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In the finals of a General Knowledge Quiz, a team is required to answer 25 questions. Each

question that is correctly answered scores 5 points, while a question that is wrongly answered

is deducted 3 points. If the answer is partially correct, the team scores 2 points.

After 24 questiéns, the results are shown in the following table.

Number of Questions

Correct | Partially Correct | Wrong Points

a-' b c . 79

If the team answers the last question wrongly, then the total number of questions answered

correctly and partially correct is four times the number of questions answered wrongly. By

forming a system of linear equations, find the values of a, b and c.

A sequence u,,u,, u,, ... is such that =% and

1

=u,— . forallrz1.
SN P T ) (S

U

(i)  Use the method of mathematical induction to prove that u, = y ;1 s
n —
(ii) Hence prove that the sum of the first # terms of the series
1 1 1
+ + +
5%x9 7x11 9x13

3__ n+3
35 4(n+3)' -1

(iii) Give a reason why the series in part (ii) is convergent and state the sum to infinity

M

[4]

B3]

el
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The diagram shows the curve C with equation y = 12 which has a turning point at

Bx+2)2 +4

(—%, 3) . The region R is bounded by C, the y-axis and the line y = 3.

i
[SSERN]
w
N’
s

D
Y= Bxr2)7 +4

o

(i) Find the exact area of R. [51
(i) Risrotated through 2 zradians about the y-axis. Find the volume of the solid of revolution

formed, giving your answer to 4 decimal places. [3]

Let y= tan(2tan_]x+ %) .

: dy '
() Show that (1+x )dx 2(1+%). (2]
(ii) Hence find the Maclaurin series for y, up to and including the term in x”. [4]

Denote the answer to part (ii) of the Maclaurin series by g(x) and f(x) = tan (2tan"x +%—) .

‘ (m) Fmd for -0.4<x<0. 4 the set of values of x for wh1ch the value of g(x) is w1th1n H0.5

ofthevalueoff(x) . o _' N o [2]:_:
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A curve C has parametric equations
x=2sin2t, y=cos2t, for0<t<um.
(i) Show that the equation of the normal to C at the point P with parameter 8 is
(2c0s26)x—(sin260) y = msin26 cos26,
where m is an integer to be determined. : {31
(if) The normal to C at the point P cuts the x-axis and y-axis at points 4 and.B respectively.

By finding the mid-point of 4B, determine a cartesian -equation of the locus of the mid-

point of AB as @ varies. ‘ [5]

A function f is said to be self-inverse if f(x)=f""(x) for all x in the domain of .

The function g is defined by

gixk>
(i)  Sketch the curve y=g(x), stating the equations of the asymptotes clearly. 2]
(i) Define g™' in a similar form and show that g is self-inverse. [4]

(iii) Show that g”(x) = x and that g’ (x) = g(x) . Hence find the values of x for which

4-g*(x)=[eg" (x)]"- [4]

@ Find [ cos(h‘x) . [4]

(b) Usmg the substitution % = \/x+ ﬁnd I J_3 dx , giving your answer in the form' - -
+ _

V3 e+da )

where a, b, ¢ and d are constants to be determined. [6]

(%)
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The complex number z satisfies the following inequalities:
lzlz <4 and —%Sarg(z+\/§—i) <0.

(i) On an Argand diagram, sketch the regidﬂ R in which the point representing z can lie.

(4]
(i) Find exactly the minimum and maximum possible values of lz - 2i| . 31
(iii) Determine the number of roots of the equation z'® =2'% that lie in the region R.  [3]
. m2
Itis given that f(x)=x+ , where 0 <m<1.
x —
(i) Sketch the graph of y =f(x) , showing clearly the coordinates of the turning points -
and the equation(s) of any asymptote(s). [5]

(i) By inserting a suitable graph to your sketch in (i), find the set of \}alues of k, in terms of

m, for which the equation x* —(2+k)x+(m* +2k) =0 has two distinct positive roots.

(4]

(iii) The curve y =f(x) undergoes the transformations 4, B and C in succession:

A: A translation of —2 units in the direction of x-axis,

.. 1
B: A stretch paralle] to the x-axis with scale factor of 5 and
C: ‘A translation of —2 units in the direction of y-axis.

Given that the resulting curve is y =2x+ 8—1- , find the value of m. 2]
X
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$[50 000(1.002""")~501 000(1.002" 1) | [41
(i) -- Find the number of instalments required for Sam to settle all the amount owed. - '[2] :
- (i) How much does he pay on his last instalment?- ' »

4 2

The point 4 has position vector | —3 | and the line / has equation r=| -3 |+ 1
0 B 1 -1
Ael.
(i) Find the position vector of the foot of the perpendicular from 4 to /.
(i) Show that a cartesian equation of the plane 7z, which contains 4 and /is
x+y+2z=1.
The equation of the plane 7, is x+7z =c, where c is a constant.
(iii) Given that 7;.and 7, intefsecf in a line L, show that a vector equation of L is
c =7
r=|1-c|+u| 5(,where puel.
0 1
Another plane 7, hz;s equation 2x - y+dz =5 , where d is a constant.
@iv) .F ind the values of ¢ and/or d if all three planes 7,, 7, and 7,
(a) meetin the line L, |
(b) have only one point in common.

1], where

(4]

(2]

[2]

K
1y

- At the beginning of May 2016, Sam borrowed $50 000 from a bank that charges him a special

rate of 0.2% interest at the end of every month. Sam pays back $1 000 for every instalment at

the beginning of every month, starting from June 2016.

month after the #th instalment is paid is

minimum amount (to the nearest dollar) he should pay each month?

=+ (i) Show that the total amount with interest that Sam still owes the bank at the end of the

_ 21
=+ (iv) If Sam wishes to settle all the amount owed after paying 19 instalments, what is the

(2]






2016 JC2 H2 Mathematics Prelim Paper 1 Solutions

Qn | Solution

1 |atb+c=24
S5a+2b-3c=179
a+tb=4(c+1)
a=17,b=3,c=4

2()

" :

Let P, be the statement that #, = 471 forall nel”
n —

When n=1,

1
1 LHS = u, =3 (given)

1 1
RHS =———— =~
4x1°-1 3
Hence P, is true.
k
Assume P, is true for some k€07, ie. %, BUTERE
We want t that P,,, is true, i.e. krl
e want to prove that P, ; is true, i.e. =
p k+1 . k+1 4(k+1)2_1

LHS =u,,
u, — L

(2k —1)(2k +3)
_ k 1
T (2k-1)(2k+1) (2k—1)(2k+3)
_ k(2k+3)—(2k+1)
~(2k-1)(2k +1)(2k +3)
3 2k +k-1
~(2k-1)(2k +1)(2k +3)
_ (2k-1)k+D)
| (2k-1)(2k+1)(2k+3)
| kel A
1 (2k+1)(2k+3)
 k+1

4k* +8k +3
k+1

T Mk 1) -1

= RHS

Hence P, istrue = P, is true.

Since P, istrue & P, istrue = P,,, is true, by mathematical
induction, P, is true forall ne(".




(i) | Sum of 1%* n terms of
1, 1 1 1

+ + +
5%x9  7x11 9x13 (2r+3)(2n+7)

n+2

g(zr 1)(2r+3)

n+2

= Z[ur - ur+l]

r=3

= U /u/
+/u4 /us
/IZ

+

742~ %ne3

= u3 - un+3

3 n+3

T35 a(ne3) 1

(l“) As n__>00,___r£t§2___)0
4(n+3) -1

1 3

Hence, the series is convergent and 2m 35
r— r-+

' . 0 12
. Required Area = 30— | dx
@ | J - ( (3x+2)? +4)

o 12
3 —— 1 dx
I-% ( (3x+2)2+22)
[3x 2tan"1 3x+2):'
~2

=0—2(-§)~[—2—0]

=2-Z i




12 12 12-4y

y=——5— = 3x=-2% |——4=2+
Bx+2) +4 y y
. 2 1 12—
Since x2—2, x=—24L [12=%y
373y y

Required volume = 7 j ixz dy

2
12-4y

il 33 y

4(i)

1

y=tan| 2tan” x+%

2
1+x°

Y sec? | 2tanx + 2=
dx

(1+x2)%=2 1+ tan? 2tan_1x+%

Differentiate with respect to x,

d’y , dy dy
= (1+x2)—&7+2xzx—=4y-d—x-

d’ d
:>(1+x2)—d;—ii+(2x—4y)gx}—)-=0

‘When x =0, y=tan%:-=l

o ."dy dy '
A+0)—=2(1+1)>=—=4
AT =20+ =2 = |

y=tan 2tan"x+§—

=1+4x+1—67x2+.....

=1+4x+8x% +....




(iii)

Sketch y=|f(x)~g(x)] and y =05

y4 y=|f(x)-g(x)|

/i

20359 O] 0225 X

y,=0.5

For |f(x)-g(x)[<0.5, —0.359<x<0.225

5(1) | x=2sin2¢, y=cos2t, forO<t<um.
936—=4c0521 ii)—;z—ZsinZt
dt o
dy  sin2
dx 2cos2t
Equation of normalat P, t =9
y—c0s20 = 2?0529 (x—2sin20)
sin 268 .
(sin20) y —cos26sin 26 = (2cos26) x —4cos 20sin 26
(2¢0s20)x —(sin28) y =3cos 26sin 26 (shown)
ie. m=3
(ii) | At the x-axis, y=0

(2c0s26)x =3sin20cos26
x= isin 20 ie. A(isin 20, O)
2 2
At the y-axis, x=0

—(sin20)y =3sin26cos 26
y=-3c0s20 ie. B(0, —3cos26)

mid-point of 4B: (%sin 20, -—;—cos 29)

.'x=%sin29. = sin29=ix o

y= —%co_sZH = cos20= —%y

Cartesian equation of the locus of the mid-point of 4B:
sin® 20+ cos? 20 =1

2 2
16; +%=1 ie. 162 +42=9




Qn | Solution
6(i) '
Yy
. y=1
0 x
(i)
Let y=g(x)'=
Then 2 _ x° +2 :
-1 x -1
3
2
1=
Y x* -1
xt-1= 23
y -1
=14+ 3 y +2
x=g (y) since x>1> 0
=gl ixe ,x>1
g x2—1 *

g is self-inverse as g(x)=g™' (x) and Dg_; =D,

(ii)

g’ (x) =gg(x) =gg™ (x) =~x.

g'(x)=gg’(x)=g(x). (shown)

1 1t follows that g’ (x)=xand g’ (x)=g(x), x>1
{ For 4-g"(x)= [g“ (x):r

Then 4 - x-" +2

, x>1

cxr-1

(4¥x)(x2—1)=x +2, x>1

| ¥=3x"-x+6=0, x>1
C(x=-2)(x*-x-3)=0

‘ 1+1+12
x=2 or x=—m——
2
sincex>1, = x=2 or x=l+213 (ans)




Qn S(.)lution

(Z) u =cos(lnx) % = xl—z
du _ sin(Inx) N
dx X X d 1
u = sin(In x) ™ =—
i x
I cos(lzn x) A = — cos(lnx) "- s1n(1§1 x) & 5
¥ ¥ du _ cos(lnx) pe_l
_ _ cos(inx) N sin(lnx) J-cos(ln x) dx X X
x x 2
- 9 J~ cos(lzn x) & = sinlnx)  cos(Inx)
X X
“ I&s(l_n_:g)_ [sm(ln x)—cos(Inx)}+c
x 2x

®) | yu=vJx+3 = U’ =x+3

. . . d
Differentiating w.r.t. x, 2u |

Whenx=1,u=2; Whenx=6,u=3

2
Su"

6 x—2
dx =
'Lx\/x+3 2 (u? 3) w3 ¢

-

u du)

2 )du
-3

_ 4
= ‘:Zu——z\/gln[

3

2 -
—ﬁh{3+

u_ﬁJ ’
i3 ),

NE) 2-3
e

ie.a=b=2,c=d=3




Qn | Solution

({3) o <4=|z<2
1
—%Sarg(z+x/§—i)SO:>—%Sarg[z—(—\/gfi)]so

(i) | Minimum value of Iz - 2i|
=AB

=1

Maximum value of lz - 2i]
=AC

= \/22 +2? -—2(2)(2)005-2?”-
k Wy 243

(i) 4‘-2100 = 9100 _ 51000

1. i(()4-2/{#)

T=>z=2e"""/ k=0, +1, +2, ..., +49, 50
> z=2e0 : '

~ . |'Roots are found in region R (along the minor arc CD) if

=>k=-8, -7, -6, ..., 8
.. Number of roots found in region R=17.




Qn

‘Solution
9() m*
f =
(x)=x+ —
2
Let 3L =1-—2 =0
dx (x-2)

(x—2)2 —-m* =0
x=2*m

Whenx=2+m, f(x)=2+m+%=2+2m

Whenx=2-m, f(x)=2-m+——=2-2m
2—-m-2

The stationary points are (2+m,2+2m) and (2—m,2—2m)

2+m,24+2m) 2
A y=f(x)=x+£—

x-2
y Cd
,I
vd
I"
,I

’
td

7(2~m,2—2m)

n
>

I”
Cd
’/
’I
'I
Cd
2
4 \

x=2

(i)

1 x+

x(x=2)+m’
x=2

2

f(x)=
when x =0, f(x):-m7
¥ —Q2+k)x+(m? +2k);0

X’ —2x+m*=k(x—-2)
m2 |

: =k
T x=2 )
By inserting a horizontal line y = & on the graph of C,

by observation, to have two distinct positive roots,
2

then —%—<k<2—2m or k>2+2m (ans)




(i)

2
m
=f = B —
y=~f(x) xt—
mZ
After A: y=f(x+2)=x+2+—
x

2
After B: y=f(2x+2)-_—.2x+2+_;_1__
X

After C: y=f(2x+2)-2=2x+2=
2x
N e .
Giventhat 2x+—=2x+—
2x  8x
m 1
= —=—
2 8

_ _“:>m=% since 0 <m<1 (ans)

Qn | Solution
10 | Let F be the foot of the perpendicular.
@ 1)
AF 1]=0
-1
2 1 4 1
=3+ 1]|-{-3 11=0
1) -1 0ji\-1
=-2+31-1=0
=>A=1
2 1 3
OF =| -3 |+| 1|=|-2].
1 -1 0
(i) |LetBbe (2, -3, 1).

1 2 1

J:A cartesian equationof 7, is x+y+2z=1.




(iii) 1) (1 7
' n,xn, =| 1|x|0{=|-5
2) \7 -1
. (~7
A direction vectorof Lis | 5.
1

7 x+y+2z=1

7w, x+7z=c

Let z=0.Then x=c and y=1-c¢.
Apointon Lis (¢, 1—c, 0).

c =7
A vector equationof Lis r=|1—c {+ x| 5|, where uel .
) 0 1
(iv) | For the 3 planes to meet in the line L,
(a) =7\( 2 c 2
5-1{=0and |1-c [ -1|=5.
1)\ d 0 d

=>-14-5+d=0 and 2c—-1+c=5
=>d=19 and c=2

(b) | For the 3 planes to have only one point in common,

-7 2
5d-11=0.
1)t d

=d#19




Qn

| Solution

11
®

Instalment | Outstanding amount | Total amount with interest
at the beginning of | owed at the end of month
month

50000 -50000x1.002

1 50000x1.002—-1000 | 50000x1.002> -1000x1.002

2 50000x1.0022 50000x1.002° —1000x1.0022
' —1000x1.002—1000 | —1000x1.002

.................................................................

| =50000x1.002" -

Amount owed at the end of » instalments

1.=50000% 1.002™" —1000x1.002" —~1000x1.002"" —...—1000x1.002

1000x1.002x[1.002" -1]

. 1.002-1

- =50000x1.002"" ~1000x 501 (1.002" —1)  ~erev e (¥)
= 50000x1.002"" ~501000x (1.002" —1) (shown)

| (i)

50000x1.002"" —501000x (1.002" —1) <0
By using G.C., least integer n = 53
i.e. no of instalments required = 53

(iii)

Amount paid at the 53th instalment
= Amount owed at the end of 52 instalments

=50000x1.002% ~501000x(1.002” 1)

| =733.12 (to2d.p.)

(iv)

Let the amount need to be paid for each instalment be £.
Then from (*) in (i)
50000x1.002” - kx501[1.002" ~1]<0

S 50000x1.002%°
- 501[1.002‘9 _1]

=2684.53

| Least value of k = 2685 (to the nearest dollars)
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(@)

(b)

(@)

®)

2

Section A: Pure Mathematics [40 marks]

Given that x and y are related by %xJ-/-%sec2 y and that y=0 when x=1, find x in

terms of y. : [4]

A medical researcher is investigating the rate of spread of a virus in a group of people
of size » at time ¢ weeks. He suggests that n and ¢ are related by the differential
2 -

t
ation — " =¢ 5
equ —=e .

ds
@) Find the general solution of the differential equation, giving your answer in
the form n=1(). 4 , 2]

(ii) Explain why all solution curves of the differential equation are concave

upwards. ]
(iii) It is given that initially, the number of people infected with the virus is 50.
‘ Sketch on a single diagram, two distinct solution curves for the differential

equation to illustrate the following two cases for large values of 7 :

I. the population of infected people increases indefinitely,

I1. the population of infected people stabilizes at a certain positive number.

3]

A parallelogram has two adjacent sides defined by the vectors a and 2a+3b. Given

that the magnitudes of a and b are 4 and 5 respectively and the angle between a and

b is 30°,'ﬁndtheateabft;heparailelograrifi.-- e 4

A point P has coordinates (2, ~1, —2) anda line / has eqii'ati‘on. 52;1 =1- z,a‘ y=3.

()  Find the perpendicular distance from P to /. | [4]
(ii)  Find the acute angle between / and the line L that is parallel to the z-axis. [2]



3

A box with volume 250 cm?® is made of cardboard of negligible thickness. It has a height of y

cm and an equilateral triangular base of side x cm. Its lid has depth ky cm, where 0 <k <1 (see

diagram).

@-

(i)

(iii)

(iv)

Box Lid

Show that the total external surface area of the box and lid can be expressed as

1000v3(+K) V3 o 4]
x 2
Use differentiation to find, in terms of &, the value of x that gives a minimum total external
surface area of the box and lid. [3]
Find the ra;tio 2 in this case, in terms of £, simplifying your answer. ; | [2]
x
Find the values for which 2 must lie. (21
. x

[Turn over



The complex numbers a and b are given by a=—(1+ \/§i) and b= é—(l —1i).

@
(ii)

(iii)

(iv)

Without using a calculator, find the value of @’ in the form x+iy. 2]

By using the moduli and arguments of @ and b, find the modulus and argument of a’b.
[3]

.5 3+1
Use your answers to parts (i) and (ii) to show that sm—ﬂ = 3+ 2]

12 22

The diagram below shows an isosceles right triangle 4BC, where the points 4, B and

C represent the complex numbers a, b and ¢ respectively. Find the exact value of c.

[2]

-
>




Section B: Statistics [60 marks]

A group of 11 people consists of 6 men and 5. women, 3 of whom are sisters. A conimittee

consisting . of six people. is to be selected. Find the number of ways the committee can be

formed if
@) it consists of exactly two men, [1]
(i)  itincludes at least one of the sisters. 2]

Given that the chosen committee consists of 2 sisters, Sue and Suzy, together with 3 other
men, Muthu, Mark, Michael and 1 other woman, Wina. They are seated at a round table meant

for six i)éople. Find the number of possible arrangements if

(iii)  one of the men is to be seated between the two sisters, [2]
(iv)  the two sisters are sitting directly opposite each other. 2]

The table below shows the number of male and female students studying Chemistry, Physics

and Biology at a private school.

Chemistry Physics Biology
Male 200 130 70
Female 250 300 50

One of the students is chosen at random. Events C, B aﬁd M are defined as follows:
C : The student chosen is studying Chemistry.
B : The student chosen is studying Biology.
M : The student chosen is a male.

Find

@ PClm), 1]

(i) PAMuUO), 1

(lll) - P(M'NBY). : o o | o | [1]
Deterrnihé whether C and M are iﬁdependeht. I o B e ' ['2]A S

"It is given that 20% of Chemistry students, 30% of Physics students and 5% of Biology

students are international students. ‘

(iv) One of the students selected at random is an international student. What is the
probability that this student studies Chemistry? 2]

(v)  Three students are chosen at random. Find the probability that there is exactly one

international student who studies Physics. - [2]

[Turn over



In order to investigate whether there is a correlation between rainfall and crop yields, the total
rainfall, x mm, and the weights of a particular crop per square metre, y kg, were recorded in a

number of fields. The data are shown below. . -

x 36 72 44 74 64 50
y 22 | 84 1.8 | 74 | 43 | 22
@) Draw a scatter diagram to illustrate the data. - 2]

(ii)  Calculate the value of the product moment correlgiion coefficient, and exﬁlain why its
value does not necessarily mean that the best model for the relationship between x and

yis y=a+bx. . [2]

(iii) By comparing the product moment - correlation- éoefﬁcients, explain whether
y=a+bx or y=c+dx’ is a bétter model. 2]

(iv)  Using a suitable regression line, estimate the yield of crop per square metre when the

total rainfall is 55mm. Comment on the reliability-of your estimation. [3]

It is known that 8% of the population of a large city use a particular web browser called
Voyager. A researcher wishes to interview people from the city who use Voyager and selects

people at random, one at a time.

(i) Find the pfobability that the first person that he finds uses Voyager is the third person
selected. 2]

A random sample of n people is now selected.

(i)  State two conditions needed for the number of people in the sample who use

_ R Voyager |
fo be well modelled byvbino_mia.l distribut_ion. L o o [2]
(iii)  Given that n =280, use a suitable approximation to find the probability that, fewer than
10 people use Voyager. [3]

(iv)  Find the least value of » such that the probability of at least 10 people use Voyager is
more than 0.2. 3]



10

A supermarket sells boxes of a particular brand of biscuits in two flavours, chocolate and
strawberry. The mean number of boxes of chocolate biscuits sold in a day is 2.2.

(i) Find the probability that in a day, no boxes of chocolate biscuits were sold. (1]
(ii) Ina week of 7 days, find the expected number of days that no boxes of chocolate

biscuits were sold. : . 2]

The mean number of boxes of strawberry biscuits sold in a day is denoted by A .
(iii) Given that the probability of less than 2 boxes of strawberry biscuits sold in a day. is
0.6, writg down an equation for the value of A, and find A numerically, correct to 1

decimal place. 3]

(iv)  Find the probability that in a week of 7 days, the total number of boxes of chocolate

and strawberry biscuits sold exce_éds 25 boxes. 2]
(v)  Use a suitable approximation to find the probability that, in a month of 30 days, the
number of boxes of chocolate biscuits sold is more than the number of boxes of

strawberry biscuits. [4]

A researcher is running a trial of a new variety of potato. A field contains 20 rows of the new

-variety of potato plants, with 80 plants in each row. A researcher intends to dig up 8 plants

and measure the mass of potatoes produced by each plant.
(i) Describe how he could choose a systematic sample of 8 plants from a single row of

80 plants and state the advantage of this sampling method. 3]

The researcher claims that the average mass of the new variety of potato is at least 150g. The
mass of a new variety of potato is denoted by X grams. The masses of a random sample of 80

new variety potatoes are summarlzed by

Z(x 150)——160 Z(x 150) _5520

o "(_ii)_ ' Calculate the unbiased estimates of the populatlon mean and variance. - 2]
-.(iii) Test at the 1% significance level, whether the researcher’s claim is valid. . 4]

(iv) Explain what you understand by the phrase “at the 1% significance level” in the

context of this question. 1]

Another random sample of 8 potatoes was chosen with mean mass 148.5g and standard
deviation £ g. Find the range of values that & can take such that at 1% level of significance,

this sample would indicate that the researcher’s claim is invalid. 3]
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Qn | Solution

1) gXzseczy

dx

j.coszy dyz_(ldx
J~c082y+l_

dy=[1dx

2L 2
When y=0, x=1= c¢=-1

in 2
i[sm y+y}:x+c

1. 1
Sox=—sin2y+—y+1
) y 2)’

1b) | &’n -
® | g2z~ °
dn —;— —é
:i;-zzfe dt==-—5€ 4‘(?
n=25¢ > +Ci+D
1 2 L
(i(i)) %t_?.= e 3 >0 for all values of ¢.

Solution curves are concave upwards.

1(b)
(iii) | When t=0,n=50

50=25¢"+C(0)+D
D=25

n=25 > +Ct+25

When C =0, n=25¢ ° +25.
Ast—>oo,n—>25

1
When C=1, n=25¢ °> +1+25.
|'Ast>0,n—>0 - '
B NGRMAL FLOAT AUTO REAL RADIAN MP




Qn

Solution

2(a)

Area of parallelogram
=lax (2a+3b)|

=[2(axa) +3(axb)|
=3laxb|
=3lal|b|sin 30°

1
=3H0)7
=30 B

(b)
®

1 2
A vector equation of /is r=| 3 |+ 4| 0.

1 -1
Let A4 be the point (1, 3, 1) on /.

. Perpendicular distance from P to /

_los
=5 -V

(i)

Acute angle between / and L
[ 2\(0
ANV
[ 2\I( 0)
oo
1

=cos™

-1

a1

=C0S —=
5

=63.4°




Qn | Solution
3@
Area of equilateral A = > x sin60° = J_ x’
Given that the volume of the box is 250 cm?
y=2= B x*y =250
4
_ 1000
y \/’3_x2
Surface Area 4 =3xy + 3chy + 2(—?—sz
- 3,
= 3@/(1 + k) + ——2—x
~ (e 1000 \/§x2
J3x?
1000\/_ 301+, J§ 2 (shown)
(i)

a4 1000J§(1+k) A0

For stationary points, — = —
ry p o 2

x* =1000(1+k)

1

x=10(1+4)3

2
d ,;1=2000«/§3(1+k)+\/§>0
dx x

1
Thus, x =10(1+ k)3 gives a minimum surface area.

_.(iii)

l‘<

. 1000

. | Since y \/—
3x

=1000= 1000
x \Bx* \3(1000)(1+4k)
I S
T B+




(iv) | Since 0<k<1

1<1+k <2
ls_..l__<1

2 1+k

1 < 1 <_1-
23 \BA+k) B

Qn | Solution

W %(1 +3i7 (1)
—(+235i-3)-i)

= (~1++/3)(1-i)
=(B3-)+ B +Di

CRPTRAT

(3]
=22

arg(a’b) = 2arg(a) +arg(b)

(55

197

12

arg(a’h) = —%—+ 27 = 51—;[

(i) | Considering the imaginary part of a?h, we have
242 sin—sl—;£ =3 +1




(iv)

BA can be obtained by rotating BC through 90° in the
anticlockwise direction about B.
i(c-b)=a-b
=>c=-i(a-b)+b
=—ia+b(l+1)

=i+ \/Ei)%(z)
=(1-3)+i

6)

C,x°C, = 75 ways

(i)

Number of ways if at least one of the sisters are included
= number of ways without restriction — number of ways if none of
the sisters is included

(iii)

Select a man to be between the 2 sisters and group the 3 of them as
one unit and arrange 4 units round a table

Number of ways =>C, x31x 2
. =36

)

First arrange the other 4 persons round the table. There are 4 ways
to insert the sisters.
Number of ways = 3!x4

=24




Qn | Solution
6
. P(Cl M)= M
@ P(M)
~200 _1
400 2
(i) | P(MuU C) = P(M)+P(C)—P(MN C)
_ 400 + 450 200
1000 1000 1000
_ 650 13
1000 20
_ :(l_ll) P(M' B = 250+300 11
1000 20
9
P(C)=—
1
P(CIM)==—=#P(C
(chw)=L+r(c)
C and M are not independent.
(V) | No. of international studens in the sample
=0.2 (200+250)+ 0.3(130+300)+0.05(120) =225
P(C| international student) = P(C m mtem'atlonal student)
P(international student)
(200+250)0.2
_ 1000 - -
225
1000
=04
\2

Number of international students studying Physics
=0.3(430) =129

|29(:-l 8'.11(,12

P(exactly one international student studying Physics)=




() qu\ |

3 | X

- X

6 -

5

4 - X

3 -

9 X x X

1 -

0 ; — . : > x

30 40 50 60 70 80

(ii) J r=0.914099 ~ 0.914 (to 3 s.f)

Though the value of » shows a strong positive linear correlation,
from the scatter diagram, it is possible that x and y may have a
curvilinear relationship. '

(iii) | For y=c+dx?, r=0.93986 ~0.940
Since the value of » for y =c+ dx?is closer to the value of 1,
-y=c+dx? is a better model.

(iv) | y=-0.88934+0.0015441x"

When x =55, y=—0.88934+0.0015441(55)"

y=3.7816~3.8 (to 1 d.p)

Since x = 55 is within the range of data given and » ~ 0.940 is
close to 1, the estimation is reliable.




Qn

Solution

®

P(first person that uses Voyager is the third person selected)
= 0.92x0.92x0.08

=0.067712

(i)

1. Whether a person uses Voyager is independent of another
person.

2. The probability that a person uses Voyager is constant for
every person in the sample.

(iii)

Let Y be the number of people who use Voyager out of 80 people.
Y ~B(80,0.08) .

Since n=80>50, np=6.4>5, ng=73.6>5,

Y ~';N(6.4,5.888) approx

P(¥Y <10)—=>P(¥ <9.5)

=0.899295
=0.899 (to 3 s.f)

(iv)

93 “So0

Let ¥ be the number of people who use Voyager out of # people.

V ~B(n,0.08)
P(V 210)>0.2

1-P(V'<9)>02
P(V¥<9)<0.8
Using GC,

NORMAL FLOAT AUTO REAL RABIAN MP
PRESS + FOR aTbl

81786
.899

oy | 7814

Least value of n=92




9 (@)

Let C be the number of boxes of chocolate biscuits sold in a day.

C~Po(22)
P(C=0)=0.11080

=0.111 (to 3 s.f))

)

Let D be the number of days that no boxes of chocolate biscuits
were sold out of 7 days.

D ~B(7,0.11080)
E(D)=7x0.11080

=0.77562 .
=0.776

(iii)

Let S be the number of boxes of strawberry biscuits sold in a day.
S~Po(1)

P(S<2)=06
P(S=0)+P(S=1)=06

0 1
e? (i}r et (i—) =0.6
0! I!

e (1+4)=0.6

Using GC,

NORMAL FLOAT AUTO REAL RRDIAN rip oy QHOTHIAL FLOAT AUTO REAL RADIAN mP gy

Plots  Plot2 Plot3

A\Y2=
B\Yas=
E\Y4=
B\Ys=
\Ye=
H\Y?=

1=1376
=14 (to 1'dp)




(iv)

Let T be the total number of boxes of chocolate and strawberry
biscuits sold in 7 days.

T ~Po(7x2.2+7 x1.376) =P0(25.032)
P(T >25)=1-P(I'<£25)

= (.44962

=0.450 (to 3 s.f)

™

Let X be number of boxes of chocolate biscuits sold in 30 days.

X ~Po(30x2.2) = Po(66)

Since 1=66>10, X ~ N(66,66)approx

Let ¥ be number of boxes of strawberr'y biscuits sold in 30 days.

Y ~Po(30x 1.376) = Po(41.28)
Since 1=41.28>10, Y ~N(41.28,41.28)approx
X-Y~ N(i4.72, 107.28)approx
P(X-Y> O)~L—>P(X—Y> 0.5)
= (0.99032
=0.990 (to 3 s.f.)

10
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10
®

Choose a plant randomly from the first 10 plants, say the 5* plant.
Choose every 10™ plant thereafter until 8 plants are selected

ie. 5T 15% 25W

The 8 plants selected will be evenly spread out across the row of
80 plants.

=

(i)

Unbiased estimate of the population mean, j

_2(150) Ly
80

=-—1§9+150
80

=148

Unbiased estimate of the population variance, s

=£__1 3 (x~150)° _(Z(x;OISO))

;[sszo_t_{ﬁ_oﬁ]

79 80
5200

79. -

(i)

Hy: =150
H,: <150

Under H,, since n =80 >50, by Central Limit Theorem,

5200

X ~N|150,——
( 79(80)

] approx.

Test statistic Z =120 N(0,1) approx.

,5200

From GC, p—value = 0.013731

=0.0137 (to 3 s.f)
a=0.01

Since p-value =0.0137> @ =0.01, we do not reject Hy, at 1%

level of significance and conclude that there is insufficient
evidence that the researcher’s claim is invalid.

11



(iv)

It means that there is a probability of 0.01 of concluding that the
population mean mass of a new variety of potato is less than 150g

given that the population mean mass of a new variety of potato is
in fact 150g. o

Unbiased estimate of the population variance = %kz

Hy:u=150

H, : p <150

Under H,, test statistic 7 = X150 t(7)
52
8

a=0.01

Researcher’s claim is invalid at 1% level of significance
= H,, is rejected at 1% level of sign'iﬁcance

=1 <-2.9980

148.5-150
S___.._.
K2

7

<-2.9980

=k <1.3238 _
S k<1.32 (to 3s.0) .
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