is more than 20 minutes. Assumption: Time taken by each student is independent of each other and that the students are chosen randomly.	
8(iii)	5% level of significance means there is a probability of 0.05 of concluding that the population mean time taken by a student to finish a meal during recess is more than 20 minutes when in fact, the population mean time is not more than 20 minutes.	B1 – Correct definition in context. (accept if underlined phase is "population mean time is 20 minutes")
8(iv)	Jack did the Z-test with 1-tail test and rejected H_0 . Jill did the Z-test with 2-tail test. <i>p</i> -value for 1-tail test = 0.0379, which is < 0.05. With the same test statistic, under Z-test 2-tail test, the <i>p</i> -value will be doubled, i.e. 0.0379 x 2 = 0.0758 > 0.05. Jill will not be rejecting H_0 and have a different conclusion from Jack.	 M1 – p-value in 2 tail test = 2(p-value in 1 tail test) A1 – Correct conclusion
9(i)	Binomial distribution. The colour of a ball chosen is independent of another.	B1 – Correct reason
9(ii)	Let <i>Y</i> denote no of red balls obtained in 2 <i>n</i> draws from the bag. <i>Y</i> : B $\left(2n, \frac{1}{3}\right)$ P $\left(Y \le 10\right) \le 0.5$ When $n = 15$, P $\left(Y \le 10\right) = 0.5848 > 0.5$ When $n = 16$, P $\left(Y \le 10\right) = 0.4836 < 0.5$ Thus least $n = 16$.	M1 – Distribution of <i>Y</i> and inequality $P(Y \le 10) \le 0.5$ M1 – giving probabilities for 2 cases <i>n</i> =15 and <i>n</i> =16. A1 – Correct answer.
9(iii)	Let S denote no of red balls obtained by Sue. S : B $\left(5,\frac{1}{2}\right)$	
	Let <i>B</i> denote no of red balls obtained by Ben. <i>B</i> : B $\left(5,\frac{1}{3}\right)$ Required probability	

Qn	Suggested Solution	Marking Scheme
	= P(Sue wins gets > 3 red balls)	M1 – apply conditional
	P(Sue wins and gets > 3 red balls)	probability
	$= \frac{P(\text{gets} > 3 \text{ red balls})}{P(\text{gets} > 3 \text{ red balls})}$	WII – confect numerator cases
	$P(S = 4) P(B \le 3) + P(S = 5) P(B \le 4)$	A1 – correct answer (3 s.f.)
	$= \frac{1 - P(S \le 3)}{1 - P(S \le 3)}$	
	_ 0.0433877	
	0.045267	
	= 0.958	
9(iv)	Let <i>X</i> denote number of balls drawn before Sue obtains 2 yellow balls.	
	$P(X = 2) = P(YY) = \frac{3}{6} \cdot \frac{2}{5} = \frac{1}{5}$	B1 – correct probability for 2 out of the 4
	$P(X = 3) = P(YY'Y, Y'YY) = \frac{3}{6} \cdot \frac{3}{5} \cdot \frac{2}{4} \cdot 2 = \frac{3}{10}$	B1 – All probabilities correct
	$P(X = 4) = P(YY'Y'Y, Y'YY'Y, Y'Y'YY) = \frac{3}{6} \cdot \frac{3}{5} \cdot \frac{2}{4} \cdot \frac{2}{3} \cdot 3 = \frac{3}{10}$	
	P(X=5)	
	= P(YY'Y'Y'Y,Y'YY'Y'Y,Y'Y'Y,Y'Y'Y,Y'Y'YY)	
	$=\frac{3}{2},\frac{3}{2},\frac{2}{2},\frac{1}{2},\frac{2}{2},4=\frac{1}{2}$	B1 – Correct Expectation
	6 5 4 3 2 5	M1 – Correct method to get
	$= (2)\left(\frac{1}{5}\right) + (3)\left(\frac{3}{10}\right) + (4)\left(\frac{3}{10}\right) + (5)\left(\frac{1}{5}\right)$	variance (SOI) A1 - Var(X) correct
	= 3 5	
	(or by observation of data in table)	
	1-Var Stats x=3.5 Σx=3.5 Σx ² =13.3 Sx= σx=1.024695077 n=1 minX=2 ↓Q1=3 ■	
	Use $\operatorname{Var}(X) = \operatorname{E}(X^2) - \left[\operatorname{E}(X)\right]^2$	

Qn	Suggested Solution	Marking Scheme
	$Var(X) = 1.05 = \frac{21}{20}$	
	20	
10	Let <i>D</i> be the time taken to drive to office. $D \sim N(14, 2.1^2)$	M1 – getting N(14+4 μ , 4.57)
	Let <i>T</i> be the time held up at a traffic light junction.	correctly and formulating
	$T \sim \mathrm{N}(\mu, 0.2^2)$	$P(D+T_1+T_2+T_3+T_4 \le 20)$
	$D + T_1 + T_2 + T_3 + T_4 \sim N(14 + 4\mu, 4.57)$	= 0.713
	$P(D+T_1+T_2+T_3+T_4 \le 20) = 0.713$	standardization or from GC.
	$P(Z \le \frac{20 - (14 + 4\mu)}{\sqrt{4.57}}) = 0.713$	AG1 – correct answer
	$\frac{6-4\mu}{\sqrt{4.57}} = 0.5621702875$	B1 – correct assumption
	$\mu = 1.19955$	
	=1.2 (1 d.p.)	
	The driving time and the time held up at the traffic light junctions are independent of one another.	
10(i)	Probability Tony is late on 2 days in the first 9 days	M1 – showing
	$={}^{9}C_{2}(0.713)^{7}(1-0.713)^{2}=0.2777749021$	$\alpha(0.713)^{\prime}(1-0.713)^{2}$ or
	P(Tony is late at his office for the third time on the 10^{th} day)	showing the
	$={}^{9}C_{2}(0.713)^{7}(1-0.713)^{2}(1-0.713)$	use of $B(9, 1-0.713)$
	=0.0797 (3 s.f.)	AI – concet answer
10(ii)	$D - 10T \sim N(2, 8.41)$	M1 – getting distn of $D - 10T$
	P(D < 10T) = P(D - 10T < 0) = 0.245 (3 s.f.)	A1 – correct answer
10(iii)	$D - (T_1 + T_2 + T_3 + T_4) \sim N(9.2, 4.57)$	M1 – getting N(9.2, 4.57) with
	$P(D - (T_1 + T_2 + T_3 + T_4) > 8)$	at least one of 2 parameters
	$= 1 - P(-8 < D - (T_1 + T_2 + T_3 + T_4) < 8)$	M1 - formulate correctly
	=1-0.28728	$P(D-(T_1+T_2+T_3+T_4) > 8)$ and
	= 0.713 (3 s.f.)	attempt to remove modulus
		A1 - correct answer
10(iv)	Let μ be the population mean time held up at a traffic light	M1 – getting distn of \overline{X}
	junction, \overline{X} be the mean time held up at a traffic light in a	correctly and formulating
	sample of size <i>n</i> . $\overline{X} \sim N\left(\mu, \frac{0.2^2}{n}\right)$	$P\left(\left \overline{X} - \mu\right \le \frac{1}{12}\right) \ge 0.98$

Qn	Suggested Solution	Marking Scheme
	Given $P\left(\left \overline{X} - \mu\right \le \frac{1}{12}\right) \ge 0.98$	M1 – attempt to solve by standardizing or showing list of GC table values
	$P\left(\left Z\right \le \frac{\frac{1}{12}}{\frac{0.2}{\sqrt{n}}}\right) \ge 0.98$	A1 – correct answer
	$\mathbf{P}\left(-\frac{5\sqrt{n}}{12} \le Z \le \frac{5\sqrt{n}}{12}\right) \ge 0.98$	
	$\frac{5\sqrt{n}}{12} \ge 2.326347877$	
	$n \ge 31.17$	
	Smallest $n = 32$	
	OR	
	Using GC Tables,	
	$n = 31, P\left(-\frac{5\sqrt{n}}{12} \le Z \le \frac{5\sqrt{n}}{12}\right) = 0.9797$	
	$n = 32, P\left(-\frac{5\sqrt{n}}{12} \le Z \le \frac{5\sqrt{n}}{12}\right) = 0.9816$	
	NORMAL FLOAT AUTO REAL RADIAN MP	
	30 0.9775 31 0.9775 32 0.9816 33 0.9833 34 0.9849 35 0.9863 36 0.9876 37 0.9887 38 0.9898 39 0.9907	
	X=30	