

RIVER VALLEY HIGH SCHOOL JC 2 PRELIMINARY EXAMINATION

CANDIDATE NAME			
CLASS	2 0 J		·
CENTRE NUMBER	S	INDEX NUMBER	
H2 CHEM	IISTRY		9729/03
Paper 3 Free Response			21 September 2021 2 hours

Candidates answer on the Question Paper.

Additional Materials:

Data Booklet

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Answer **all** questions in the spaces provided on the Question Paper. If additional space is required, you should use the pages at the end of this booklet. The question number must be clearly shown.

Section A

Answer all the questions.

Section B

Answer one question.

The use of an approved scientific calculator is expected, where appropriate. A Data Booklet is provided.

The number of marks is given in brackets [] at the end of each question or part question.

Application of the control of the co	G (Sileri) Core.		For	Examine	's Use	The state of the s	ndolli i i i i i i i i i i i i i i i i i i	
Question Number	1	2	3	4	5	s.f.	units	Total
Marks	20	22	18	20	20			80

This document consists of 32 printed pages and 0 blank page.

River Valley High School 2021 Preliminary Examination

9729/03/PRELIMS/21

Turn over

Section A

Answer all the questions in this section.

In a 2014 paper published in the Journal of Agricultural and Food Chemistry, Hendon and Colonna-Dashwood discovered the effect of water hardness on coffee flavour. Compounds in hard water tend to attach to the flavourful elements in roasted coffee beans during brewing. Water with higher levels of magnesium will likely extract more flavour from a coffee bean.

Water described as "hard" is high in concentration of Total Dissolved Solids (TDS), specifically calcium and magnesium. The hardness of water may be reported in parts per million (ppm). The solute concentration of a dilute aqueous solution in units of mg dm⁻³ is called parts per million, or ppm.

Classification	ppm
Soft	0 ` 17.1
Slightly hard	17.1 ` 60.0
Moderately hard	60.0 ` 120
Hard	120 ` 180
Very hard	> 180

- (a) In a sample of Singapore's tap water, the concentration of magnesium and calcium ions present are found to be 5.97 10.5 mol dm³ and $5.49 \times 10^{14} \text{ mol dm}^{13}$ respectively. These two ions can be separated by selective precipitation with potassium hydroxide. The numerical values of solubility product of magnesium hydroxide and calcium hydroxide at 25 °C are 1.50 \times 10 11 and 5.50×10^{6} respectively.
 - Calculate the total concentration of magnesium and calcium ions in ppm, and (i) hence classify the hardness of water in this sample of tap water.

[2]

- Calculate the minimum pH of the solution at which the magnesium ion (ii) precipitates as magnesium hydroxide.
- The magnesium hydroxide continues to precipitate out of the solution as potassium hydroxide is being added continuously. Eventually, the concentration of the hydroxide becomes high enough to precipitate the calcium ions as well.

What is the concentration of magnesium ions when calcium ions begin to precipitate?

[2]

[2]

e e e e e e e e e e e e e e e e e e e	
	······································
Divos Va	office High School

-__

9729/03/PRELIMS/21

(b)	A balanced extraction is a well-brewed cup of coffee that is aromatic and rich in
	flavours. Eugenol is a flavour note with a "woodsy" taste found in coffee, wine and whisky.

Like other alkenes, it undergoes hydrohalogenation when treated with hydrogen halides.

 Draw a labelled diagram showing the orbital overlap between the carbon atoms C1 and C2 and state the hybridisation involved.
 Do not include other atoms.

[2]

[2]

(ii) Hydrohalogenation of unsymmetrical alkenes results in a mixture of products. In such cases, the major product can be predicted using Markovnikov's rule.

Describe the mechanism of the reaction between eugenol and hydrogen chloride.

[Tou may represent eugenorusing		You may represent eugenol using	R_1	[2]
----------------------------------	--	---------------------------------	-------	-----

(iii) With reference to your mechanism in (b)(ii), explain why the major product is formed.

......

River Valley High School 2021 Preliminary Examination

······································	•••••
	•••••
······································	•••••
	• • • • • • • • • • • • • • • • • • • •
	•••••
······································	
	••••••
······································	
······································	
······································	

(c) Hydration of alkenes via hydroboration favours formation of the anti–Markovnikov product. The hydroboration reaction involves 2 stages: first with limited borane, BH₃, followed by treatment with alkaline hydrogen peroxide.

R = alkyl/aryl group

It is suggested that the mechanism goes through the formation of the intermediate below.

River Valley High School 2021 Preliminary Examination

9729/03/PRELIMS/21

Turn over

(i)	The initial reaction between the alkene and borane can be considered to occur in a similar fashion as the hydrohalogenation reaction in (b)(ii).	
	Suggest the mechanism showing the formation of the intermediate given above when eugenol reacts with borane. Indicate clearly the polarity of the B–H bond in borane by drawing δ + and δ – on the appropriate atoms.	[2]
(ii)	By determining the change in the oxidation number of the reactive carbon, suggest the role of hydrogen peroxide in Step 2 in the reaction.	[1]
• • • • • • • • • • • • • • • • • • • •		

••••	······································	
	······································	
•••••		
	······································	
******	······································	
· · · · · · ·	······································	
•••••	······································	
	andre mentioned and the control of 	
	······································	
3 hot	los of halogons are labelled as V. V. and 7. They are at 1.1.	
iodine	les of halogens are labelled as X_2 , Y_2 and Z_2 . They are altorine, bromine and e.	
ne t	able shows the results of experiments in which the halogens X ₂ , Y ₂ and Z ₂ added to separate solutions of the halogens in and Z ₁ and Z ₂ .	
	X-(aq) Y-(aq) Z-(aq)	

	X⁻(aq)	Y⁻(aq)	∠ (aq)
X ₂	no reaction	no reaction	no reaction
Y 2	X ₂ formed	no reaction	Z ₂ formed
Z 2	X ₂ formed	no reaction	no reaction

River Valley High School 2021 Preliminary Examination

(d)

	With reference to the table above, identify the halogens X , Y and Z . Explain your reasoning.	ı
(e)	A glass rod was heated in a Bunsen burner flame and placed into a jar of hydrogen chloride gas. The experiment was repeated using a jar of hydrogen iodide gas. A colour change was observed in one of the samples.	
	Using relevant data from Data Booklet, explain these observations.	
		[3]

9729/03/PRELIMS/21

			••••
		······································	
		דַן	otal: 20]
2	Nitr rea	rous acid, HNO_2 , is a weak monoprotic acid. HNO_2 is unstable and decompositly.	oses
	min	can be prepared by acidification of aqueous solutions of potassium nitrite witneral acid. The acidification is usually conducted at low temperatures, and the Heronsumed in situ.	th a NO₂
	An	equilibrium exists as follows.	
		$H^+(aq) + NO_2^-(aq) \rightleftharpoons HNO_2(aq),$	
		$K_c = 1.66 \times 10^3 \text{mol}^{-1} \text{dm}^3$	
	(a)	Calculate the value of the acid dissociation constant. Ka. of HNO2.	[1]
			•••••
		······································	
		······································	
			·····
	(b)	A solution of HNO_2 was prepared by mixing equal volumes of 0.40 mol dm ⁻³ $HCl(aq)$ with 0.40 mol dm ⁻³ $KNO_2(aq)$.	
		Calculate the pH of this solution.	[2]

	••••	······································

		······································
		······································
		······································

(c)	Cal 0.40	culate the pH of the aqueous mixture when 10.0 cm ³ of 0.00 mol dm ⁻³ HC <i>l</i> (aq) is added to 30.0 cm ³ of 0.400 mol dm ⁻³ KNO ₂ (aq). [2]
		······································
		······································
		······································
		······································
(d)	Gas	eous nitrous acid decomposes into nitrogen dioxide, nitric oxide, and water:
		$2HNO_2 \rightarrow NO_2 + NO + H_2O$
	(i)	Draw the dot-and-cross diagram of NO ₂ .
		Explain the difference in bond angles in H ₂ O and NO ₂ . [2]
	(ii)	Calculate the increase in pressure when 2.00 g of HNO ₂ decomposes under 1 atm and 150 °C in a 1 dm ³ container. [2]
	····	······································

9729/03/PRELIMS/21

******		······································	• • • • • • • • • • • • • • • • • • • •
	••••••••••••		· ••• • • • • • • • • • • • • • • • • •
	••••••		· · · · · · · · · · · · · · · · · · ·
••••••			• • • • • • • • • • • • • • • • • • • •
*** * * * *			••••••

			······
*******			***************************************
		······	

••••••			•••••••••••
			••••••••••••••••••••••
••••••••			······································
		c acid is a weak monobasic o	
		nal isomers of 3-chloropropa	
separate	ne same amount of 3–chlor eportions of water of equal versions shown in the table belies	ropropanoic, E and F, is ea olume, the three solutions ob ow.	ch added to ptained have
	compound	pH of aqueous solution	
	3-chloropropanoic acid	2.3	
	E	1.9	
	F	1.0	
the ame	structural formulae for com rence in pH values of the ids has the structure R–O–F	pounds E and F and hence, three solutions obtained. R.	account for One of the [4]
***********	·		• • • • • • • • • • • • • • • • • • • •
••••••	•••••••••••••••••••••••••••••••		· · · · · · · · · · · · · · · · · · ·
	······		

(e)

Hexanedioic acid, a diprotic acid, can be synthesised from succindialdehyde by the following synthesis pathway. Step 1 OH Step 2 OH Nexanedioic acid Step 3 K OH Step 4 H ₂ SO ₄ (aq) hexanedioic acid (i) Suggest reagents and conditions for each of the Steps 1, 2 and 3. (ii) Suggest the structures for K and L.										
succindialdehyde by the following synthesis pathway. Step 1 OH Step 4 H ₂ SO ₄ (aq) heat Nexanedioic acid Suggest reagents and conditions for each of the Steps 1, 2 and 3.	••••	- · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •		· · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·
succindialdehyde by the following synthesis pathway. Step 1 OH Step 4 H ₂ SO ₄ (aq) heat Nexanedioic acid Step 3 K Step 3 K Step 3	••••				•••••					
succindialdehyde by the following synthesis pathway. Step 1 OH Step 4 H ₂ SO ₄ (aq) heat Nexanedioic acid Suggest reagents and conditions for each of the Steps 1, 2 and 3.	*****		· · · · · · · · · · · · · · · · · · ·			•••••				
succindialdehyde by the following synthesis pathway. Step 1 OH Step 4 H ₂ SO ₄ (aq) heat Nexanedioic acid Suggest reagents and conditions for each of the Steps 1, 2 and 3.						• • • • • • • • • • • • • • • • • • • •		· • · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
succindialdehyde by the following synthesis pathway. Step 1 OH Step 4 H ₂ SO ₄ (aq) heat Nexanedioic acid Suggest reagents and conditions for each of the Steps 1, 2 and 3.		· · · · · · · · · · · · · · · · · · ·		·····	· · · · · · · · · · ·		• • • • • • • • • • • • • • • • • • • •			
succindialdehyde by the following synthesis pathway. Step 1 OH Step 4 H ₂ SO ₄ (aq) heat Nexanedioic acid Suggest reagents and conditions for each of the Steps 1, 2 and 3.		· • • • • • • · · ·		*******						
succindialdehyde by the following synthesis pathway. Step 1 OH Step 4 H ₂ SO ₄ (aq) heat Nexanedioic acid Step 3 K Step 3 K OH Step 4 Step 3 Step 4 Step 3 Ste						*************				
succindialdehyde H Step 4 H ₂ SO ₄ (aq) heat Note to be a step 3 K Step 2 Step 3 K Step 3 Step 4 Step 3 Step 4 Step 3 Step 3 Step 3 Step 3 Step 3 Step 4 Step 3 Step 3 Step 4 Step 3 Step 3 Step 4 Step 4 Step 3 Step 4 Step 4 Step 4 Step 4 Step 3 Step 4 St		cindial	dehyde		dipro ollowin	tic acid, g synthesi	can s pathwa	be sy	ynthesised	from
succindialdehyde H OH Step 4 H ₂ SO ₄ (aq) heat Note to the step 3 K (i) Suggest reagents and conditions for each of the Steps 1, 2 and 3.		//		<u> </u>	<u>/</u> 0	Step 1		<u></u>		ОН
OH Step 4 Step 3 K OH hexanedioic acid OH Step 4 Step 3 K OH hexanedioic acid Suggest reagents and conditions for each of the Steps 1, 2 and 3.		0				•	— но		✓	
Step 4 H ₂ SO ₄ (aq) hexanedioic acid K Step 3 K Step 3 K Step 3 K Step 3 K 1 Suggest reagents and conditions for each of the Steps 1, 2 and 3.		succi	ndialdel	nyde H					Step 2	2
Step 4 H ₂ SO ₄ (aq) hexanedioic acid K Step 3 K Step 3 K Step 3 K Step 3 K H ₂ SO ₄ (aq) heat										
	_				OH	-	- L <	Step 3	↓ - κ	
	0/	ОН	hexane	dioic aci		← H₂SO₄ (aq	- L <	Step 3	∳ - κ	
(a) and an addition to the and L.					d	H ₂ SO ₄ (aq O heat	- L <			3.
	(i)	Sugg	jest rea	igents ai	d and cond	H ₂ SO ₄ (aq O heat	- L <			3.
	(i)	Sugg	jest rea	igents ai	d and cond	H ₂ SO ₄ (aq O heat	each of t	he Ster		
	(i)	Sugg	jest rea	igents ai	d and conductes for	H ₂ SO ₄ (aq O heat ditions for K and L .	each of t	he Ster	os 1, 2 and	
	(i)	Sugg	jest rea	igents ai	d and conductes for	H ₂ SO ₄ (aq O heat ditions for K and L .	each of t	he Ster	os 1, 2 and	
	(i)	Sugg	jest rea	igents ai	d and conductes for	H ₂ SO ₄ (aq O heat ditions for K and L .	each of t	he Ster	os 1, 2 and	
	(i)	Sugg	jest rea	igents ai	d and conductes for	H ₂ SO ₄ (aq O heat ditions for K and L .	each of t	he Ster	os 1, 2 and	
	(i)	Sugg	jest rea	igents ai	d and conductes for	H ₂ SO ₄ (aq O heat ditions for K and L .	each of t	he Ster	os 1, 2 and	
	(i)	Sugg	jest rea	igents ai	d and conductes for	H ₂ SO ₄ (aq O heat ditions for K and L .	each of t	he Ster	os 1, 2 and	

(g) Carbonyl compounds can undergo the Aldol reaction under basic conditions. The mechanism is shown below.

(i) Suggest the structure of the compound formed from the Aldol reaction between 1 molecule of succindialdehyde and 1 molecule of methanal.

[1]

- (ii) Compound **M** is a compound with 8 carbon atoms and undergoes the following reactions.
 - M gives an orange precipitate with 2,4-DNPH.
 - M does not react with Tollens' reagent.
 - M reacts with alkaline aqueous iodine to give a yellow precipitate and product N, C₇H₅O₂⁻.
 - M undergoes Aldol reaction to form O, C₁₆H₁₆O₂, under basic conditions.

Suggest the structures for M , N and O .
······································
······································
······································
•••••••••••••••••••••••••••••••••••••••
······································
······································
······································
······································
······································

9729/03/PRELIMS/21

Turn over

[3]

······································	
[Total: 2	221
(a) The following scheme illustrates a series of reaction involving Fe ³⁺ (aq).	,
[Fe(H ₂ O) ₆] ²⁺ Reaction I green yellow solution	
Strongly acidic Reaction II	
Cr₂O₄²- medium	
emerald green solution +	
highly toxic gas	
	r41
	[1]
(ii) State the type of reaction which occurred in reaction I and write an equation for the reaction.	[2]
(iii) Write an equation for reaction II.	[1]
(iv) Given that $C_2O_4{}^{2-}$ is a bidentate ligand, draw the structural formula of the complex formed.	[1]
· · · · · · · · · · · · · · · · · · ·	.
	· · · · ·
	••••
	· · · ·
	···•

3

		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •
	······································	• • • • • • • • • • • • • • • • • • • •
(b)	Ferromanganese is an alloy added to steels to improve their mech properties. A 15.0 g sample of ferromanganese was dissolved in 250 dilute sulfuric acid to give an solution containing iron(II) sulfate manganese(II) sulfate. 25.0 cm³ of the resulting solution required 20.0 0.0360 mol dm⁻³ of potassium manganate(VII) solution for complete re	cm ³ of e and cm ³ of
	(i) By using the Data Booklet, construct a balanced equation to reaction between resulting solution and potassium mangana solution.	te(VII)
		[1]
	(ii) Calculate the percentage by mass of iron in ferromanganese.	[3]
		2 2 2

9729/03/PRELIMS/21

(c)	Neutral FeC I_3 remains yellow when reacted with compound S , C ₁₁ H ₁₀ O ₃ . S gives a silver mirror with silver diammine complex. However, S does not give a precipitate with hot alkaline Cu ²⁺ solution.
	S is heated with acidified KMnO ₄ for several hours to give benzene–1,2,3–tricarboxylic acid as one of the organic products. When heated with NaOH(aq) followed by acidification, S forms T , C ₁₁ H ₁₂ O ₄ . T reacts with alkaline aqueous iodine to give a yellow precipitate. S reacts with NaBH ₄ to give U , C ₁₁ H ₁₂ O ₃ .
	Suggest the structures for S , T and U . Explain the reactions described. [9]

······································
······································
······································
······································
······································

······································

9729/03/PRELIMS/21

RV

RV

RV RV

18

		••••••	······································	•
			······································	
			•••••••••••••••••••••••••••••••••••••••	
			[Total : 18]	
			Section B	
			Answer one question from this section.	
4	(a)	are g	ine earth metals, also known as Group 2 elements, are highly metallic and good conductors of electricity. They have a grey-white lustre when freshly ut tarnish readily in air.	
		(i)	Describe and explain the trend in thermal stability of the Group 2 carbonates.	[2]
		(ii)	When ozone (O ₃) is passed over dry powdered BaO at `10.0 °C, barium ozonide, Ba(O ₃) ₂ , is formed as a red-brown solid.	
			Adding water to the solid and warming to room temperature causes a reaction to occur. Oxygen gas is produced and an alkaline solution is left.	
			Write a balanced equation for the reaction between barium ozonide and water.	[1]
	٠	(iii)	Suggest a suitable temperature to produce calcium ozonide by passing ozone through powdered CaO.	[1]
		•••••		
			······································	
			······································	
			······································	

River Valley High School 2021 Preliminary Examination

		······································	
			•
	•••		
	••••••	······································	-
		······································	
		······································	
(b)	Ozoi eleci	ne is usually produced by passing oxygen gas through two highly-charged rical plates.	
		$3O_2(g) \rightarrow 2O_3(g)$	
	The	reaction does not go to completion and a mixture of gases will be produced.	
	The	concentration of O ₃ in the mixture can be determined by its reaction with cous KI.	
		$O_3 + 2KI + H_2O \rightarrow I_2 + O_2 + 2KOH$	
	The	iodine formed can be estimated by its reaction with sodium thiosulfate.	
		$2Na_2S_2O_3 + I_2 \rightarrow Na_2S_4O_6 + 2Na_1$	
	an e	n 300 cm ³ of an oxygen/ozone gaseous mixture at s.t.p. was passed into excess of aqueous KI, and the iodine formed was titrated against Na ₂ S ₂ O ₃ . cm ³ of 0.100 mol dm ³ Na ₂ S ₂ O ₃ was required to discharge the iodine ir.	
	(i)	Suggest a suitable indicator can be used in the titration and state the colour change at end point.	[1]
	(ii)	Calculate the percentage of O ₃ in the gaseous mixture.	[2]

		: 	
		······································	
	••••••	······································	
	••••••		
	•••••		
	••••••	······································	

9729/03/PRELIMS/21

[Turn over____

• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • •		••••••		········		
••••••	•••••••••••••••••••••••••••••••••••••••		**********		•••••••		•••••
		•••••	·····	••••••		• • • • • • • • • • • • • • • • • • • •	****
•••	· · · · · · · · · · · · · · · ·		•••••••	••••••	••••••		
• • • • • • • • • • • • • • • • • • • •		·····	•••••	••••••	••••••••••		
		•••••		*** ***		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
		· · · · · · · · · · · · · · · · · · ·					

(c) Ozone adds rapidly to alkenes at low temperature to give cyclic intermediates, called molozonides. Once formed, molozonides then rapidly rearranges to form ozonides. The reaction scheme is shown below.

The reaction can also be expressed as

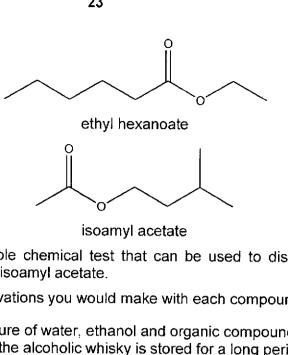
- (i) State the type of reaction occurring in Step I of the reaction scheme. [1]
- (ii) Suggest the role of zinc in the reaction scheme. [1]
- (iii) β -Damascenone is a chemical compound found in whisky, which is an alcoholic liquor. Also known as rose ketones, β -damascenone is a key compound that contributes a floral note to whisky.

[3]

River Valley High School 2021 Preliminary Examination

β-damascenone

Predict the organic products formed when β -damascenone reacts with ozone as shown by the reaction scheme above.
······································
······································
······································
:
······································
······································
······································
······································


River Valley High School 2021 Preliminary Examination

9729/03/PRELIMS/21

	•••	······································	•
		······································	•••
		······································	
		······································	
		······································	
		······································	
(d)	The	art from β -damascenone, whisky contains an array of compounds that affect aste and flavour, which include phenolic compounds, aldehydes and esters, use of different grains, distillation process and wood used in the ageing cess can also change the flavour profile.	
	(i)	Phenolic compounds in general contributes smoky flavours and bitterness in whisky. In Scotch whisky, the use of peat fires to dry the barley grains creates a class of medicinal-smelling compounds known as cresols.	
		Cresols exists as constitutional isomers with the formula C ₇ H ₈ O. When added to aqueous bromine, rapid decolourisation followed by the formation of a white precipitate is observed for all isomers of cresol.	
		Draw all the possible isomers of cresol.	[3]
	(ii)	Whisky lactones, such as trans-3-methyl-4-octanolide, are responsible for the woody, spicy and coconut flavour notes.	
		A student wanted to synthesise an amide from this lactone.	
		linin	
		trans-3-methyl-4-octanolide	
		The following steps were proposed.	
		 heat with dilute H₂SO₄ addition of ethylamine 	
		Comment on the feasibility of this reaction scheme.	[2]

which gives a banana aroma.

Esters in whisky can also contribute fruity flavours such as ethyl hexanoate, which imparts a sweet apple flavor, and isoamyl acetate,

Describe a simple chemical test that can be used to distinguish ethyl hexanoate from isoamyl acetate.

State any observations you would make with each compound.

(iv) Whisky is a mixture of water, ethanol and organic compounds like whisky lactones. When the alcoholic whisky is stored for a long period of time, as the ethanol content decreases, a cloudiness can be observed in the whisky. Suggest a reason why the cloudiness occurs.

	•••••

	• • • • • • • • • • • • • • • • • • • •
······································	
	•••••
·	*********
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
······································	· · · · · · · · · · · · · · · · · · ·

River Valley High School 2021 Preliminary Examination

9729/03/PRELIMS/21

[Turn over

[2]

[1]

[Total: 20]

[3]

- 5 Cyclopropane is an explosive, colourless gas that was discovered by August Freund in 1881, and was once used as a general anesthetic in clinical practice.
 - (a) Cyclopropane can undergo isomerisation to propene at 298 K.

$$(g) \longrightarrow (g) \quad \Delta H \text{ isomerisation} = -33.0 \text{ kJ mol}^{-1}$$

Table 5.1

	ΔH / kJ mol ⁻¹
standard enthalpy change of formation of CO ₂ (g)	-394
standard enthalpy change of formation of H ₂ O(I)	-286
standard enthalpy change of combustion of cyclopropane	-2091

Using thand o	ne data giv alculate	en abo	ve and in enthalpy	Table 5.1, change	consti	ruct a suitab formation	le ene	rgy cycle
at 298 K	ζ.		, ,		O.	TOTTINGGOTT	O1	propene
••••••		*** *** *** *	••••••		•••••	•••••••		•••
						•••••••••••••••••••••••••••••••••••••••		

River Valley High School 2021 Preliminary Examination

	······································	
(b)	100 cm ³ of a mixture of methane and cyclopropane was completely burnt in 300 cm ³ of oxygen and then cooled to room temperature.	
	The total volume of the gaseous reaction mixture decreases by 215 cm ³ .	
	On passing the resultant gaseous mixture through potassium hydroxide, the final volume was found to be 25.0 cm ³ .	
	What is the ratio of methane to cyclopropane in the original mixture?	2]
	······································	

9729/03/PRELIMS/21

			••
	••••		
		······································	
		· ····································	
	••••	······································	
anp	lopro hatic onditi	pane can undergo free radical substitution with chlorine, similar to an alkane. Chlorocyclopropane is the major product formed under a certain set ons.	
(c)	(i)	State the conditions needed to produce chlorocyclopropane as the major product.	[1]
	(ii)	Describe the mechanism for this reaction.	[3]
	Trich	nlorocyclopropane, $C_3H_3Cl_3$, is one of the possible polysubstituted roducts of the reaction under a different set of conditions.	
	This exhib	tri-substituted cycloalkane can exist as 3 constitutional isomers, all of which oit stereoisomerism.	
	(iii)	Define the term stereoisomerism.	[1]
	(iv)	Draw the structures of the 3 isomers of trichlorocyclopropane and suggest the type of stereoisomerism associated with each of them.	
		Note: You may refer to the diagram of cyclopropane shown below to draw the isomers.	
		H H H	[4]
	••••••		
		······································	

•••••••••••••••••••••••••••••••••••••••
······································
······································
······································
······ ·
······································
······································
······································
······································
······································
······································
······································
······································
······································

9729/03/PRELIMS/21

		······································	•
		•	
		······································	•
	,		
	••••		
	• • • • • • • • • • • • • • • • • • • •		
	•••		
(d)	How reac	ever, in the absence of ultraviolet light, cyclopropane can undergo addition tions similarly as alkenes. This leads to the opening of the ring structure.	
		example,	
		+ HBr → Br	
	(i)	Suggest a possible reason why cyclopropane can undergo addition reactions, unlike aliphatic alkanes.	[1]
	(ii)	Propane can be produced from cyclopropane in a three-step synthesis as shown below.	
		Suggest the reagents and conditions you would use in steps 2 and 3, and identify the intermediates P and Q .	
		۸	
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	[A]
			[4]
	·····	······································	
		······································	
	· · · · · · · ·		
		······	

(e)	A possible amino acid derivative of cyclopropane is shown below.	
	H ₂ N CO ₂ H	
	\times	
	HO ₂ C	
	Draw the structure of the zwitterion formed by this amino acid derivative.	[1]
-		

[Total: 20]

River Valley High School 2021 Preliminary Examination

9729/03/PRELIMS/21

Additional answer space
······································
······································
······································
······································
······································

······
······································
······································
······································
······································
······································
······································

9729/03/PRELIMS/21

······································
······································
······································
······································

······································					
••••••					
	 	*************	* * * * * * * * * * * * * * * * * * * *	***************************************	••

9729/03/PRELIMS/21

RIVER VALLEY HIGH SCHOOL JC 2 PRELIMINARY EXAMINATION

CANDIDATE NAME		
CLASS	2 0 J	
CENTRE NUMBER	S	INDEX NUMBER
H2 CHEN	NSTRY	9729/03
Paper 3 Free R	esponse	21 September 2021 2 hours
Candidates ans Additional Mate	wer on the Question Paper. rials: Data Booklet	

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Answer **all** questions in the spaces provided on the Question Paper. If additional space is required, you should use the pages at the end of this booklet. The question number must be clearly shown.

Section A

Answer all the questions.

Section B

Answer one question. Circle the question number of the question you attempted.

The use of an approved scientific calculator is expected, where appropriate. A Data Booklet is provided.

The number of marks is given in brackets [] at the end of each question or part question.

		Control of the contro	For	Examiner	's Use			
Question Number	1	2	3	4	5	s.f.	units	Total
Marks	20	22	18	20	20			80

This document consists of 32 printed pages and 0 blank pages.

River Valley High School 2021 Preliminary Examination 9729/03/PRELIMS/21

Turn over

RV

2 DO NOT WRITE IN THIS MARGIN ?

RV

RV RV RV RV RV RV RV RV RV RV RV RV RV RV RV RV RV

RV

RV

RV RV

RV

RV RV

RV RV

RV

RV RV

RV

RV RV

RV RV

RV

RV RV

RV RV RV RV

RV

RV RV

Section A Answer all the questions in this section.

In a 2014 paper published in the Journal of Agricultural and Food Chemistry, Hendon and Colonna-Dashwood discovered the effect of water hardness on coffee flavour. Compounds in hard water tend to attach to the flavourful elements in roasted coffee beans during brewing. Water with higher levels of magnesium will likely extract more flavour from a coffee bean.

Water described as "hard" is high in concentration of Total Dissolved Solids (TDS), specifically calcium and magnesium. The hardness of water may be reported in parts per million (ppm). The solute concentration of a dilute aqueous solution in units of mg dm⁻³ is called parts per million, or ppm.

Classification	ppm
Soft	0 ` 17.1
Slightly hard	17.1 ` 60.0
Moderately hard	60.0 ` 120
Hard	120 ` 180
Very hard	> 180

- In a sample of Singapore's tap water, the concentration of magnesium and (a) calcium ions present are found to be 5.97×10^{15} mol dm 13 $5.49 \times 10^{14} \text{ mol dm}^{3}$ respectively. These two ions can be separated by selective precipitation with potassium hydroxide. The numerical values of solubility product of magnesium hydroxide and calcium hydroxide at 25 °C are 1.50 \times 10 11 and 5.50×10^{6} respectively.
 - (i) Calculate the total concentration of magnesium and calcium ions in ppm, and hence classify the hardness of water in this sample of tap water. $[Mg^{2+}]$ in ppm = $5.97 \times 10^{5} \times 24.3 \times 1000$

[2]

= 1.45 ppm

 $[Ca^{2+}]$ in ppm = $5.49 \times 10^{4} \times 40.1 \times 1000$

= 22.0 ppm

Total $[Mg^{2+}]$ and $[Ca^{2+}] = 1.45 + 22.0 = 23.5 ppm$

The sample of water is slightly hard.

River Valley High School 2021 Preliminary Examination

	(ii)	Calculate the minimum pH of the solution at which the magnesium ion precipitates as magnesium hydroxide.	[2]
		Ppt is formed when IP (Mg(OH)₂) ≥ K _{sp} (Mg(OH)₂),	
		$(5.97 \times 10^{5})[OH]^{2} \ge 1.5 \times 10^{-11} \text{ mol}^{3} \text{ dm}^{-9}$	
		$[OH^{-}] \ge 5.01 \times 10^{-4} \text{ mol dm}^{-3}$	
		Minimum pH = 14 – pOH	
		= 14 = 3.30	
		= 10.7	
	(iii)	The magnesium hydroxide continues to precipitate out of the solution as potassium hydroxide is being added continuously. Eventually, the concentration of the hydroxide becomes high enough to precipitate the calcium ions as well.	
		What is the concentration of magnesium ions when calcium ions begin to precipitate?	[2]
		When IP (Ca(OH) ₂) = K _{sp} (Ca(OH) ₂),	
		$(5.49 \times 10^{4})[OH]^{2} = 5.5 \times 10^{6} \text{ mol}^{3} \text{ dm}^{9}$	
		[OH] = 0.100 mol dm ³	
		When IP $(Mg(OH)_2) = K_{sp} (Mg(OH)_2)$,	
		$[Mg^{2+}](0.100)^2 = 1.5 \times 10^{-11} \text{ mol}^3 \text{ dm}^{-9}$	
		$[Mg^{2+}] = 1.50 \times 10^{9} \text{ mol dm}^{3}$	
(b)	A ba	lanced extraction is a well-brewed cup of coffee that is aromatic and rich in ours. Eugenol is a flavour note with a "woodsy" taste found in coffee, wine and ky.	
		C2 C1	
		Eugenol	
	Like halic	other alkenes, it undergoes hydrohalogenation when treated with hydrogen les.	
7	(i)	Draw a labelled diagram showing the orbital overlap between the carbon atoms C1 and C2 and state the hybridisation involved.	
		Do not include other atoms.	[2]

9729/03/PRELIMS/21

[Turn over___

Г				
			p orbitals	
			sp^2 orbitals σ bond π bond	
		(ii)	Hydrohalogenation of unsymmetrical alkenes results in a mixture of products. In such cases, the major product can be predicted using Markovnikov's rule.	
			Describe the mechanism of the reaction between eugenol and hydrogen chloride.	
			You may represent eugenol using R ₁	[2]
			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
- -		(iii)	With reference to your mechanism in (b)(ii) , explain why the major product is formed.	[2]
			In step 1, the <u>more stable secondary</u> carbocation intermediate is formed instead of a <u>primary</u> carbocation.	
			(More) alkyl groups exert an <u>electron-donating effect</u> , helping to <u>reduce/disperse the positive charge</u> on the carbocation, stabilising it.	
	(c)	proat	ation of alkenes via hydroboration favours formation of the anti-Markovnikuct. The hydroboration reaction involves 2 stages; first with limited borane, Blued by treatment with alkaline hydrogen peroxide.	(OV H ₃ ,
			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		· · · · · · · · · · · · · · · · · · ·	R = alkyl/aryl group	

It is suggested that the mechanism goes through the formation of the intermediate below. (i) The initial reaction between the alkene and borane can be considered to occur in a similar fashion as the hydrohalogenation reaction in (b)(ii). Suggest the mechanism showing the formation of the intermediate given above when eugenol reacts with borane. Indicate clearly the polarity of the B–H bond in borane by drawing δ + and δ – on the appropriate atoms. [2] By determining the change in the oxidation number of the reactive carbon, (ii) suggest the role of hydrogen peroxide in step 2 in the reaction. [1] Oxidation number of C bonded to -BH₂ changes from -3 to -1. H₂O₂ acts as an oxidising agent. 3 bottles of halogens are labelled as $\boldsymbol{X_2}$, $\boldsymbol{Y_2}$ and $\boldsymbol{Z_2}$. They are chlorine, bromine (d) and iodine. The table shows the results of experiments in which the halogens X_2 , Y_2 and Z_2 were added to separate solutions containing X-, Y- and Z- ions. $X^{-}(aq)$ Y-(aq) Z-(aq) X_2 no reaction no reaction no reaction Y_2 X₂ formed no reaction Z₂ formed [2] \mathbb{Z}_2 X₂ formed no reaction no reaction

River Valley High School 2021 Preliminary Examination

reasoning.

9729/03/PRELIMS/21

With reference to the table above, identify the halogens X, Y and Z. Explain your

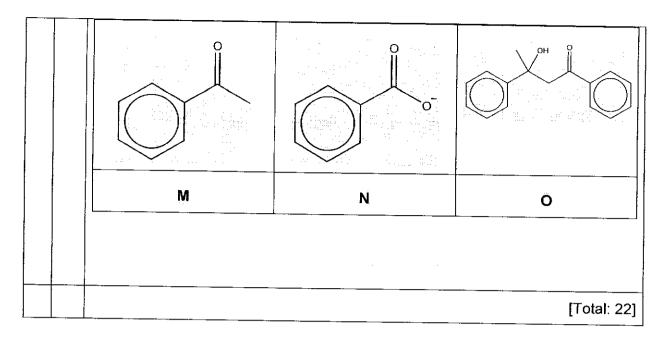
[Turn over

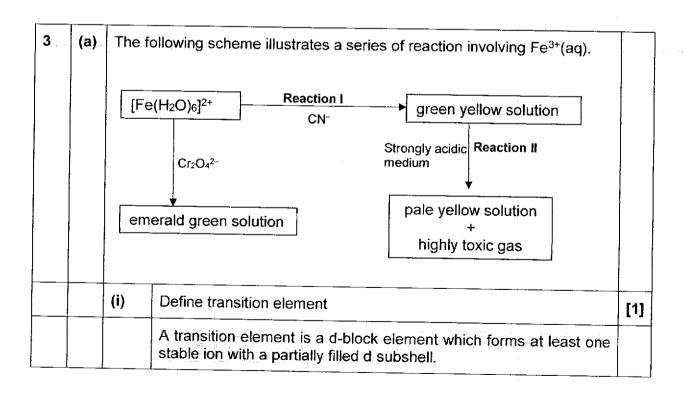
	Y_2 displaces (oxidises) both X^- and Z^- from solution, hence it must be the strongest oxidising agent, Cl_2 (or Y^- is the weakest reducing agent).	
	X ₂ cannot displace (oxidise) Y ⁻ and Z ⁻ from solution, hence it must be the weakest oxidising agent, I ₂ (or X ⁻ is the strongest reducing agent). Therefore, Z ₂ is Br ₂ .	
(e)	A glass rod was heated in a Bunsen burner flame and placed into a jar of hydrogen chloride gas. The experiment was repeated using a jar of hydrogen iodide gas. A colour change was observed in one of the samples.	
	Using relevant data from Data Booklet, explain these observations.	İ
		[3]
	The sample with HI will give a colour change.	
ŀ	Bond energy of HC/ = 431 kJ mol ⁻¹	
	Bond energy of HI = 299 kJ mol ⁻¹	
	The thermal stability of hydrogen halides decreases down the Group due to decreasing H–X bond energy. The <u>I atom is larger than the Cl atom</u> and its valence orbitals are more diffuse. This results in <u>less effective overlap</u> between the small H atom and the larger I atom and <u>less energy is required</u> to break the weaker H–I bond, <u>forming H₂ and (violet fumes) of I₂</u> , accounting for the colour change.	
	[Total:	201
<u> </u>	[Total: :	20

2	Nitrous acid, HNO ₂ , is a weak monoprotic acid. HNO ₂ is unstable and decomposes readily.						
-	l	It can be prepared by acidification of aqueous solutions of potassium nitrite with a mineral acid. The acidification is usually conducted at ice temperatures, and the HNO ₂ is consumed <i>in situ</i> .					
	An	equilibrium exists as follows.					
		$H^+(aq) + NO_2^-(aq) \rightleftharpoons HNO_2(aq),$					
		$K_c = 1.66 \times 10^3 \text{mol}^{-1} \text{dm}^3$					
	(a)	Calculate the value of the acid dissociation constant, Ka, of HNO2.	[1]				
		$HNO_2(aq) \rightleftharpoons H^+(aq) + NO_2^-(aq)$	1				
		Ka					
		$= 1 / K_c$ $= 1 / 1.66 \times 10^3$					
		$= 6.02 \times 10^{-4} \text{ mol dm}^{-3}$					
	(b)	A solution of HNO ₂ was prepared by mixing equal volumes of 0.40 mol dm ^{-3} HC/(aq) with 0.40 mol dm ^{-3} KNO ₂ (aq).					
ł		Calculate the pH of this solution.	[2]				

	(ii)	Calculate the increase in pressure when 2.00 g of HNO ₂ decomposes under 1 atm and 150 °C in a 1 dm ³ container.	[2]	
		NO2 In water, the H–O–H bond angle is <u>smaller</u> than the O–N–O bond angle as the <u>lone electron on N</u> in NO ₂ exerts <u>weaker lone electron–bond pair repulsion</u> as compared to the <u>2 lone pairs of electrons on O</u> in H ₂ O.		
	(i)	Draw the dot-and-cross diagram of NO ₂ . Explain the difference in bond angles in H ₂ O and NO ₂ .	[2]	
(d)	Gas	seous nitrous acid decomposes into nitrogen dioxide, nitric oxide, and wat $2\text{HNO}_2 ightarrow \text{NO}_2 + \text{NO} + \text{H}_2\text{O}$	er:	
(c)	pH = -lg (1.097 × 10 ⁻²) = 1.96 (c) Calculate the pH of the aqueous mixture when 10.0 cm ⁻³ 0.400 mol dm ⁻³ HC/ (aq) is added to 30.0 cm ³ of 0.400 mol dm ⁻³ KNO ₂ [HNO ₂] = $\frac{10}{1000} \times 0.400 / \frac{40}{1000}$ = 0.100 mol dm ⁻³ [NO ₂ -] = $\frac{20}{1000} \times 0.400 / \frac{40}{1000}$ = 0.200 mol dm ⁻³ Buffer calculation pH = pK _a + lg $\frac{[salt]}{[acid]}$ pH = -lg(6.02 × 10 ⁻⁴) + lg($\frac{0.200}{0.100}$)			
	= 0. = 0. [H ⁺] = √(40 / 2 20 mol dm ⁻³		
T	Initi	al concentration of HNO ₂ (aq) after mixing		

9729/03/PRELIMS/21


[Turn over____


1	Ì		Molar mass of HNO ₂ = 47.0 g	2 mal-1		
			Amount of HNO ₂ = $\frac{2.00}{47.0}$ = 4.25			
		1 1	Increase in number of moles	of gases		
		1 1	$= (3-2) \times 4.255 \times 10^{-2} \times 1/2$			
			= 2.128 × 10 ⁻² mol			
		1 1	ncrease in pressure			
		i I	$=\frac{nRT}{V}$			
		=	$=\frac{(0.02128)(8.31)(150+273)}{0.001}$			
		1 1	= 7.48 × 10 ⁴ Pa		·	
	(e)	Simila	r to HNOs 3 objectives			-
	(-)	Compo	r to HNO ₂ , 3–chloropropanoid	cacid is a weak monobasic	organic acid.	
j		When	ounds E and F are constitution	nal isomers of 2-chloroprop	anoic acid.	
		Copula	the same amount of 3-chlorite portions of water of equal views as shown in the table had	Olume the three solutions of	ich added to	
		pH vali	ues as shown in the table bel	OW.	otameu nave	
			compound	pH of aqueous solution		
			3-chloropropanoic acid	2.3		
			E	1.9		
_			F	1.0		!
		tric dill	t structural formulae for comperence in pH values of the inds has the structure of R–C	three solutions obtained	account for One of the	[4]
		E is 2–c	hloropropanoic acid			
			-O-CH2COC/			
		The aqu	leous solution of E has a lov	wer pH than that of 3-chlor	Opropanoio	,
		acia ne	Cause E is a stronger ac	id than 3-chloroproposic	ا جو دندند.	
		CICCUI OII	-withdrawing -C/ atom is C/CO ₂ Thus, the negative ch	nearer to theCO	aroun in	
	4	dispers	ed and this ion is more stabl	e than the CH ₂ ClCH ₂ CO ₂ - ic	on.	
	ŀ	The aque	eous solution of F has a lower F reacts with water to pro	nH than that of 2 chloropror	onois seist	

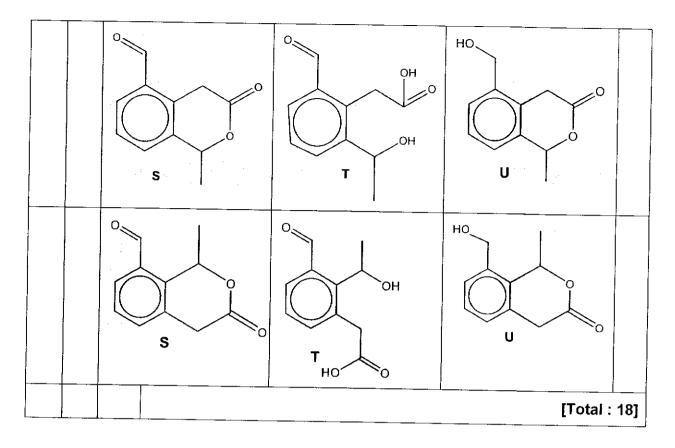
9729/03/PRELIMS/21

(f)		canedioic acid, a diprotic acid, can be synthesised from cindialdehyde by the following synthesis pathway.	
		Step 1 Step 2 Step 2	
	0//	OH Step 4 Step 3 K H ₂ SO ₄ (aq) heat hexanedioic acid	
	(i)	Suggest reagents and conditions for each of the Steps 1, 2 and 3.	[3]
		Step 1: LiA/H ₄ in dry ether Step 2: (dry) PC/ ₅ Step 3: ethanolic KCN, heat under reflux	
	(ii)	Suggest the structures for K and L .	[2]
		CI NC CN	
		K	
(g)	Cark The	ponyl compounds can undergo the Aldol reaction under basic conditions. mechanism is shown below.	
	Ste	Pp 1 R ₁ O + H ₂ O	
		One of the hydrogen atoms, bonded to the carbon next to the carbonyl carbon, forms a bond with a hydroxide ion via an acid-base reaction.	

		 -	0-	
	5	Step 2	R_1 enolate anion R_2 R_3 R_3	
			Nucleophilic attack by enolate anion.	
	S	itep 3	δ -	
			Acid-base reaction.	
			R_1 , R_2 , $R_3 = H$, alkyl or aryl	<u> </u>
				1
	(i)	Sug(betw	gest the structure of the compound formed from the Aldol reaction een 1 molecule of succindialdehyde and 1 molecule of methanal.	[1]
		0	H OH	
	(ii)	Comp	bound M is a compound with 8 carbon atoms and undergoes the ring reactions.	
		•	 M gives an orange precipitate with 2,4–DNPH. M does not react with Tollen's reagent. M reacts with alkaline aqueous iodine to give a yellow precipitate and product N, C₇H₅O₂⁻. M undergoes Aldol reaction to form O, C₁₆H₁₆O₂, under basic conditions. 	
_		Sugge	est the structures for M , N and O .	[3]

9729/03/PRELIMS/21

[Turn over


		(ii)	State the type of reaction which occurred in reaction I and write an equation for the reaction.	[2]
			type of reaction : ligand exchange	
			equation : $[Fe(H_2O)_6]^{3+} + 6CN^- \rightarrow [Fe(CN)_6]^{3-} + 6H_2O$	<u> </u>
		(iii)	Write an equation for reaction II.	[1]
			$[Fe(CN)_6]^{3-} 6H^+ + 6H_2O \rightarrow [Fe(H_2O)_6]^{3+} + 6HCN$	
		(iv)	Given that $C_2O_4{}^{2-}$ is a bidentate ligand, draw the structural formula of the complex formed.	[1]
	(b)	Ferro	omanganese is an alloy added to steels to improve their mechanical	
	·	of dil mang	erties. A 15.0 g sample of ferromanganese was dissolved in 250 cm ³ lute sulfuric acid to give an solution containing iron(II) sulfate and ganese(II) sulfate. 25.0 cm ³ of the resulting solution required 20.0 cm ³ 0360 mol dm ⁻³ of potassium manganate(VII) solution for complete ion.	
		(i)	By using the <i>Data Booklet</i> , construct a balanced equation for the reaction between resulting solution and potassium manganate(VII) solution.	[1]
			$5Fe^{2+} + MnO_4^- + 8H^+ \rightarrow 5Fe^{3+} + Mn^{2+} + 4H_2O$	
		(ii)	Calculate the percentage by mass of iron in ferromanganese.	[3]
			amt of MnO ₄ ⁻ = $\frac{20.0}{1000}$ ×0.036 = 7.20 × 10 ⁻⁴ mol	
:			amt of Fe ²⁺ in 25 cm ³ = $7.20 \times 10^{-4} \times 5 = 3.60 \times 10^{-3}$ mol	
			amt of Fe ²⁺ in 250 cm ³ = $3.60 \times 10^{-3} \times \frac{250}{25} = 3.60 \times 10^{-2}$ mol	
			mass of Fe in sample = $3.60 \times 10^{-2} \times 55.8 = 2.009 \text{ g}$	

		2,000					
		% of Fe in sample = $\frac{2.009}{15} \times 100\% = 13.4\%$					
7000	(c)	Neutral FeCl ₃ remain yellow when reacted with compound S , C ₁₁ H ₁₀ O ₃ . S gives a silver mirror with silver diammine complex. However, S does not give a precipitate with hot alkaline Cu ²⁺ solution.					
	1794	is heated with acidified KMnO ₄ for several hours to give enzene–1,2,3–tricarboxylic acid as the one of the organic products. When eated with NaOH(aq) followed by acidification, S forms T , C ₁₁ H ₁₂ O ₄ . T eacts with alkaline aqueous iodine to give yellow precipitate. S reacts with aBH ₄ to give U , C ₁₁ H ₁₂ O ₃ .					
		Suggest the structure for S , T and U . Explain the reactions described.	[9]				
		S does not react with neutral FeC $l_3 \Rightarrow \underline{\text{phenol}}$ is not present	:				
		In S , the <u>C:H ratio is 1:1</u> ⇒ <u>benzene is present</u>					
		S undergoes <u>oxidation</u> with silver diammine complex					
		⇒ <u>aldehyde</u> is present					
		S does not undergoes oxidation with $Cu^{2+} \Rightarrow aromatic aldehyde$ is present					
		S undergoes <u>oxidation</u> with hot acidified KMnO ₄ to give benzene-1,2,3-tricarboxylic acid as the only organic product.					
		⇒ substituents of benzene ring are on 1,2,3 position					
		S undergoes alkaline hydrolysis to form T					
		⇒ S is a <u>cyclic ester/ester bond present</u>					
		⇒ T contains a <u>carboxylic acid</u> and an <u>alcohol</u>					
		T undergoes a <u>oxidation/ positive iodoform test</u> ⇒ T has <u>-CH₃CH(OH)</u> group					
		S undergoes <u>reduction</u> with NaBH₄ to for U ⇒ <u>primary alcohol</u> is formed					
		O OH OH OH OH					

RV RV RV RV RV RV RV RV RV

RV

RV RV

Section B Answer one question from this section.

4	(a)	meta	line earth metals, also known as Group 2 elements are highly allic and are good conductors of electricity. They have a grey-white when freshly cut but tarnish readily in air.	
		(i)	Describe and explain the trend in thermal stability of the Group 2 carbonates.	[2]
			Down the Group, the <u>radius of the metal cation</u> , M ²⁺ , <u>increases</u> and its <u>charge density decreases</u> . As a result, the ability of M ²⁺ to polarise the electron cloud of the large CO ₃ ²⁻ anion decreases and the <u>C-O bonds are polarised and weakened to a smaller extent</u> . Hence <u>thermal stability of the Group 2 carbonates increases down the Group</u> .	
		(ii)	When ozone (O ₃) is passed over dry powdered BaO at `10°C,	
[barium ozonide, Ba(O ₃) ₂ , is formed as a red-brown solid.	
			Adding water to the solid and warming to room temperature causes a reaction to occur. Oxygen gas is produced and an alkaline solution is left.	
			Write a balanced equation for the reaction between barium ozonide and water.	[1]
			$Ba(O_3)_2(s) + H_2O(l) \rightarrow Ba(OH)_2(aq) + 5/2O_2(g)$	
		(iii)	Suggest a suitable temperature to produce calcium ozonide by passing ozone through powdered CaO.	[1]
			Accept any temperature lower than `10°C	
	(b)	Ozon charg	e is usually produced by passing oxygen gas through two highly- led electrical plates.	
			$3O_2(g) \rightarrow 2O_3(g)$	
		The r	eaction does not go to completion and a mixture of gases will be loed.	
		The c	concentration of O_3 in the mixture can be determined by its reaction equeous KI.	
			$O_3 + 2KI + H_2O \rightarrow I_2 + O_2 + 2KOH$	İ
		The thiosu	iodine formed can be estimated by its reaction with sodium	
			$2Na_2S_2O_3 + I_2 \rightarrow Na_2S_4O_6 + 2NaI$	

River Valley High School 2021 Preliminary Examination

9729/03/PRELIMS/21

[Turn over

		(ii)	Suggest the role of zinc in the reaction scheme.	[1]
			Oxidation/ Electrophilic Addition	
		(i)	State the type of reaction occurring in Step I of the reaction scheme.	[1]
			R_1 C C R_3 C C R_3 C	
ı		The r	eaction can also be expressed as	
			C = 0 $C = C$	
÷			R ₁ R ₃ R ₃	
			molozonide Step III Zn	
		R ₁	$:= C \xrightarrow{R_3 O_3} O \xrightarrow{CH_2CI_2, -78^{\circ}C} C \xrightarrow{R_3} O \xrightarrow{R_1 \cup R_3} Step II \xrightarrow{R_2 O} O \xrightarrow{R_3} O \xrightarrow{CH_2CI_2, -78^{\circ}C} O \xrightarrow{R_3} O \xrightarrow{R_1 \cup R_2 \cup R_3} O \xrightarrow{R_2 \cup R_3 \cup R_3 \cup R_3} O \xrightarrow{R_1 \cup R_2 \cup R_3 \cup R_3} O \xrightarrow{R_2 \cup R_3 \cup R_3 \cup R_3} O \xrightarrow{R_1 \cup R_2 \cup R_3 \cup R_3 \cup R_3} O \xrightarrow{R_2 \cup R_3 \cup R_3 \cup R_3 \cup R_3} O \xrightarrow{R_1 \cup R_2 \cup R_3 \cup R_3 \cup R_3} O \xrightarrow{R_2 \cup R_3 \cup R_3 \cup R_3 \cup R_3} O \xrightarrow{R_1 \cup R_2 \cup R_3 \cup R_3 \cup R_3} O \xrightarrow{R_1 \cup R_2 \cup R_3 \cup R_3 \cup R_3 \cup R_3} O \xrightarrow{R_1 \cup R_2 \cup R_3 \cup R_3 \cup R_3 \cup R_3} O \xrightarrow{R_1 \cup R_2 \cup R_3 \cup R_3 \cup R_3 \cup R_3 \cup R_3} O \xrightarrow{R_1 \cup R_2 \cup R_3 \cup R_3 \cup R_3 \cup R_3 \cup R_3} O \xrightarrow{R_2 \cup R_3 \cup R_3 \cup R_3 \cup R_3 \cup R_3} O \xrightarrow{R_1 \cup R_2 \cup R_3 \cup R_3 \cup R_3} O \xrightarrow{R_2 \cup R_3 \cup R_3 \cup R_3 \cup R_3} O \xrightarrow{R_1 \cup R_3 \cup R_3 \cup R_3} O \xrightarrow{R_2 \cup R_3 \cup R_3 \cup R_3 \cup R_3} O \xrightarrow{R_1 \cup R_2 \cup R_3 \cup R_3 \cup R_3} O \xrightarrow{R_1 \cup R_2 \cup R_3 \cup R_3 \cup R_3} O \xrightarrow{R_1 \cup R_2 \cup R_3 \cup R_3 \cup R_3 \cup R_3} O \xrightarrow{R_1 \cup R_2 \cup R_3 \cup R_3 \cup R_3 \cup R_3 \cup R_3} O \xrightarrow{R_1 \cup R_2 \cup R_3 \cup R_3 \cup R_3 \cup R_3} O \xrightarrow{R_1 \cup R_2 \cup R_3 \cup R_3 \cup R_3 \cup R_3} O \xrightarrow{R_1 \cup R_2 \cup R_3 \cup R_3 \cup R_3 \cup R_3} O \xrightarrow{R_1 \cup R_2 \cup R_3 \cup R_3 \cup R_3 \cup R_3} O \xrightarrow{R_1 \cup R_2 \cup R_3 \cup R_3 \cup R_3 \cup R_3 \cup R_3} O \xrightarrow{R_1 \cup R_2 \cup R_3 \cup R_3 \cup R_3 \cup R_3 \cup R_3 \cup R_3} O \xrightarrow{R_1 \cup R_2 \cup R_3 \cup R_3 \cup R_3 \cup R_3 \cup R_3 \cup R_3} O \xrightarrow{R_1 \cup R_2 \cup R_3 \cup R_3 \cup R_3 \cup R_3 \cup R_3 \cup R_3} O \xrightarrow{R_1 \cup R_2 \cup R_3 \cup R_3 \cup R_3 \cup R_3 \cup R_3 \cup R_3} O \xrightarrow{R_1 \cup R_2 \cup R_3 \cup R_3 \cup R_3 \cup R_3 \cup R_3 \cup R_3} O \xrightarrow{R_1 \cup R_3 \cup R_3 \cup R_3 \cup R_3 \cup R_3 \cup R_3 \cup R_3 \cup R_3} O \xrightarrow{R_1 \cup R_3 \cup R_3 \cup R_3 \cup R_3 \cup R_3 \cup R_3 \cup R_3 \cup R_3} O \xrightarrow{R_1 \cup R_3 \cup R_3 \cup R_3 \cup R_3 \cup R_3 \cup R_3 \cup R_3} O \xrightarrow{R_1 \cup R_3 \cup R_3 \cup R_3 \cup R_3 \cup R_3 \cup R_3 \cup R_3} O R_1 \cup R_2 \cup R_3 \cup$	
-		belov	lly rearranges to form ozonides. The reaction scheme is shown w.	
	(c)	interr	me adds rapidly to alkenes at low temperature to give cyclic mediates, called molozonides. Once formed, molozonides then	
			% of $O_3 = (1.200 \times 10^{13} \div 0.01322) \times 100\% = 9.08\%$	
			total amount of gas = 300 ÷ 22700 = 0.01322 mol	
			$n_{\rm O_3} = n_{\rm I_2} = 1.200 \times 10^{-3} \rm mol$	
			$n_{l_2} = (0.100 \times 24.0 \div 1000) \div 2 = 1.200 \times 10^{-3} \text{ mol}$	
			$I_2 \equiv 2S_2O_3^{2-}$	
		(ii)	Calculate the percentage of O ₃ in the gaseous mixture.	[2]
			Starch solution. Blue-black to colourless.	
		(i)	Suggest a suitable indicator can be used in the titration and state the colour change at end point.	[1]
		0.10	00 mol dm ³ Na ₂ S ₂ O ₃ was required to discharge the i o dine colour.	
		Whe	en 300 cm ³ of an oxygen/ozone gaseous mixture at s.t.p. was passed an excess of aqueous KI, and the iodine titrated, 24.0 cm ³ of	

		Reducing agent	
	(iii)	β -Damascenone is a chemical compound found in whisky, which is an alcoholic liquor. Also known as rose ketones, β -damascenone is a key compound that contributes a floral note to whisky.	
		β-damascenone	
		Predict the organic products formed when β -damascenone reacts with ozone as shown by the reaction scheme above.	[3]
(d)	aldeh	from β-damascenone, whisky contains an array of compounds that its taste and flavour, which include phenolic compounds, ydes and esters. The use of different grains, distillation process and used in the ageing process can also change the flavour profile.	
	(i)	Phenolic compounds in general contributes smoky flavours and bitterness in whisky. In Scotch whisky, the use of peat fires to dry the barley grains creates a class of medicinal-smelling compounds known as cresols.	
		Cresols exists as constitutional isomers with the formula C ₇ H ₈ O. When added to aqueous bromine, rapid decolourisation followed by the formation of a white precipitate is observed for all isomers of cresol.	
		Draw all the possible isomers of cresol.	[3]

and the second s	OH OH CH ₃ CH ₃ CH ₃	
(ii)	Whisky lactones are responsible for the woody, spicy and coconut flavour notes. One such compound is trans-3-methyl-4-octanolide. A student wanted to synthesise an amide from this lactone.	
	trans-3-methyl-4-octanolide The following steps were proposed. 1. heat with dilute H ₂ SO ₄ 2. addition of ethylamine Comment on the feasibility of this reaction scheme.	[2]
	The reaction scheme is not feasible. The hydrolysis of ester in (1) will result in the formation of a carboxylic acid that will undergo an acid-base reaction with ethylamine rather than a condensation reaction.	
(iii)	Esters in whisky can also contribute fruity flavours such as ethyl hexanoate, which imparts a sweet apple flavor, and isoamyl acetate, which gives a banana aroma. ethyl hexanoate ethyl hexanoate isoamyl acetate	

9729/03/PRELIMS/21

	Describe a simple chemical test that can be used to distinguish ethyl hexanoate from isoamyl acetate.	[2]
	State any observations you would make with each compound.	
	(1) Aqueous NaOH, heat	
	(2) Aqueous (alkaline) iodine, warm	
	Pale yellow ppt will be observed for ethyl hexanoate (due to formation of ethanol). No pale yellow ppt will be observed for isoamyl acetate.	
(iv)	Whisky is a mixture of water, ethanol and organic compounds like whisky lactones. When the alcoholic whisky is stored for a long period of time, as the ethanol content decreases, a cloudiness can be observed in the whisky.	
	Suggest a reason why the cloudiness occurs.	[1]
	As the ethanol is evaporated, the chemical compounds can precipitate, giving rise to cloudiness.	
	[Total	: 20]

5	Cycl Freu	Cyclopropane is an explosive, colourless gas that was discovered by August Freund in 1881, and was once used as a general anesthetic in clinical practice.			
	(a) Cyclopropane can undergo isomerisation to propene at 298 K. $(g) \qquad (g) \qquad \Delta H \text{ isomerisation} = -33.0 \text{ kJ mol}^{-1}$				
		Table 5.1			
			ΔH / kJ mol ⁻¹		
		standard enthalpy change of formation of CO ₂ (g)	-394		
		standard enthalpy change of formation of H₂O(I)	-286		
		standard enthalpy change of combustion of cyclopropane	-2091		
		Using the data given above and in Table 5.1, construct cycle and calculate the enthalpy change of formation of K.	a suitable energy of propene at 298	[3]	

9729/03/PRELIMS/21

[Turn over_

			r
		$3C(s) + 3H_2(g) + 9/2 O_2(g) \xrightarrow{3(-394) + 3(-286)} 3CO_2(g) + 3H_2O(I)$	
		$\Delta H_{\rm f}({\rm propene})$ -2091	
		$(g) + 9/2 O_2(g) \qquad -33.0 \qquad (g) + 9/2 O_2(g)$	
İ		$\Delta H_{\rm f}({ m propene})$	
		$= 3(-394) + 3(-286) - (-2091) + (-33.0) = +18.0 \text{ kJ mol}^{-1}$	
	(b)	100 cm ³ of a mixture of methane and cyclopropane was completely burnt in 300 cm ³ of oxygen and then cooled to room temperature.	
		The total volume of the gaseous reaction mixture decreases by 215 cm ³ .	
		On passing the resultant gaseous mixture through potassium hydroxide, the final volume was found to be 25 cm ³ .	
		What is the ratio of methane to cyclopropane in the original mixture?	[2]
		$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(I)$	
		$C_3H_6(g) + 9/2O_2(g) \rightarrow 3CO_2(g) + 3H_2O(1)$	
	1	Volume of resultant gaseous mixture after combustion	
ŀ		= $400 - 215 = 185 \text{ cm}^3$ (contains remaining $O_2 \& CO_2$)	
		Volume of CO₂ in resultant gaseous mixture	İ
	:	$= 185 - 25 = 160 \text{ cm}^3$	
		Let x be the volume of CH ₄ and $(100 - x)$ be the volume of C ₃ H ₆ in the original mixture	ļ
}	\	Volume of $CO_2 = x + 3(100 - x) = 160$	
		300 - 2x = 160	
	>	x = 70	
	\	Volume of $CH_4 = 70 \text{ cm}^3$ and volume of $C_3H_6 = 30 \text{ cm}^3$	
		Ratio of CH ₄ to $C_3H_6 = 7:3$	ļ
a	рпац	opane can undergo free radical substitution with chlorine, similar to an calkane. Chlorocyclopropane is the major product formed under a set of conditions.	

9729/03/PRELIMS/21

(c)	(i)	State the conditions needed to produce chlorocyclopropane as the major product.]
		limited C/2, uv, (excess cyclopropane)	
	(ii)	Describe the mechanism for this reaction.	[:
		Initiation $ CI \longrightarrow CI \longrightarrow 2CI^{\bullet} $ Propagation $ CI \longrightarrow CI \longrightarrow CI^{\bullet} $ Termination $ CI \longrightarrow CI \longrightarrow CI_{2} $ $ CI \longrightarrow CI \longrightarrow CI $	
	by-pr	lorocyclopropane, C ₃ H ₃ C <i>l</i> ₃ , is one of the possible polysubstituted oducts of the reaction under a different set of conditions.	<u>-</u>
	(iii)	ich exhibit stereoisomerism. Define the term stereoisomerism.	
	\''''		[1
		Stereoisomerism is a type of isomerism in which molecules have the same molecular and structural formulae, but differ in the spatial arrangement of their atoms.	
	(iv)	Draw the structures of the 3 isomers of trichlorocyclopropane and suggest the type of stereoisomerism associated with each of them.	

9729/03/PRELIMS/21

[Turn over_

		Note: You may refer to the diagram of surface at		
		Note: You may refer to the diagram of cyclopropane shown below to draw the isomers accordingly.		
		н н		
		H H		
			[4]	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
		cis-trans isomerism cis-trans isomerism enantiomerism		
(d)	Howe reacti struct			
		+ HBr		
	(i)	Suggest a possible reason why cyclopropane can undergo addition reactions, unlike aliphatic alkanes.	[1]	
		Cyclopropane is highly unstable due to the <u>ring strain</u> , as the bond angles in the ring are at 60°, rather than 109.5° for sp ³ carbons.		
		Propane can be produced from cyclopropane in a three-step synthesis as shown below. Suggest the reagents and conditions you would use for steps 2 and 3, and identify the intermediates P and Q .		
		$\frac{Br_2}{\text{step 1}} P \frac{Q}{\text{step 2}} \frac{Q}{\text{step 3}}$	[4]	

	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
(e)	A possible amino acid derivative of cyclopropane is shown below.	
	H ₂ N COOH	
	Draw the structure of the zwitterion formed by this amino acid derivative.	[1]
	H ₃ N COO⁻ HOOC	
	[Total	: 20]

9729/03/PRELIMS/21

[Turn over_