

Higher 2		
CANDIDATE NAME		
CG		
MATHEMATICS Paper 1		9758/01
Candidates answer on the Question Paper. Additional Materials: List of Formulae (MF26)		28 AUGUST 2024 3 hours
READ THESE INSTRUCTIONS FIRST		For Examiners' Use
Write your CG, index number and name on the work you hand in. Write in dark blue or black pen.	Question	Marks
You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid.	1	
Answer all the questions. Write your answers in the spaces provided in the Question Paper.	2	
Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a	3	
different level of accuracy is specified in the question. You are expected to use an approved graphing calculator.	4	
Unsupported answers from a graphing calculator are allowed unless a question specifically states otherwise. Where unsupported answers from a graphing calculator are not	5	
allowed in a question, you are required to present the mathematical steps using mathematical notations and not	6	
calculator commands. You are reminded of the need for clear presentation in your	7	
STEWARE		

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 100.

Question	Marks
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
Presentation	
Total	/ 100

1 (a) Without using a calculator, solve the inequality
$$\frac{x}{x-1} \ge \frac{6}{4+x}$$
. [4]

(b) Hence, solve
$$\frac{|x|}{|x|+1} \ge \frac{6}{4-|x|}$$
. [2]

2 The diagram below shows a sketch of the graph of $y = \sin^2 x$ for $0 \le x \le \frac{\pi}{2}$.

Rectangles each of width $\frac{\pi}{2n}$ are drawn under the curve for $0 \le x \le \frac{\pi}{2}$.

(a) Show that A, the total area of all the rectangles, is given by $a \sum_{k=1}^{n-1} \sin^2 \frac{k\pi}{2n}$, where a is to be determined. [2]

(b) Find the exact value of
$$\lim_{n \to \infty} a \sum_{k=1}^{n-1} \sin^2 \frac{k\pi}{2n}$$
. [2]

(c) Hence, find the value of $\int_0^1 \sin^{-1} \sqrt{y} \, dy$. [2]

3 Do not use a calculator in answering this question.

- (a) Given that f(x) is a polynomial of degree 4 with real coefficients, explain whether it is possible for f(x) = 0 to have 3 non-real roots and 1 real root. [1]
- (b) One of the roots of the equation $2x^4 15x^3 + ax^2 63x + b = 0$, where a and b are real, is 3-2i. Find the other roots of the equation and the values of a and b. [6]

- 4 (a) It is given that $x \frac{dy}{dx} = xy(\ln x + \ln y) y$. Using the substitution w = xy, show that the differential equation can be transformed to $\frac{dw}{dx} = f(w)$, where the function f(w) is to be found. [3]
 - (b) Hence, given that $y = \frac{1}{2}e^3$ when x = 2, solve the differential equation $x\frac{dy}{dx} = xy(\ln x + \ln y) y$, to find y in terms of x.
- 5 (a) The graph of y = f(x) is shown below. The graph has a turning point at A(-1, 4), and axial intercepts at B(0, 6) and C(-3, 0). The lines x = -2 and y = 10 are the asymptotes.

On separate diagrams, and showing clearly the coordinates of the turning points and any points of intersection with the axes and the equations of the asymptotes where possible, sketch the graphs of

(i)
$$y = \frac{1}{f(x)}$$
, and

(ii)
$$y = f'(x)$$

(b) State a sequence of transformations that will transform the ellipse $4x^2 + y^2 - 4y = 0$ to the unit circle $x^2 + y^2 = 1$.

6 A curve is defined by the parametric equations

$$x = \frac{1-t^2}{1+t^2}$$
, $y = \frac{2t}{1+t^2}$, $-1 \le t \le 0$.

- (a) Using differentiation, find the equation of the tangent to the curve at the point where $t = -\frac{1}{2}$. [4]
- (b) Sketch the curve and the tangent in part (a) on the same diagram, labelling the coordinates of the points of intersection with the axes. [2]
- (c) Show that the area bounded by the curve, the tangent and the x-axis can be expressed in the form $c \int_{a}^{b} \frac{8t^2}{(1+t^2)^3} dt$, where a, b and c are constants to be determined. Hence evaluate this area. [3]
- 7 (a) Show that $\frac{4r-6}{(2r+1)(2r+3)(2r+5)}$ can be expressed in the form $\frac{A}{2r+1} + \frac{B}{2r+3} + \frac{C}{2r+5}$, where A, B and C are constants to be determined. [2]
 - (b) Hence, find an expression for $\sum_{r=1}^{N} \frac{4r-6}{(2r+1)(2r+3)(2r+5)}$ in terms of N. You do not need to give your answer as a single fraction. [4]
 - (c) Using your answer in part (b), find the exact value of $\sum_{r=7}^{\infty} \frac{4r-10}{(2r-1)(2r+1)(2r+3)}.$ [3]

8 The function f is defined by

$$f: x \mapsto x(5-x), \quad x \in \mathbb{R}, x \ge 3.$$

(a) Find $f^{-1}(x)$ and state the domain of f^{-1} . [3]

It is given that

$$g(x) = \begin{cases} 4 + \frac{4}{x - 10} & \text{for } x \le 8, \\ \frac{12 - x}{2} & \text{for } 8 < x \le 12. \end{cases}$$

- (b) Sketch the graph of y = g(x). [2]
- (c) Find the value of x such that $g^{-1}(3.5) = x$. [2]
- (d) Explain why the composite function gf exists and find gf(x). [2]
- (e) Find the range of gf. [1]

9 (a) Find
$$\int x^2 \sqrt{1+2x^3} \, dx$$
. [2]

- (b) Find $\int \sin 3x \sin 4x \, dx$. Hence, find the exact value of $\int_0^{\frac{\pi}{3}} \sin 3x |\sin 4x| \, dx$. [5]
- (c) Find $\int e^{-x} \cos 3x \, dx$. Hence, find the exact value of $\int_0^{\pi} e^{-x} \cos 3x \, dx$. [5]
- 10 Two aeroplanes are observed flying in straight lines, with respect to an airport control tower located at (0, 0, 0). The flight paths of aeroplanes A and B can be modelled by

$$\mathbf{r} = \begin{pmatrix} 10 \\ 4 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} -2 \\ -5 \\ 6 \end{pmatrix} \quad \text{and} \quad \mathbf{r} = \begin{pmatrix} -8 \\ 3 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ -3 \\ 4 \end{pmatrix}$$

respectively, where λ and μ is the time elapsed in minutes since the start of the observation for each aeroplane. The x, y and z-directions are due east, due north and vertically upwards respectively, with all distances in kilometres.

- (a) The flight paths intersect at point P. Find the coordinates of P and explain why the two aeroplanes will not collide.

 [4]
- (b) Find the acute angle between the flight path of aeroplane A and the horizontal ground. [2]
- (c) Find a cartesian equation of the plane Π which contains both flight paths. [3]
- (d) The airport building has a slanted wall which is parallel to the flight path of aeroplane B, and the wall is inclined at an angle of 60° with the horizontal ground. The cartesian equation of the wall is given by ax + by + z = 1. Given that b > 1, find the values of a and b.
- 11 [It is given that the volume of a sphere of radius r is $\frac{4}{3}\pi r^3$ and that the volume of a circular cone with

base radius r and height h is $\frac{1}{3}\pi r^2 h$.

A hollow crystal sphere with centre O has a fixed radius of R cm and it is made of material with negligible thickness. A golden right circular cone with base radius r cm and height h cm is inscribed such that its vertex and the circumference of the circular base are both in contact with the of the sphere. It is also given that h > R (see diagram).

(a) Show that
$$h = R + \sqrt{R^2 - r^2}$$
. [1]

(b) Show that the maximum possible volume of the cone is $k\pi R^3$ cm³, where k is a constant whose exact value is to be found. You do not need to show that this volume is a maximum. [6]

It is now assumed that the volume of the inscribed cone is maximum for the rest of this question.

The space between the bottom of the sphere and the circular base of the cone is fully filled with fluorescent liquid. Unfortunately, the liquid is leaking at a constant rate of 2 cm³s⁻¹ at the bottom of the sphere. The volume of the liquid, L cm³, at the instant when the depth of the liquid is x cm is given by $L = \frac{1}{3}\pi x^2 (3R - x)$.

It is now given that R = 10.

- (c) Find the rate of decrease of x at the instant when the depth of the liquid is 4 cm. [3]
- (d) How long does it take for the liquid to be completely drained? [2]

Higher 2		
CANDIDATE NAME		
CG		
MATHEMATICS Paper 2		9758/02 10 SEPTEMBER 2024
Candidates answer on the Question Paper. Additional Materials: List of Formulae (MF26)		3 hours
READ THESE INSTRUCTIONS FIRST		For Examiners' Use
Write your CG, index number and name on the work you hand in. Write in dark blue or black pen.	Question	Marks
You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid.	1	
Answer all the questions.	2	
Write your answers in the spaces provided in the Question Paper. Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of	3	
accuracy is specified in the question. You are expected to use an approved graphing calculator.	4	
Unsupported answers from a graphing calculator are allowed unless a question specifically states otherwise.	5	
Where unsupported answers from a graphing calculator are not allowed in a question, you are required to present the mathematical steps using	6	
mathematical notations and not calculator commands. You are reminded of the need for clear presentation in your answers.	7	

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 100.

Question	Marks
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
Presentation	
Total	/ 100

Section A: Pure Mathematics [40 marks]

1 Do not use a calculator in answering this question.

Two complex numbers are such that $z_1 = \frac{1-\mathrm{i}}{\cos\frac{1}{8}\pi - \mathrm{i}\sin\frac{1}{8}\pi}$ and $z_2 = -1 + \sqrt{3}\,\mathrm{i}$.

- (a) Find $\frac{-2z_1}{z_2^*}$ in the form $re^{i\theta}$, where r > 0 and $-\pi < \theta \le \pi$. [4]
- **(b)** Find the three smallest positive integer values of n such that $\left(\frac{-2z_1}{z_2*}\right)^n$ is a negative real number.
- Vectors \mathbf{u} and \mathbf{v} are non-zero vectors such that $\sqrt{3} |\mathbf{u} \times \mathbf{v}| = \mathbf{u} \cdot \mathbf{v}$ and the angle between the direction of \mathbf{u} and the direction of \mathbf{v} is θ .
 - (a) Explain why θ is an acute angle and show that $\theta = 30^{\circ}$. [3]

It is now given that \mathbf{u} is a unit vector and $|\mathbf{v}| = 3$.

- (b) (i) Give the geometrical interpretation of u·v. [1]
 - (ii) Find the value of $(\mathbf{u} \times \mathbf{v} + \mathbf{u}) \cdot (\mathbf{v} \times \mathbf{u})$. [3]
- 3 (a) The region R is bounded by the curve $y = \frac{1}{1 + \sqrt{x}}$, the x-axis and the lines x = 1 and x = 4.

 R is rotated about the x-axis through 2π radians. Using the substitution $u = \sqrt{x}$, find the exact volume of the solid generated.
 - (b) The region L is bounded by the curve $y = \frac{1}{1 + \sqrt{x + a}}$, the x-axis and the lines x = 3 and x = 6. Given that the volume of the solid generated when L is rotated about the x-axis through 2π radians is the same as the volume calculated in part (a), state the value of a.

- 4 (a) A geometric series has first term a and common ratio r, where $r \ne 1$. The first, second and third terms of this series are the first, seventh and tenth terms of an arithmetic series with common difference d, where d < 0.
 - (i) Find a in terms of d. [3]
 - (ii) Given that the sum to infinity of the geometric series is 1, find the exact value of d. [2]
 - (b) The first term of another arithmetic series is a negative integer. The sum of the first six terms of the series is 15 and the product of the first four terms of the series is 0. Find the first positive term of the series.

 [4]
 - (a) (i) Using the expansions from the List of Formulae (MF26), find the Maclaurin series for ln(1+sin 2x) in ascending powers of x, up to and including the term in x⁴, where 0≤x≤π/4.
 - (ii) State the equation of tangent to the curve $y = \ln(1 + \sin 2x)$ at the point when x = 0. [1]
 - **(b)** In the triangle ABC, AB = 1, angle $BAC = \theta$ radians and angle $ABC = \frac{5\pi}{6}$ radians.

(i) Show that
$$AC = \frac{1}{\cos \theta - \sqrt{3} \sin \theta}$$
. [3]

(ii) Given that θ is a sufficiently small angle, show that

$$AC \approx 1 + a\theta + b\theta^2$$

for constants a and b to be determined. [3]

9758/02/JC2PE/24 [Turn Over

Section B: Probability and Statistics [60 marks]

6	Car	l plays a game with only 2 outcomes, win or lose, and the probability of winning in the first r	ound
	is 0.	3. For any subsequent rounds, the probability of winning is 0.4 if he wins the previous round	d and
	0.2	otherwise. Carl plays the game for three rounds.	
	(a)	Draw a tree diagram to illustrate this information.	[2]
	(b)	Find the probability that Carl wins exactly once, given that he wins at least once.	[3]
	On a	another day, Carl decides to play the game until he loses 1 round.	
	(c)	Find the probability that Carl plays the game for an even number of rounds.	[2]
7	A co	ompany has 12 employees consisting of 3 men and 9 women.	
	(a)	The director wishes to gather opinions on female office dress code on Fridays from the fe	male
		employees, so he sends a questionnaire to the 9 women. Explain whether these 9 women fo	rm a
		sample or a population.	[1]
	(b)	How many ways are there to divide the 12 employees into three groups of 4 each such that	each
		group consists of exactly one man?	[2]
	(c)	The 12 employees are now seated at a round table. How many ways are there to seat them	such
		that no two men are seated next to each other?	[2]
8	A m	nanufacturer produces a large number of tumblers of three colours: black, pink and white in	1 the
	resp	ective ratios 3:2:1. The tumblers are packed into boxes of 20 each.	
	Assı	ume that the number of white tumblers in each box follows a binomial distribution.	
	(a)	Find the probability that the number of white tumblers in a randomly chosen box is bety	veen
		4 and 9 inclusive.	[2]
	(b)	Find the probability that the 19th tumbler chosen from the box is the fourth white tumbler.	[2]
	It is	known that, on average, p % of the tumblers are defective. The number of defective tumblers	in a
	box	also follows a binomial distribution. The probability that a box contains at most one defect	etive
	tum	bler is 0.95.	
	(c)	Write down an equation satisfied by p . Hence find the value of p .	[3]

A box contains two balls numbered 2 and k balls numbered 3, where $k \ge 3$. In a game, three balls are drawn from the box at random and the score is obtained by multiplying together the numbers indicated on the balls that were drawn. Let the random variable X denote the score obtained.

(a) Show that
$$E(X) = \frac{9(3k^2 + 3k + 2)}{(k+1)(k+2)}$$
. [4]

(b) Given that
$$E(X) = \frac{144}{7}$$
, find the value of k. [1]

- (c) Assuming that each game is independent of one another, find the probability that the average score of 30 games is more than 21.
- In an experiment, a sensor is released from a height of 12,000 m to record the atmospheric pressure at different heights above sea-level. The data from the sensor is recorded in the table below.

Height above sea-level, h (m)	0	2880	5470	7735	9650	12000
Atmospheric pressure, p (kPa)	101.3	76.8	49.2	35.0	29.5	21.5

It is thought that the atmospheric pressures at different heights above the sea-level can be modelled by one of the formulae

$$p = ah + b$$
, $\ln p = ch + d$,

where a, b, c and d are constants.

- (a) Find, correct to 4 decimal places, the value of the product moment correlation coefficient
 - (i) between h and p, [1]
 - (ii) between h and $\ln p$. [1]
- (b) Explain which of p = ah + b and $\ln p = ch + d$ is the better model and find the equation of a suitable regression line for this model. [3]
- (c) It is known that an oxygen supply should be used when the atmospheric pressure is less than 57.2 kPa. A skydiver attempts to perform a skydive by jumping from a height of 4800 m without an oxygen supply. Use the equation of your regression line to estimate the atmospheric pressure and predict if the performance could be attempted safely. [2]
- (d) Give two reasons why you would expect the estimate in part (c) to be reliable. [2]

A school shares that, on average, a student takes 90 minutes to complete an online learning assignment. Teacher Ian wishes to test whether this mean time taken has been understated. The time required to complete an online learning assignment, t minutes, is measured for a random sample of 45 students. The results are summarised as follows.

$$n = 45$$
 $\sum (t-90) = 15.39$ $\sum (t-90)^2 = 89.05$

- (a) Calculate unbiased estimates of the population mean and variance of the time taken for a student to complete an online learning assignment.
- (b) Test, at the 2% significance level, whether the mean time taken to complete an online learning assignment has been understated. You should state your hypotheses and define any symbols you use.
- (c) State the meaning of the p-value obtained in part (b).

After conducting some focus group discussions, the school claims that the population mean time taken for a student to complete an online learning assignment is μ_0 minutes.

- (d) Teacher Ian takes another random sample of 40 students, where its mean and standard deviation of the time taken are 90.7 minutes and 1.3 minutes respectively. Given that a test of this sample at the 2% significance level indicates that the school's claim is valid, find the range of possible values of μ_0 .
- 12 In this question you should state clearly all the distributions that you use, together with the values of the appropriate parameters.

A vegetable seller sells potatoes and tomatoes. The masses of potatoes, X grams, have the distribution $N(175,25^2)$.

- (a) Given that P(X < 166) = P(X > m), find the value of m. [1]
- (b) The probability that the mass of a randomly chosen potato differs from the population mean mass by more than a grams is 0.3. Find the value of a.
- (c) Find the expected number of potatoes with mass less than 182 grams in a randomly chosen batch of 90 potatoes.

The masses of tomatoes, Y grams, have the distribution $N(125,15^2)$.

(d) Find the probability that the mass of a randomly chosen tomato is more than 130 grams. [1]

- (e) A sample of 50 tomatoes are randomly chosen. Find the probability that exactly 20 tomatoes in this sample each has a mass more than 130 grams.
 [2] The selling price of the potatoes is \$0.32 per 100 g and the selling price of the tomatoes is \$0.22 per 100 g.
- (f) Find the probability that the price of a randomly chosen potato is greater than the total price of 2 randomly chosen tomatoes. [4]

2024 YIJC H2MA Prelim Examination Paper 1

* ≥ 0		
Need to reject $ x < -1$ as		
mar. Check the signs.	x<-4 or x>4	
it means the replacement is	x > 4 or $ x < -1$ (no solution)	
see x in the new inequality,	- x <-4 or $- x >1$	
Do not assume that once you	Replace x with $- x $	3
$\frac{(x-1)^2+5}{(x-1)(x+4)} \ge 0$ to be true.		
satisfied for		
x < -4 or $x > 1$ is		
while "or" means either		
$\frac{(x-1)(x+4)}{(x-1)(x+4)} \ge 0$ to be true	x<-4 or x>1	
$(x-1)^2 + 5$	$\therefore (x-1)(x+4) > 0$	
satisfied for	Since $(x-1)^2 + 5 > 0$ for all real values of x,	
"and" means BOTH	2:	
not use comma.	(x-1)(x+4)	
between "and" and "or". Do	$\frac{1}{(x-1)} \times \frac{1}{(x-1)} \ge 0$	
Be clear of the difference	(-1)2.5	
	$(x-1)(x+4) \ge 0$	
	$x^2-2x+1^2-1^2+6$	
any critical value	(x-1)(x+4)	
$x^2-2x+6=0$ does not have	$\frac{x-2x+6}{2} \ge 0$	
Need to explain why	(x-1)(x+4)	
	$\frac{x^2 + 4x - 6x + 6}{2} \ge 0$	
	(x-1)(x+4)	
	$\frac{x(x+4)-6(x-1)}{2} \ge 0$	
signs of $x-1$ and $4+x$.	x-1 $x+4$	
because we do not know the	$\frac{x}{6} > 0$	
Do not cross-multiply here	x-1-4+x	
		1(a)
Comments	Solution	

(b)		(a)
We have $\lim_{n \to \infty} \frac{\pi}{4n} \sum_{k=1}^{n-1} \left(1 - \cos\left(\frac{k\pi}{n}\right) \right) = \int_0^{\pi} \sin^2 x dx$ $= \frac{1}{2} \int_0^{\pi} 21 - \cos 2x dx$ $= \frac{1}{2} \left[x - \frac{1}{2} \sin 2x \right]_0^{\pi}$ $= \frac{1}{2} \left[\left(\frac{\pi}{2}\right) - \frac{1}{2} \sin 2\left(\frac{\pi}{2}\right) - 0 \right]_0^{\pi}$ $= \frac{\pi}{4}$	Area of n^{th} rectangle $= \frac{\pi}{2n} \times \left(\sin^2 \left(\frac{(n-1)\pi}{2n} \right) \right)$ Area of all rectangles $= \frac{\pi}{2n} \times \left(\sin^2 0 \right) + \frac{\pi}{2n} \times \left(\sin^2 \left(\frac{\pi}{2n} \right) \right) + \frac{\pi}{2n} \times \left(\sin^2 \left(\frac{2\pi}{2n} \right) \right)$ $+ \dots + \frac{\pi}{2n} \times \left(\sin^2 \left(\frac{(n-1)\pi}{2n} \right) \right)$ $= \frac{\pi}{2n} \sum_{k=1}^{n-1} \left(\sin^2 \left(\frac{k\pi}{2n} \right) \right)$ $= \frac{\pi}{2n} \sum_{k=1}^{n-1} \frac{1}{2} \left(1 - \cos \left(\frac{k\pi}{n} \right) \right)$ $= \frac{\pi}{4n} \sum_{k=1}^{n-1} \left(1 - \cos \left(\frac{k\pi}{n} \right) \right)$	Area of 1 st rectangle = $\frac{\pi}{2n} \times \left(\sin^2(0)\right)$ Area of 2 nd rectangle = $\frac{\pi}{2n} \times \left(\sin^2\left(\frac{\pi}{2n}\right)\right)$ Area of 3 rd rectangle = $\frac{\pi}{2n} \times \left(\sin^2\left(\frac{2\pi}{2n}\right)\right)$ Area of 4 th rectangle = $\frac{\pi}{2n} \times \left(\sin^2\left(\frac{3\pi}{2n}\right)\right)$
Many students managed to recognise that they had to compute the definite integral from 0 to $\frac{\pi}{2}$. This is a standard question and a limit for a rectangles question generally hints at definite integrals.	For this "show" question, show clear steps, and should not write working as $\frac{\pi}{2n} \times \left(\sin^2 0 + \frac{\pi}{2n} \times \left(\sin^2 \left(\frac{\pi}{2n}\right)\right) + \dots \right)$ $+ \frac{\pi}{2n} \times \left(\sin^2 \left(\frac{2\pi}{2n}\right)\right) + \dots$ as this would mean that the sum is an infinite sum which is incorrect and misleading. Some students did not use the double angle formula to complete their working. The double angle formula is	Check that the height of the n th rectangle is the y coordinate of the corner of the final rectangle touching the curve

Г	3(b)	3(a) (c)
$= x^{2} - 6x + 13$ $2x^{4} - 15x^{3} + ax^{2} - 63x + b = \left(x^{2} - 6x + 13\right)\left(2x^{2} + cx + \frac{b}{13}\right)$ Comparing coefficients of x^{3} : $-15 = -6(2) + (1)(c)$ $c = -3$ Comparing coefficients of x : $-63 = -6\left(\frac{b}{13}\right) + 13c$ $-63 = -\frac{6b}{13} + 13(-3)$ $-6b = -312$ $b = 52$ Comparing coefficient of x^{2} :		$\int_0^1 \sin^{-1} \sqrt{y} dy = \left(\frac{\pi}{2}\right)(1) - \int_0^{\pi} \frac{1}{2} \sin^2 x dx$ $= \frac{\pi}{2} - \left(\frac{\pi}{4}\right)$ $= \frac{\pi}{4}$ It is not possible as by conjugate root theorem, since all the coefficients of $f(x)$ are real, the non-real roots must occur in conjugate pairs. Therefore, it is not possible to have an odd number of non-real roots.
Students need to learn how to compare coefficients WITHOUT expanding $\left(x^2 - 6x + 13\right)\left(2x^2 + cx + \frac{b}{13}\right)$. Students who are still unsure of how to compare coefficients without expanding should approach their rutors to clarify.	By applying the conjugate root theorem, they would know that the non-real roots occur in conjugate pairs so there should not be odd number of non-real roots. Students need to write the phrase "all coefficients of the equation are real" OR "by conjugate root theorem", AND state "3+2i" (the conjugate root) is also a root of the equation.	This question was poorly done. Students need to recognise that the integrand is the inverse of the function given in the original question, which would mean the required area is the area of the region bounded by the curve, the y -axis, and the line $y = 1$. Students need to write the keywords "coefficients of $f(x)$ are real" or "conjugate root theorem".

$2x^4 - 15x^3 + 48x^2 - 63x + 52 = 0$ Since all the coefficients of the equation are real, $x = 3 + 2i$ is also a root.	Comparing Real part: -292 + 5a + b = 0 -292 + 5(48) + b = 0 b = 52 a = 48, b = 52	(-292+5a+b)+(576-12a)i=0 Comparing Imaginary part: 576-12a=0 a=48	$x^{2} = (3-2i)^{2} = 9 - 12i - 4 = 5 - 12i$ $x^{3} = (3-2i)(5-12i) = 15 - 36i - 10i + 24i^{2} = -9 - 46i$ $x^{4} = (3-2i)(-9 - 46i) = -27 - 138i + 18i + 92i^{2} = -119 - 120i$ $2x^{4} - 15x^{3} + ax^{2} - 63x + b = 0$ $2(-119 - 120i) - 15(-9 - 46i) + a(5 - 12i) - 63(3 - 2i) + b = 0$:. The other roots are $x = 3 + 2i$, $x = \frac{3}{4} + \frac{\sqrt{23}}{4}i$ and $x = \frac{3}{4} - \frac{\sqrt{23}}{4}i$. Method 2 (tedious):	$2x^{2} - 3x + 4 = 0$ $x = \frac{-(-3) \pm \sqrt{(-3)^{2} - 4(2)(4)}}{2(2)}$ $x = \frac{3 \pm \sqrt{-23}}{4}$ $x = \frac{3}{4} + \frac{\sqrt{23}}{4} \text{ or } x = \frac{3}{4} - \frac{\sqrt{23}}{4} \text{ i}$	$a = \left(\frac{b}{13}\right) - 6c + 2(13)$ $a = \left(\frac{52}{13}\right) - 6(-3) + 26$ $a = 48$ $a = 48, b = 52$
	the left.	and so they NEED to show full workings when calculating $(3-2i)^2, (3-2i)^3, (3-2i)^4$ as shown in the solutions on	Students are advised NOT to use method 2. Some students who used method 2 did not read the first line in the question that calculators are not allowed in this question,	Students should also be reminded that roots are numbers or constants (which can be non-real numbers too), and roots are NOT algebraic expressions such as $2x^2-3x+4$.	Many students forgot this part of the question to find the other roots of the equation. Students are advised to read the question carefully to check that they have answered the question fully and not just one part of the question.	

Ī						4(a)						··			<u> </u>				
	$\frac{dw}{dx} = w(\ln w)$ where $f(w) = w \ln w$.	Now, substituting (1) and $w = xy$, we get	$x\frac{\mathrm{d}y}{\mathrm{d}x} + y = xy(\ln xy)$	$x\frac{\mathrm{d}y}{\mathrm{d}x} = xy(\ln x + \ln y) - y$	$\frac{\mathrm{d}w}{\mathrm{d}x} = x\frac{\mathrm{d}y}{\mathrm{d}x} + y - \dots - (1)$	Let $w = xy$. Differentiating with respect to x, we get	$x = \frac{3}{4} - \frac{\sqrt{23}}{4}$ 1.	\therefore The other roots are $x = 3 + 2i$, $x = \frac{3}{4} + \frac{\sqrt{23}}{4}i$ and	$x = \frac{3}{4} + \frac{\sqrt{23}}{4}$ or $x = \frac{3}{4} - \frac{\sqrt{23}}{4}$ i	$x = \frac{3 \pm \sqrt{-23}}{4}$	$x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4(2)(4)}}{2(2)}$	$2x^2 - 3x + 4 = 0$	Compare coefficient of x : $-63 = -6(4) + 13c$ $C = -3$	$2x^4 - 15x^3 + 48x^2 - 63x + 52 = \left(x^2 - 6x + 13\right)\left(2x^2 + cx + 4\right)$	$=x^2-6x+13$	$=x^2-6x+9-(-4)$	$=(x-3)^2-(2i)^2$	=(x-3+2i)(x-3-2i)	[x-(3-2i)][x-(3+2i)]
			question has only w term, $f(w)$.	The final answer in this	will need to replace all y in	The original DE contains													

$e^{3} = e^{Ae^{2}}$ $3 = Ae^{2}$ $A = 3e^{-2}$ Therefore, $y = \frac{e^{3e^{X-2}}}{x}$.	$y = \frac{e^{Ae^x}}{x}$ When $x = 2$, $y = \frac{1}{2}e^3$. Then $\frac{1}{2}e^3 = \frac{e^{Ae^2}}{2}$	In $w = \pm e^{x+C}$ $w = e^{\pm e^{x}+C}$ $w = e^{Ae^{x}}$ where $A = \pm e^{C}$. Since $w = xy$, then $xy = e^{Ae^{x}}$	$\int \frac{1}{w \ln w} dw = \int 1 dx$ $\int \frac{\left(\frac{1}{w}\right)}{\ln w} dw = \int 1 dx$ $\ln \ln w = x + C$	(b) By (f), we have $\frac{dw}{dx} = w \ln w$. Then $\left(\frac{1}{w \ln w}\right) \frac{dw}{dx} = 1$
			_	To solve this DE, we will have to use variable separable.

5(a)(ü					⊕ <u>€</u>
y = f(x) $A(-1,4)$ $B(0,6)$ Vertical asymptote $x = -2$ x-intercept $C(-3,0)$ Horizontal asymptote $y = 10$	$A' \begin{pmatrix} -1 \\ -2 \\ 0 \end{pmatrix}$	Vertical asymptote $x = -2$ x-intercept $C(-3,0)$ Horizontal asymptote $y = 10$	B(0,6)	A(-1,4)	$y = \frac{1}{f(x)}$
y = f'(x) $A'(-1,0)$ Vertical asymptote $x = -2$ Horizontal asymptote $y = 0$	$ \begin{array}{c} x \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	x-intercept $(-2,0)$ Vertical asymptote $x = -3$ Horizontal asymptote $y = \frac{1}{10}$	y-intercept $B'\left(0,\frac{1}{6}\right)$	Turning point $A'\left(-1,\frac{1}{4}\right)$.	
2.			4,	'n	, در د
Not possible to label the turning point for graph of $y = f'(x)$. Asymptotes at x-axis must be label with $y = 0$.			Curve must be smooth. Shouldn't have any kink.	intercepts, turning points and	curve. Curves tend towards asymptotes.

œ	Method 2 (make y the subject) $4x^2 + y^2 - 4y = 0$ $4x^2 + y^2 - 4y + 4 = 4$ $4x^2 + (y - 2)^2 = 4$ $(y - 2)^2 = 4 - 4x^2$ $y - 2 = \pm \sqrt{4 - 4x^2}$ $y = 2 \pm 2\sqrt{1 - x^2} \xrightarrow{A} y = 1 \pm \sqrt{1 - x^2} \xrightarrow{B} y = \pm \sqrt{1 - x^2}$ $y^2 = 1 - x^2$ $x^2 + y^2 = 1$ A. Scale parallel to the y-axis by a scale factor of $\frac{1}{2}$ B: Translate the graph 1 unit in the negative y-direction	5(b) $4x^2 + y^2 - 4y = 0$ $4x^2 + (y - 2)^2 = 4$ $x^2 + \left(\frac{y - 2}{2}\right)^2 = 1$ $x^2 + \left(\frac{y - 2}{2}\right)^2 = 1$ A. Translate the graph 2 units in the negative y-direction B. Scale parallel to the y-axis by a scale factor of $\frac{1}{2}$
		I. Have to complete the square as in conics transformation, you cannot have y and y² together. 2. Use proper terms. In your syllabus, only Scale, translate or reflect. NOT shift, move, stretch etc.

$\frac{dy}{dx} = \frac{\left(-\frac{1}{2}\right)^{2} - 1}{2\left(-\frac{1}{2}\right)^{2}} = \frac{3}{4}$ Equation of the tangent at $t = -\frac{1}{2}$: $y - \left(-\frac{4}{5}\right) = \frac{3}{4}\left(x - \frac{3}{5}\right)$ $y = \frac{3}{4}x - \frac{5}{4}$ $y = \frac{1}{4}(3x - 5) \text{ (shown)}$	At $t = -\frac{1}{2}$, $x = \frac{1 - \left(-\frac{1}{2}\right)^2}{1 + \left(-\frac{1}{2}\right)^2} = \frac{3}{5}, \ \ y = \frac{2(-\frac{1}{2})}{1 + \left(-\frac{1}{2}\right)^2} = -\frac{4}{5}$	$\frac{dy}{dt} = \frac{2(1+t^2) - (2t)(2t)}{(1+t^2)^2}$ $= \frac{2 - 2t^2}{(1+t^2)^2}$	6(a) $\frac{dx}{dt} = \frac{(-2t)(1+t^2)-(2t)(1-t^2)}{(1+t^2)^2}$ $= \frac{-2t-2t^3-2t+2t^3}{(1+t^2)^2}$ $= \frac{-4t}{(1+t^2)^2}$
when finding values of x, y, dy/dx and equation of tangent dx since a calculator is not allowed and the answer is given in the question.			Should simplify the answers for $\frac{dy}{dt}$ and $\frac{dy}{dt}$ so that it is casier to find $\frac{dy}{dx}$.

				7(a)
$+\left(-\frac{1}{2N-3} + \frac{3}{2N-1} - \frac{2}{2N+1}\right)$ $+\left(-\frac{1}{2N-1} + \frac{3}{2N+1} - \frac{2}{2N+3}\right)$ $+\left(-\frac{1}{2N+1} + \frac{3}{2N+3} - \frac{2}{2N+5}\right)$ $= -\frac{1}{3} + \frac{3}{5} - \frac{1}{5} - \frac{2}{2N+3} + \frac{3}{2N+3} - \frac{2}{2N+5}$ $= \frac{1}{15} + \frac{1}{2N+3} - \frac{2}{2N+5}$	$+\left(-\frac{1}{7} + \frac{1}{9} - \frac{1}{11}\right)$ $+\left(-\frac{1}{7} + \frac{3}{11} - \frac{1}{13}\right)$	$\sum_{r=1}^{N} \frac{4r-6}{(2r+1)(2r+3)(2r+5)} = \sum_{r=1}^{N} \left(-\frac{1}{2r+1} + \frac{3}{2r+3} - \frac{2}{2r+5} \right)$ $= \left(-\frac{1}{3} + \frac{3}{5} - \frac{2}{7} \right)$ $+ \left(-\frac{1}{5} + \frac{1}{7} + \frac{2}{9} \right)$	$4r-6 = A(2r+3)(2r+5) + B(2r+1)(2r+5) + C(2r+1)(2r+3)$ $Let 2r = -1: -8 = A(2)(4) \Rightarrow A = -1$ $Let 2r = -3: -12 = B(-2)(2) \Rightarrow B = 3$ $Let 2r = -5: -16 = C(-4)(-2) \Rightarrow C = -2$ $4r-6 = -\frac{1}{2r+1} + \frac{3}{2r+5} + \frac{-2}{2r+5}$	$\frac{4r-6}{(2r+1)(2r+3)(2r+5)} = \frac{A}{2r+1} + \frac{B}{2r+3} + \frac{C}{2r+5}$
	Must show 2 full cancellations at the start and 1 full cancellation at the end and all intermediate terms must be cancelled	Do not re-arrange the terms as the denominators in the fractions are already in ascending or descending order, otherwise it would be challenging to do the cancellations	Substitute $r = -\frac{1}{2}, r = -\frac{3}{2}, r = -\frac{5}{2}$ to make it easy to find A, B and C or use cover-up rule (should not be expanding and comparing coefficients)	

	be be
Method 2: List the first few terms of the given series and then write sigma notation using general term in (b) $\sum_{r=7}^{\infty} \frac{4r-10}{(2r-1)(2r+1)(2r+3)}$ $= \frac{3}{(13)(15)(17)} + \frac{25}{(15)(17)(19)} + \frac{26}{(17)(19)(21)} + \cdots$ $= \sum_{r=6}^{\infty} \frac{4r-6}{(2r+1)(2r+3)(2r+5)} - \sum_{r=1}^{5} \frac{4r-6}{(2r+1)(2r+3)(2r+5)}$ $= \sum_{r=1}^{\infty} \frac{4r-6}{(2r+1)(2r+3)(2r+5)} - \sum_{r=1}^{5} \frac{4r-6}{(2r+1)(2r+3)(2r+5)}$ $= \lim_{N\to\infty} \left(\frac{1}{15} + \frac{1}{2N+3} - \frac{2}{2N+5}\right) - \left(\frac{1}{15} + \frac{1}{2(5)+3} - \frac{2}{2(5)+5}\right)$ $= \frac{1}{15} - \left(\frac{1}{15} + \frac{1}{13} - \frac{2}{15}\right)$ $= \frac{1}{195}$	Method 1: Replace r with r+1 in $\sum_{r=7}^{\infty} \frac{4(r+1)-10}{(2r-1)(2r+1)(2r+1)}$ $\sum_{r+i=7}^{\infty} \frac{4(r+i)-10}{(2(r+1)+1)(2(r+1)+3)}$ $= \sum_{r=6}^{\infty} \frac{4r-6}{(2r+1)(2r+3)(2r+5)}$ $= \sum_{r=1}^{\infty} \frac{4r-6}{(2r+1)(2r+3)(2r+5)} - \sum_{r=3}^{5} \frac{4r-6}{(2r+1)(2r+3)(2r+5)}$ $= \lim_{r\to\infty} \left(\frac{1}{15} + \frac{1}{2N+3} - \frac{2}{2N+5}\right) - \left(\frac{1}{15} + \frac{1}{2(5)+3} - \frac{2}{2(5)+5}\right)$ $= \frac{1}{15} - \left(\frac{1}{15} + \frac{1}{13} - \frac{2}{15}\right)$ $= \frac{11}{195}$
	Must use (b) result so not allowed to do partial fractions and then method difference Start with the given sum t do the replacement and no start with the result in (b) Must use (b) result to find $\sum_{r=1}^{5} \frac{4r-6}{(2r+1)(2r+3)(2r+5)}$ and not use GC

13	8(c) $g^{-1}(3) = x$ g(x) = 3 $4 + \frac{4}{x - 10} = 3$ $\frac{4}{x - 10} = -1$ $\frac{4}{x - 6}$		y y	$D_{f^{-1}} = (-\infty, 6]$	Since $x \ge 3$, $x = \frac{5}{2} + \sqrt{\frac{25}{4} - y}$ $f^{-1}(x) = \frac{5}{2} + \sqrt{\frac{25}{4} - x}$	8(a) $y = x(5-x)$ $y = 5x - x^2$ $x^2 - 5x + y = 0$ $\left(x - \frac{5}{2}\right)^2 - \frac{25}{4} + y = 0$ $x = \frac{5}{2} \pm \sqrt{\frac{25}{4} - y}$
	$g^{-1}(3) = x$ $gg^{-1}(3) = g(x)$ 3 = g(x) Reminder: $gg^{-1}(x) = x$. Need to choose the correct expression in the piecewise function to solve for x because the point is on the curve part when $g(x) = 3$.	and (12.0) must be labelled. The coordinates are important to show which expression is being drawn for the piecewise function. There should not be an empty circle at (8, 2) as the point is included in the piecewise function.	Clear distinction between the curve and line needs to be seen	Answer the question. Don't write it together with the rule. Note that for set notation, the smaller value is always on the left. (You should not be writing $[6,-\infty)$)	Need to write explanation for rejection of $x = \frac{5}{2} - \sqrt{\frac{25}{4} - y}$.	Either complete the square or use quadratic formula to make x the subject.

	3		9(a)	8(c)	8(d)
$= -\frac{1}{2} \left(\frac{\sin 7x}{7} - \sin x \right) + C$ $= -\frac{1}{2} \sin x - \frac{1}{14} \sin 7x + C$	$\int \sin 3x \sin 4x dx = -\frac{1}{2} \int -2\sin 4x \sin 3x dx$ $= -\frac{1}{2} \int \cos^2 7x - \cos x dx$	$= \frac{1}{6} \left(\frac{2}{3} \right) (1 + 2x^3)^{\frac{3}{2}} + C$ $= \frac{1}{9} (1 + 2x^3)^{\frac{3}{2}} + C$	$\int x^2 \sqrt{1 + 2x^3} dx = \frac{1}{6} \int 6x^2 \left(1 + 2x^3\right)^{\frac{1}{2}} dx$	$R_{gf} = [3,4)$	$R_{\Gamma} = (-\infty, 6]$ $D_{g} = (-\infty, 12]$ Since $R_{\Gamma} \subseteq D_{g}$, gf exists $gf(x) = g(5x - x^{2})$ $= 4 + \frac{4}{5x - x^{2} - 10}$
	, , , , , , , , , , , , , , , , , , ,		Rewrite the integral to the form $\int f'(x)[f(x)]'' dx$	Draw the graph of $y = 4 + \frac{4}{5x - x^2 - 10}$ to determine the range. OR "Input" $(-\infty, 6]$ into the curve part of the function g and determine the range	You must state R_f and D_g before making the conclusion. From $R_f = (-\infty, 6]$ which will become the "input" for $g(x)$, we see that we are looking at the curve part of the function g since the curve part is defined for $(-\infty, 8]$.

	Considering $0 \le x \le \frac{\pi}{3}$ where $\sin 4x \le 0 \Rightarrow \frac{\pi}{4} \le x \le \frac{\pi}{3}$ $\int_{0}^{\pi} \sin 3x \sin 4x dx + \int_{\pi}^{\pi} \sin 3x \sin 4x dx$ $= \left[\frac{1}{2} \sin x - \frac{1}{14} \sin 7x\right]_{0}^{\pi} - \left[\frac{1}{2} \sin x - \frac{1}{14} \sin 7x\right]_{\frac{\pi}{4}}^{\pi}$ $= \left[\frac{1}{2} \left(\frac{1}{\sqrt{2}}\right) - \frac{1}{14} \left(-\frac{1}{\sqrt{2}}\right) - \frac{1}{2}(0) + \frac{1}{14}(0)\right]$ $= \left[\frac{1}{2} \left(\frac{\sqrt{3}}{\sqrt{2}}\right) - \frac{1}{14} \left(-\frac{1}{\sqrt{2}}\right) - \frac{1}{2}(0) + \frac{1}{14}(0)\right]$ $= \left[\frac{1}{2} \left(\frac{\sqrt{3}}{\sqrt{2}}\right) - \frac{1}{14} \left(-\frac{1}{\sqrt{2}}\right) - \frac{1}{2}(0) + \frac{1}{14}(0)\right]$ $= -e^{-x} \cos 3x dx$ $= -e^{-x} \cos 3x - 3\left[e^{-x} \sin 3x dx\right]$ $= -e^{-x} \cos 3x - 3\left[e^{-x} \sin 3x - \int -e^{-x} (3\cos 3x) dx\right]$ $= -e^{-x} \cos 3x - 3\left[-e^{-x} \sin 3x - \int -e^{-x} (3\cos 3x) dx\right]$ $= -e^{-x} \cos 3x dx = -e^{-x} \cos 3x + 3e^{-x} \sin 3x - 9\left[e^{-x} \cos 3x dx\right]$ $= \left[e^{-x} \cos 3x dx = -e^{-x} \cos 3x + 3e^{-x} \sin 3x - 9\left[e^{-x} \cos 3x dx\right]$ $= \left[1 - e^{-x} \cos 3x + 3e^{-x} \sin 3x - 9\left[e^{-x} \cos 3x + 3\sin 3x\right]\right]_{0}^{\pi}$ $= \frac{1}{10} e^{-x} (-\cos 3x + 3\sin 3x)$ $= \frac{1}{10} e^{-x} (-\cos 3x + 3\sin 3x)$ $= \frac{1}{10} e^{-x} (-\cos 3x + 3\sin 3x)$ $= \frac{1}{10} e^{-x} (-\cos 3(0) + 3\sin 3(0))$ $= \frac{1}{10} e^{-x} + \frac{1}{10}$
15	$0 \Rightarrow \frac{\pi}{4} \le x \le \frac{\pi}{3}$ $\sin 7x \Big] \frac{\pi}{4}$ $\Big] \Big] \frac{\pi}{4}$ $\Big] \Big] \frac{\pi}{4}$ $\Big[\frac{1}{2} \cos 3x \Big] dx \Big]$ $\Big[3\cos 3x \Big] - \frac{\pi}{\sqrt{2}} \Big] \Big]$ $\Big[3\sin 3x + C \cos 3x \Big] dx$ $\sin 3x - 9 \Big] e^{-x} \cos 3x \Big] dx$ $\sin 3x + C$
	Remember to include the arbitrary constant once integration is completed

so they do not collide.	Since $\lambda \neq \mu$, the aeroplanes passed through P at different timings,		The coordinates of P are $(0, -21, 33)$.	(3) (6) (3)	3	OP = 4 + 5 - 5 = -21	10 2	_	$\lambda = 5, \mu = 8$	Solving the simultaneous equations,		3+62=1+411	$4-5\lambda = 3-3\mu$		$10-2\lambda = -8+\mu$	(c)		$ 4 + \lambda -5 = 3 + \mu -3$	10	_ `	At P	
de,	roplanes J	(Pare (0	(33)	3	= -21	1 0			neous equ		Ų	ij		Ų) (4)	_	+ \(\mu \) -3		ت -		
	passed thr	,	-21, 33).							lations,		$-6\lambda + 4u = 2$	$3\lambda - 3\mu = 1$,	$2\lambda + \mu = 18$)				_		
	ough P at										,	i=2	-	. ;	-							
	different t																					
	imings,							_														
30110	o You she	solution.	them in	explicit	down th	o Show al	 Reminders: 	of μ and λ	simultane	equations	componer	equate the	componer	if and only	Recall tha	equations	equating,	the coordi	in function	of intersec	• Idea: Simi	
The use	 You should use your GC to 		them into a form suitable for	explicitly, before rearranging	down the three linear equations	 Show all working by writing 	ĸ	-	simultaneously to find the values	equations and solve them	components to form three linear	equate the x-, y- and z-	components are equal. Hence we	if and only if the respective	Recall that two vectors are equal	equations of the two flight paths.	equating, in this case, the vector	the coordinates of the point P by	in functions and graphs, we find	of intersection between two lines	 Idea: Similar to finding the point 	
named The res of CT is not	T GC to		table for	Burguerus	u equations	y writing			the values	tem	tree linear	•	Hence we	ctive	s are equal	light paths.	the vector	point P by	s, we find	n two lines	g the point	
_						_		_			-	_	_	_				_	_			•

so they do not collide.

Read the question carefully: It asked for the coordinates of P.

٥

the point P, relative to the origin, in this case the control tower; specifically the position vector is

(3) (3)

-21 is the position vector of

0P =

, which a point

25 -21 0 equations. The use of GC is not disallowed, and it would save you the time taken and reduce the possibility of arithmetic errors from solving them algebraically

@ **5**

16

Self-check: If you obtained equations which you could not solve using your GC, or this led (algebraically) to two different sets of values of \(\mu \) and \(\lambda \), then you should check your own working for arithmetic or sign slips. Since the question specified the flight paths intersect at a point, it is only reasonable that a solution must exist and it must be unique.

For the explanation why the neropianes will not collide

cannot be "cqual" to. This must be written in the form of the tuple, (0, -21, 33), to be recognised as the coordinates of

Let the acute angle be θ . Let the acute angle be θ . $ \begin{vmatrix} -2 & 0 & 0 \\ -5 & 0 & 0 \\ 6 & 11 \end{vmatrix} = \frac{6}{6} $ In normal vector of π is $\begin{vmatrix} -2 \\ -5 & x \end{vmatrix} = \frac{6}{6}$ The normal vector of π is $\begin{vmatrix} -2 \\ -5 & x \end{vmatrix} = \frac{6}{6}$ The normal vector of π is $\begin{vmatrix} -2 \\ -5 & x \end{vmatrix} = \frac{6}{6}$ The normal vector of π is $\begin{vmatrix} -2 \\ -5 & x \end{vmatrix} = \frac{6}{6}$ The normal vector of π is $\begin{vmatrix} -2 \\ 6 & x \end{vmatrix} = \frac{6}{6}$ The normal vector of π is $\begin{vmatrix} -2 \\ 6 & x \end{vmatrix} = \frac{6}{6}$ The normal vector of π is $\begin{vmatrix} -2 \\ 6 & x \end{vmatrix} = \frac{6}{6}$ The normal vector of π is $\begin{vmatrix} -2 \\ 6 & x \end{vmatrix} = \frac{6}{6}$ The normal vector of π is $\begin{vmatrix} -2 \\ 6 & x \end{vmatrix} = \frac{6}{6}$ The normal vector of π is $\begin{vmatrix} -2 \\ 6 & x \end{vmatrix} = \frac{6}{6}$ The normal vector of π is $\begin{vmatrix} -2 \\ 6 & x \end{vmatrix} = \frac{6}{6}$ The normal vector of π is $\begin{vmatrix} -2 \\ 6 & x \end{vmatrix} = \frac{6}{6}$ The normal vector of π is $\begin{vmatrix} -2 \\ 6 & x \end{vmatrix} = \frac{6}{6}$ The normal vector of π is $\begin{vmatrix} -2 \\ 6 & x \end{vmatrix} = \frac{6}{6}$ The normal vector of π is $\begin{vmatrix} -2 \\ 6 & x \end{vmatrix} = \frac{6}{6}$ The normal vector of π is $\begin{vmatrix} -2 \\ 6 & x \end{vmatrix} = \frac{6}{6}$ The normal vector of π is $\begin{vmatrix} -2 \\ 6 & x \end{vmatrix} = \frac{6}{6}$ The normal vector of π is $\begin{vmatrix} -2 \\ 6 & x \end{vmatrix} = \frac{6}{6}$ The normal vector of π is $\begin{vmatrix} -2 \\ 6 & x \end{vmatrix} = \frac{6}{6}$ The normal vector of π is $\begin{vmatrix} -2 \\ 6 & x \end{vmatrix} = \frac{6}{6}$ The normal vector of π is $\begin{vmatrix} -2 \\ 6 & x \end{vmatrix} = \frac{6}{6}$ The normal vector of π is $\begin{vmatrix} -2 \\ 6 & x \end{vmatrix} = \frac{6}{6}$ The normal vector of π is $\begin{vmatrix} -2 \\ 6 & x \end{vmatrix} = \frac{6}{6}$ The normal vector of π is $\begin{vmatrix} -2 \\ 6 & x \end{vmatrix} = \frac{6}{6}$ The normal vector of π is $\begin{vmatrix} -2 \\ 6 & x \end{vmatrix} = \frac{6}{6}$ The normal vector of π is $\begin{vmatrix} -2 \\ 6 & x \end{vmatrix} = \frac{6}{6}$ The normal vector of π is $\begin{vmatrix} -2 \\ 6 & x \end{vmatrix} = \frac{6}{6}$ The normal vector of π is $\begin{vmatrix} -2 \\ 6 & x \end{vmatrix} = \frac{6}{6}$ The normal vector of π is $\begin{vmatrix} -2 \\ 6 & x \end{vmatrix} = \frac{6}{6}$ The normal vector of π is $\begin{vmatrix} -2 \\ 6 & x \end{vmatrix} = \frac{6}{6}$ The normal vector of π is $\begin{vmatrix} -2 \\ 6 & x \end{vmatrix} = \frac{6}{6}$ The normal vector of π is $\begin{vmatrix} -2 \\ 6 & x \end{vmatrix} = \frac{6}{6}$ The normal vector of π is $\begin{vmatrix} -2 \\ 6 & x \end{vmatrix} = \frac{6}{6}$ The normal vector of π is $\begin{vmatrix} -2 \\ 6 & x \end{vmatrix} = \frac{6}{6}$ The normal vector of π is	flight paths also means that the		
Let the acute angle be θ . $ \begin{vmatrix} -2 & 0 & 0 \\ 6 & 1 & 1 \end{vmatrix} = \frac{6}{6} $ $ \sin \theta = 44.1^{\circ} $ The normal vector of π is $\begin{bmatrix} -2 & 1 \\ -5 & \times \\ 6 & 4 \end{bmatrix} = \begin{bmatrix} 1 & -2 \\ 4 & 14 \\ 69 & 0 \end{bmatrix} = \begin{bmatrix} -8 & -2 \\ 4 & 14 \\ 69 & 0 \end{bmatrix} = \begin{bmatrix} -8 & -2 \\ 11 & 14 \\ 69 & 0 \end{bmatrix} = 69$	vector.	(1)(11)	
Let the acute angle be θ . Let the acute angle be θ . $\begin{vmatrix} -2 & 0 & 0 \\ -5 & 0 & 1 \end{vmatrix} = \frac{6}{6}$ Sin $\theta = \frac{48.1}{4+25+36}$ The normal vector of π is $\frac{-2}{5} \times \frac{1}{-3} = \frac{14}{14}$ Since P lies in π . $\begin{vmatrix} -2 & 1 & 0 & 0 \\ 6 & 1 & 1 & 0 \\ 6 & 33 & 1 & 0 \\ 11 & 11 & 0 & 0 \end{vmatrix}$ Since P lies in π . $\begin{vmatrix} -2 & 1 & 0 & 0 \\ 6 & 3 & 1 & 0 \\ 11 & 0 & 0 & 0 \end{vmatrix}$ Since P lies in π . $\begin{vmatrix} -2 & 0 & 0 & 0 \\ 6 & 3 & 0 & 0 \\ 11 & 0 & 0 & 0 \end{vmatrix}$ Since P lies in π . $\begin{vmatrix} -2 & 0 & 0 & 0 \\ 6 & 3 & 0 & 0 \\ 11 & 0 & 0 & 0 \end{vmatrix}$ Since P lies in π . $\begin{vmatrix} -2 & 0 & 0 & 0 \\ 6 & 0 & 0 & 0 \\ 11 & 0 & 0 & 0 \end{vmatrix}$ Since P lies in π .	product to find the normal	11 - 1	
Let the acute angle be Θ . Let the acute angle be Θ . $ \begin{vmatrix} -2 & 0 & 0 \\ -5 & 0 & 0 \\ -5 & 0 & 0 \end{vmatrix} = \frac{6}{44 + 25 + 36} = \frac{6}{\sqrt{65}} $ $ \theta = 48.1 $ The normal vector of π is $\begin{pmatrix} -2 & 1 \\ -5 & 2 & -3 \\ -21 & 14 & 69 \\ 33 & 11 & 69 \\ 6 & 33 & 11 \end{pmatrix} = \begin{pmatrix} -2 & 0 & 0 \\ -21 & 14 & 0 & 0 \\ -21 & 14 & 0 & 0 \\ -21 & 14 & 0 & 0 \\ -21 & 14 & 0 & 0 \\ -21 & 14 & 0 & 0 \\ -21 & 14 & 0 & 0 \\ -21 & 14 & 0 & 0 \\ -21 & 14 & 0 & 0 \\ -21 & 14 & 0 & 0 \\ -21 & 14 & 0 & 0 \\ -21 & 14 & 0 & 0 \\ -21 & 14 & 0 & 0 \\ -21 & 14 & 0 & 0 \\ -21 & 0 & 0 & 0 \\ -$	are parallel to the plane and	A 14 -60 or 3 - 14	
Let the acute angle be θ . $\begin{vmatrix} -2 & 0 & 0 \\ -5 & 0 & 0 \\ -5 & 0 & 0 \\ -5 & 0 & 0 \end{vmatrix} = \frac{6}{6}$ Sin $\theta = 48.1^{\circ}$ The normal vector of π is $\begin{pmatrix} -2 \\ -5 \\ 6 \end{pmatrix} \times \begin{pmatrix} 1 \\ -5 \\ -21 \\ 14 \\ -21 \\ 14 \\ -69 \end{pmatrix} = 69$ The normal vector of π is $\begin{pmatrix} -2 \\ -2 \\ -21 \\ 14 \\ -21 \\ 14 \\ -69 \end{pmatrix} = 69$ Let the acute angle be θ . Idea the	vectors of the two flight paths	(10)(-2) (-8)(-2)	
the acute angle be θ . $ \begin{pmatrix} -2 & 0 & 0 \\ -5 & 0 & 0 \\ 0 & -5 & 0 \end{pmatrix} = \begin{pmatrix} 6 & 1 & 1 \\ 6 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 6 & 1 & 1 \\ 6 & 5 & 5 \end{pmatrix} \times \begin{pmatrix} -2 & 1 & -5 \\ -5 & 5 & 5 \end{pmatrix} \times \begin{pmatrix} -3 & 1 & 1 \\ 6 & 4 & 1 \end{pmatrix} = \begin{pmatrix} -2 & 0 & 0 \\ 11 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} $ The acute angle be θ . Idea find the	flight paths, the direction	(33)(11)	
Let the acute angle be θ . $ \frac{\begin{pmatrix} -2 \\ -5 \\ 0 \\ 0 \\ -5 \end{pmatrix}}{\begin{pmatrix} -4 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}} = \frac{\begin{pmatrix} -2 \\ 6 \\ 0 \\ 0 \\ 0 \end{pmatrix}}{\sqrt{4+25+36}} = \frac{\begin{pmatrix} -2 \\ 6 \\ 0 \\ 0 \end{pmatrix}}{\sqrt{655}} $ He normal vector of π is $\begin{pmatrix} -2 \\ -5 \\ 0 \\ 0 \end{pmatrix} \times \begin{pmatrix} 1 \\ -3 \\ 0 \end{pmatrix} = \begin{pmatrix} -2 \\ 11 \\ 0 \end{pmatrix}$ Since Plies in π , $\begin{pmatrix} 0 \\ 0 \\ -2 \\ 0 \end{pmatrix} \begin{pmatrix} -2 \\ 0 \\ 0 \end{pmatrix} \times \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ Since Plies in π , $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} -2 \\ 0 \\ 0 \end{pmatrix} \times \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ Since Plies in π , $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} -2 \\ 0 \\ 0 \end{pmatrix} \times \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ The normal vector of π is $\begin{pmatrix} -2 \\ 0 \\ 0 \end{pmatrix} \times \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ The normal vector of π is $\begin{pmatrix} -2 \\ 0 \\ 0 \end{pmatrix} \times \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ The normal vector of π is $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \times \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0$	o Since the plane II contains both		
Let the acute angle be θ . $ \begin{vmatrix} -2 & 0 & 0 \\ -5 & 0 & 0 \\ 0 & -5 & \sqrt{65} \end{vmatrix} = \frac{6}{\sqrt{65}} $ Uhe normal vector of π is $\begin{pmatrix} -2 \\ -5 & \times \end{pmatrix} \times \begin{pmatrix} 1 \\ -5 & \times \end{pmatrix} = \begin{pmatrix} -2 \\ -5 & \times \end{pmatrix} \times \begin{pmatrix} 1 \\ -1 & \times \end{pmatrix} = \begin{pmatrix} -2 \\ 14 & \times \end{pmatrix}$ The normal vector of π is $\begin{pmatrix} -2 & 1 \\ -5 & \times \end{pmatrix} \times \begin{pmatrix} 1 & -2 \\ -5 & \times \end{pmatrix} = \begin{pmatrix} 1 & -2 \\ -5 & \times \end{pmatrix} \times \begin{pmatrix} 1 & -2 \\ -5 & \times \end{pmatrix} = \begin{pmatrix} -2 & -3 \\ -5 & \times \end{pmatrix} \times \begin{pmatrix} 1 & -2 \\ -5 & \times \end{pmatrix} = \begin{pmatrix} -2 & -3 \\ -5 & \times \end{pmatrix} \times \begin{pmatrix} 1 & -2 \\ -5 & \times \end{pmatrix} = \begin{pmatrix} -2 & -3 \\ -5 & \times \end{pmatrix} \times \begin{pmatrix} 1 & -2 \\ -5 & \times \end{pmatrix} = \begin{pmatrix} -2 & -3 \\ -5 & \times \end{pmatrix} \times \begin{pmatrix} -3 & -3 \\ -5 & \times \end{pmatrix} = \begin{pmatrix} -2 & -3 \\ -5 & \times \end{pmatrix} \times \begin{pmatrix} -3 & -3 \\ -5 & \times \end{pmatrix} = \begin{pmatrix} -2 & -3 \\ -5 & \times \end{pmatrix} \times \begin{pmatrix} -3 & -3 \\ -5 & \times \end{pmatrix} = \begin{pmatrix} -2 & -3 \\ -5 & \times \end{pmatrix} \times \begin{pmatrix} -3 & -3 \\ -5 & \times \end{pmatrix} = \begin{pmatrix} -2 & -3 \\ -5 & \times \end{pmatrix} \times \begin{pmatrix} -3 & -3 \\ -5 & \times \end{pmatrix} = \begin{pmatrix} -2 & -3 \\ -5 & \times \end{pmatrix} \times \begin{pmatrix} -3 & -3 \\ -5 & \times \end{pmatrix} = \begin{pmatrix} -2 & -3 \\ -5 & \times \end{pmatrix} \times \begin{pmatrix} -3 & -3 \\ -5 & \times \end{pmatrix} = \begin{pmatrix} -2 & -3 \\ -5 & \times \end{pmatrix} \times \begin{pmatrix} -3 & -3 \\ -5 & \times \end{pmatrix} = \begin{pmatrix} -2 & -3 \\ -5 & \times \end{pmatrix} \times \begin{pmatrix} -3 & -3 \\ -5 & \times \end{pmatrix} = \begin{pmatrix} -2 & -3 \\ -5 & \times \end{pmatrix} \times \begin{pmatrix} -3 & -3 \\ -5 & \times \end{pmatrix} = \begin{pmatrix} -3 & -3 \\ -5 & \times \end{pmatrix} \times \begin{pmatrix} -3 & -3 \\ -5 & \times \end{pmatrix} = \begin{pmatrix} -3 & -3 \\ -5 & \times \end{pmatrix} \times \begin{pmatrix} -3 & -3 \\ -5 & \times \end{pmatrix} = \begin{pmatrix} -3 & -3 \\ -5 & \times \end{pmatrix} \times \begin{pmatrix} -3 & -3 \\ -5 & \times \end{pmatrix} = \begin{pmatrix} -3 & -3 \\ -5 & \times \end{pmatrix} \times \begin{pmatrix} -3 & -3 \\ -5 & \times \end{pmatrix} = \begin{pmatrix} -3 & -3 \\ -5 & \times \end{pmatrix} \times \begin{pmatrix} -3 & -3 \\ -5 & \times \end{pmatrix} = \begin{pmatrix} -3 & -3 \\ -5 & \times \end{pmatrix} \times \begin{pmatrix} -3 & -3 \\ -5 & \times \end{pmatrix} = \begin{pmatrix} -3 & -3 \\ -5 & \times \end{pmatrix} \times \begin{pmatrix} -3 & -3 \\ -5 & \times \end{pmatrix} = \begin{pmatrix} -3 & -3 \\ -5 & \times \end{pmatrix} \times \begin{pmatrix} -3 & -3 \\ -5 & \times \end{pmatrix} = \begin{pmatrix} -3 & -3 \\ -5 & \times \end{pmatrix} \times \begin{pmatrix} -3 & -3 \\ -5 & \times \end{pmatrix} = \begin{pmatrix} -3 & -3 \\ -5 & \times \end{pmatrix} \times \begin{pmatrix} -3 & -3 \\ -5 & \times \end{pmatrix}$	maint on the plane		
Let the acute angle be θ . Let the acute angle be θ . $ \begin{vmatrix} -2 & 0 & 0 \\ -5 & 0 & 1 \\ 0 & 11 & 6 \end{vmatrix} = \begin{vmatrix} -2 & 0 & 0 \\ 6 & 11 & 6 \end{vmatrix} = \begin{vmatrix} 6 & 0 & 0 \\ 6 & 0 & 11 \end{vmatrix} = \begin{vmatrix} 6 & 0 & 0 \\ 6 & 0 & 11 \end{vmatrix} = \begin{vmatrix} 6 & 0 & 0 \\ 6 & 0 & 0 \\ 6 & 0 & 0 \end{vmatrix} = \begin{vmatrix} 6 & 0 & 0 & 0 \\ 6 & 0 & 0 & 0 \\ 6 & 0 & 0 & 0 \end{vmatrix} = \begin{vmatrix} 6 & 0 & 0 & 0 & 0 \\ 6 & 0 & 0 & 0 & 0 \\ 6 & 0 & 0 & 0 & 0 \end{vmatrix} $ Uhen normal vector of π is $\begin{vmatrix} -2 & 0 & 0 & 0 & 0 \\ -5 & 0 & 0 & 0 & 0 \\ 6 & 0 & 0 & 0 & 0 \end{vmatrix}$ Since θ lies in π .	product of this normal vector	(0)(-2)	
Let the acute angle be θ . $ \begin{vmatrix} -2 & 0 \\ -5 & 0 \\ 0 & 1 \end{vmatrix} = \frac{6}{4+25+36} $ Sin $\theta = \frac{48.1}{4+25+36} = \frac{6}{\sqrt{65}}$ $ \theta = 48.1 $ The normal vector of π is $\begin{pmatrix} -2 \\ -5 \\ 6 \end{pmatrix} = \begin{pmatrix} 1 \\ 11 \end{pmatrix}$ $ \begin{pmatrix} -2 \\ 6 \end{pmatrix} = \begin{pmatrix} 1 \\ 14 \end{pmatrix} $ sin the plant with the pla	the plane, rollowed by a dot	P lies in	
Let the acute angle be θ . $ \begin{vmatrix} -2 & 0 & 0 \\ -5 & 0 & 1 \\ 6 & 1 & 1 \end{vmatrix} = \frac{6}{\sqrt{4+25+36}} $ The normal vector of π is $\begin{vmatrix} -2 & 1 & -2 \\ -5 & 1 & 1 & 1 \\ -5 & 1 & 1 & 1 \end{vmatrix} = \frac{6}{\sqrt{65}}$ The normal vector of π is $\begin{vmatrix} -2 & 1 & -2 \\ -5 & 1 & 1 & 1 \\ -5 & 1 & 1 & 1 \end{vmatrix} = \frac{6}{\sqrt{65}}$ In a normal vector of π is $\begin{vmatrix} -2 & 1 & -2 \\ -5 & 1 & 1 & 1 \\ -5 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 &$	product of two vectors parallel to	(6) (4) (11)	
Let the acute angle be θ . $ \frac{\begin{pmatrix} -2 \\ -5 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}}{\begin{pmatrix} -5 \\ 4 + 25 + 36 \end{pmatrix}} = \frac{6}{\sqrt{65}} $ The normal vector of π is $\begin{pmatrix} -2 \\ -5 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} -2 \\ 1 \end{pmatrix} \begin{pmatrix} -2 \\ 1 \end{pmatrix}$ The normal vector of π is $\begin{pmatrix} -2 \\ -5 \end{pmatrix} \begin{pmatrix} 1 \\ -5 \end{pmatrix} \begin{pmatrix} 1 \\ -5 \end{pmatrix} \begin{pmatrix} -2 \\ -5 \end{pmatrix}$ sin $\begin{pmatrix} -2 \\ -5 \end{pmatrix} \begin{pmatrix} 1 \\ -5 \end{pmatrix} \begin{pmatrix} -2 \\ -5 \end{pmatrix} \begin{pmatrix} 1 \\ -5 \end{pmatrix} \begin{pmatrix} -2 \\ -5 \end{pmatrix}$ with subtraction of π is $\begin{pmatrix} -5 \\ -5 \end{pmatrix} \begin{pmatrix} 1 \\ -5 \end{pmatrix} \begin{pmatrix} -2 \\ -5 \end{pmatrix} \begin{pmatrix} 1 \\ -5 \end{pmatrix} \begin{pmatrix} -2 \\ -5 \end{pmatrix}$ sin $\begin{pmatrix} -5 \\ -5 \end{pmatrix} \begin{pmatrix} -2 \\ -5 \end{pmatrix} \begin{pmatrix} 1 \\ -5 \end{pmatrix} \begin{pmatrix} -2 \\ -5 \end{pmatrix} \begin{pmatrix} 1 \\ -5 \end{pmatrix} \begin{pmatrix} -2 \\ -5 \end{pmatrix}$	plane by carrying out a cross	· (
Let the acute angle be θ . $ \frac{-2}{-5} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \frac{6}{6} $ $ \frac{\sin \theta}{\sqrt{4 + 25 + 36}} = \frac{6}{\sqrt{65}} $ $ \frac{\cos \theta}{\sqrt{65}} = \frac{1}{\sqrt{65}} $ How give we with such that the the the the the the the the the th	to find a normal vector of the	- X - X - X	
Let the acute angle be θ . $ \frac{\left(-2\right)\left(0\right)}{\left(-5\right)\left(1\right)} = \frac{6}{\sqrt{65}} $ Let the acute angle be θ . $ \frac{\left(-2\right)\left(0\right)}{\left(-5\right)\left(1\right)} = \frac{6}{\sqrt{65}} $ Idea the	 Idea: The standard procedure is 	(-2)(1)(-2)	င
Let the acute angle be θ . Let the acute angle be θ . $ \begin{vmatrix} -2 & 0 & 0 \\ -5 & 0 & 0 \\ 0 & 1 & 0 \end{vmatrix} = \frac{6}{4+25+36} = \frac{6}{\sqrt{65}} $ How with the	required angle directly.		
Let the acute angle be θ . Let the acute angle be θ . $\sin \theta = \frac{\begin{pmatrix} -2 \\ -5 \\ 0 \\ 1 \end{pmatrix}}{\sqrt{4 + 25 + 36}} = \frac{6}{\sqrt{65}}$ $\theta = 48.1$ Idea find plar the	+52+62		
Let the acute angle be θ . $ \frac{(-2)}{(-5)} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \frac{6}{\sqrt{65}} $ $ \frac{(-2)}{(-5)} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \frac{6}{\sqrt{65}} $ How give vector with subtractions are according to the control of t	1 / / /		
Let the acute angle be θ . $ \begin{vmatrix} -2 & 0 \\ -5 & 0 \\ 1 \end{vmatrix} = \frac{6}{6} $ Sin $\theta = \sqrt{4 + 25 + 36} = \frac{6}{\sqrt{65}}$ $ \theta = 48.1^{\circ} $ How give vect with subtractions are the content of the conten	6 (1)		
Let the acute angle be θ . $ \begin{cases} -2 & 0 \\ -5 & 0 \end{cases} $ $ \sin \theta = \frac{\begin{pmatrix} -2 & 0 \\ 6 & 1 \end{pmatrix}}{\sqrt{4 + 25 + 36}} = \frac{6}{\sqrt{65}} $ How with the wind the			
Let the acute angle be θ . $ \frac{\left(-2\right)}{\left(-5\right)} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \frac{6}{\sqrt{65}} $ $ \frac{\partial}{\partial \theta} = 48.1^{\circ} $ Let the acute angle be θ . Idea find plan the the while the	5 0		
Let the acute angle be θ . $ \begin{vmatrix} -2 & 0 \\ -5 & 0 \\ 0 & 1 \end{vmatrix} = \frac{6}{\sqrt{65}} $ Uthat the find plan the	=		
Let the acute angle be θ . $ \begin{vmatrix} -2 & 0 \\ -5 & 0 \\ 1 \end{vmatrix} = \frac{6}{\sqrt{4 + 25 + 36}} = \frac{6}{\sqrt{65}} $ The the acute angle be θ . $ \begin{vmatrix} -3 & 0 \\ 6 & 1 \end{vmatrix} = \frac{6}{\sqrt{65}} $ The t			
Let the acute angle be θ . $ \begin{array}{c} Let \text{ the acute angle be } \theta. \\ -5 & 0 \\ -5 & 0 \end{array} $ $ \begin{array}{c} -5 & 0 \\ 6 & 1 \end{array} $ $ \begin{array}{c} -6 \\ 4+25+36 \end{array} $ $ \begin{array}{c} -6 \\ 6 \\ 4+25+36 \end{array} $ How give west with	subtract this angle from 90°, or use		
Let the acute angle be θ . $ \begin{cases} -5 & 0 \\ -5 & 0 \end{cases} $ $ \sin \theta = \frac{\begin{pmatrix} -2 \\ 6 \\ 1 \end{pmatrix}}{\sqrt{4 + 25 + 36}} = \frac{6}{\sqrt{65}} $ Idea find plan the the which the w	with the plane itself. In this case,		
Let the acute angle be θ . $ \begin{aligned} & \text{Let the acute angle be } \theta. \\ & -5 & 0 \\ & -5 & 0 \\ & -5 & 0 \end{aligned} $ $ \begin{vmatrix} -2 & 0 & 0 \\ -5 & 0 & 0 \\ & -5 & 0 \end{aligned} $ $ \begin{vmatrix} -3 & 0 & 0 \\ 6 & 1 & 0 \\ & -5 & 0 \end{aligned} $ $ \begin{vmatrix} -3 & 0 & 0 \\ 6 & 1 & 0 \\ & -5 & 0 \end{aligned} $ $ \begin{vmatrix} -3 & 0 & 0 \\ 6 & 1 & 0 \\ & -5 & 0 \end{aligned} $ $ \begin{vmatrix} -4 & 25 + 36 & 0 \\ 6 & 0 & 0 \end{vmatrix} $ $ \begin{vmatrix} -6 & 0 & 0 \\ 6 & 0 & 0 \end{vmatrix} $ the whi	vector of the plane, rather than		
Let the acute angle be θ . $ \begin{vmatrix} -2 & 0 \\ -5 & 0 \\ 0 & 1 \end{vmatrix} = \frac{6}{\sqrt{4+25+36}} = \frac{6}{\sqrt{65}} $ Let the acute angle be θ . Idea find plan the	gives the angle with the normal		
Let the acute angle be θ . Let the acute angle be θ . $ \begin{vmatrix} -2 & 0 \\ -5 & 0 \end{vmatrix} $ $ \sin \theta = \frac{\begin{pmatrix} -2 & 0 \\ 6 & 1 \end{pmatrix}}{\sqrt{4 + 25 + 36}} = \frac{6}{\sqrt{65}} $ the the which the the the the the the the the the th	W + 1 + 0		
Let the acute angle be θ . $ \begin{cases} -2 \\ 0 \\ -5 \\ 0 \end{cases} $ $ \sin \theta = \begin{cases} -2 \\ 0 \\ 0 \\ 1 \end{cases} $ $ \frac{6}{4+25+36} = \frac{6}{\sqrt{65}} $ How	<u>,</u>		
Let the acute angle be θ . $ \begin{vmatrix} -2 & 0 \\ -5 & 0 \\ 0 & 1 \end{vmatrix} = \frac{6}{\sqrt{4+25+36}} = \frac{6}{\sqrt{65}} $ The the acute angle be θ . $ \begin{vmatrix} -2 & 0 \\ 6 & 1 \end{vmatrix} = \frac{6}{\sqrt{65}} $ Which is the	1		
Let the acute angle be θ . $ \frac{\left(-2\right)\left(0\right)}{\left(-5\right)\left(1\right)} = \frac{\left(6\right)\left(1\right)}{\sqrt{4+25+36}} = \frac{6}{\sqrt{65}} $ The the white the the the the the the the the the t			
Let the acute angle be θ . $ \frac{\begin{pmatrix} -2 \\ -5 \\ 0 \\ 6 \\ 1 \end{pmatrix}}{\begin{pmatrix} 6 \\ 1 \\ 1 \\ 4 + 25 + 36 \\ \end{pmatrix}} = \frac{6}{\sqrt{65}} $ Let the acute angle be θ . Idea find plan the the while the the second point of the second point o		$\theta = 48.1$	
Let the acute angle be θ . $ \begin{vmatrix} -2 & 0 & 0 \\ -5 & 0 & 0 \\ 0 & 1 & 0 \end{vmatrix} = \frac{6}{\sqrt{4+25+36}} = \frac{6}{\sqrt{65}} $ whi	-		
Let the acute angle be θ . $ \begin{vmatrix} -2 & 0 \\ -5 & 0 \\ 1 \end{vmatrix} = 6 $ Let the with the the specific parameters of the	(-2)(0)	$\sqrt{4+25+36}$	
Let the acute angle be θ . Let $\begin{pmatrix} -2 \\ -5 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ Let $\begin{pmatrix} -2 \\ 6 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ Let $\begin{pmatrix} -3 \\ 6 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ Let $\begin{pmatrix} -2 \\ 6 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ Let $\begin{pmatrix} -2 \\ 6 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ Let $\begin{pmatrix} -2 \\ 6 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ Let $\begin{pmatrix} -2 \\ 6 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ Let $\begin{pmatrix} -2 \\ 6 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ Let $\begin{pmatrix} -2 \\ 6 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ Let $\begin{pmatrix} -2 \\ 6 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ Let $\begin{pmatrix} -2 \\ 6 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ Let $\begin{pmatrix} -2 \\ 6 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ Let $\begin{pmatrix} -2 \\ 6 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ Let $\begin{pmatrix} -2 \\ 6 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ Let $\begin{pmatrix} -2 \\ 6 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ Let $\begin{pmatrix} -2 \\ 6 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ Let $\begin{pmatrix} -2 \\ 6 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ Let $\begin{pmatrix} -2 \\ 6 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ Let $\begin{pmatrix} -2 \\ 6 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ Let $\begin{pmatrix} -2 \\ 6 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ Let $\begin{pmatrix} -2 \\ 6 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ Let $\begin{pmatrix} -2 \\ 6 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ Let $\begin{pmatrix} -2 \\ 6 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ Let $\begin{pmatrix} -2 \\ 6 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ Let $\begin{pmatrix} -2 \\ 6 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ Let $\begin{pmatrix} -2 \\ 6 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ Let $\begin{pmatrix} -2 \\ 6 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ Let $\begin{pmatrix} -2 \\ 6 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ Let $\begin{pmatrix} -2 \\ 6 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ Let $\begin{pmatrix} -2 \\ 6 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ Let $\begin{pmatrix} -2 \\ 6 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ Let $\begin{pmatrix} -2 \\ 6 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ Let $\begin{pmatrix} -2 \\ 6 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ Let $\begin{pmatrix} -2 \\ 6 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ Let $\begin{pmatrix} -2 \\ 6 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ Let $\begin{pmatrix} -2 \\ 6 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ Let $\begin{pmatrix} -2 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ Let $\begin{pmatrix} -2 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0$	The state of the s	==	
Let the acute angle be θ . Let the acute angle be θ . Let the acute angle be θ . Idea find plan the the	which is the horizontal pround	6 (0)(1) 6	
Let the acute angle be Θ . Let the find plan the	the normal vector of the plane.	•	
Let the acute angle be Θ . Let $\frac{1}{2}$ \frac	the direction vector of the line and		
Let the acute angle be Θ . Let $\frac{1}{(-2)(0)}$	plane involves the dot product of	` <u>`</u>	
Let the acute angle be θ .	בייות אוף מוקרי טלואליטו מיווני מווני מווני מו	(-2)(0)	
Let the soute ancie be a	find the same between a line and a		,
parts: o The explanation must be in the context of the question i.e. stating that the values of \(\mu\) and \(\lambda\) are different without explaining what this meant contextually was insufficient. The explanation must be supported or justified by figures. In this case, claims that the flight paths can intersect but the aeroplanes do not collide since they do not pass through \(\mu\) at the same time must explicitly refer to the figures for \(\mu\) and \(\lambda\) found.	Idea: The standard agreedure to		⋑
parts: o The explanation must be in the context of the question i.e. stating that the values of \(\mu\) are different without explaining what this meant contextually was insufficient. o The explanation must be supported or justified by figures. In this case, claims that the flight paths can intersect but the aeroplanes do not collide since they do not pass through \(\mu\) at the same time must explicitly refer to the figures for \(\mu\) and \(\lambda\) found.			
parts: o The explanation must be in the context of the question i.e. stating that the values of \(\mu\) and \(\lambda\) are different without explaining what this meant contextually was insufficient. o The explanation must be supported or justified by figures. In this case, claims that the flight paths can intersect but the aeroplanes do not collide since they do not pass through \(P\) at the same time must explicitly refer to the	ignies for h and v found.		
parts: o The explanation must be in the context of the question i.e. stating that the values of \(\mu\) are different without explaining what this meant contextually was insufficient. o The explanation must be supported or justified by figures. In this case, claims that the flight paths can intersect but the aeroplanes do not collide since they do not pass through \(P\) at the same time	must explicitly feler to the		
parts: o The explanation must be in the context of the question i.e. stating that the values of \(\mu\) and \(\text{Are different without} \) explanation must be supported or justificient. o The explanation must be supported or justified by figures. In this case, claims that the fight paths can intersect but the acroplanes do not collide since they do not pass through the they do not pass through the things the supported on	modern at the sente table		
parts: o The explanation must be in the context of the question i.e. stating that the values of \(\mu\) and \(\lambda\) are different without explaining what this meant contextually was insufficient. o The explanation must be supported or justified by figures. In this case, claims that the flight paths can intersect but the exceptance do not reserved.	through Dat the same time		
parts: o The explanation must be in the context of the question i.e. stating that the values of \(\mu\) are different without explaining what this meant contextually was insufficient. o The explanation must be supported or justified by figures. In this case, claims that the flight paths can intersect but the agranulance do not	collide since they do not make		
parts: o The explanation must be in the context of the question i.e. stating that the values of \(\mu\) are different without explanning what this meant contextually was insufficient. o The explanation must be supported or justified by figures. In this case, claims that the flight paths can intersect	but the aeronianes do not		
parts: ο The explanation must be in the context of the question i.e. stating that the values of μ and λ are different without explaining what this meant contextually was insufficient. The explainion must be supported or justified by figures. In this case, claims that	the flight paths can intersect		
parts: o The explanation must be in the context of the question i.e. stating that the values of \(\mu\) are different without explaining what this meant contextually was insufficient. o The explanation must be supported or justified by	figures. In this case, claims that		
parts: o The explanation must be in the context of the question i.e. stating that the values of \(\mu\) and \(\mu\) are different without explanning what this meant contextually was insufficient. o The explanation must be	supported or justified by		
parts: o The explanation must be in the context of the question i.e. stating that the values of μ and λ are different without explaining what this meant contextually was insufficient.	o The explanation must be		
parts: o The explanation must be in the context of the question i.e. stating that the values of μ and λ are different without explaining what this meant	contextually was insufficient.		
parts: o The explanation must be in the context of the question i.e. stating that the values of μ and λ are different without	explaining what this meant		
parts: o The explanation must be in the context of the question i.e. stating that the values of μ and	A are different without		
parts: o The explanation must be in the context of the question i.e.	stating that the values of μ and		
parts: o The explanation must be in the	context of the question i.e.		
parts	o The explanation must be in the		
norte:	paro.		
	narte.		

where the required angle is between a line and a plane. In this case, the technique for these two parts would not be the same. In particular, the angle between two planes is equal to the angle between	$a^2 + b^2 + 1 = 4$ Substituting $a = 3b - 4$, $(3b - 4)^2 + b^2 = 3$ $10b^2 - 24b + 13 = 0$ b = 0.826 (Reject since $b > 1$) or $b = 1.57$ (3 sf)	
wall with its normal vector followed by the light path of B parallel to the wall would have shown that the flight path is perpendicular to the wall's normal vector. Hence we equate the dot product of the flight path's direction vector with the wall's normal vector with the wall's normal vector to 0. of the angle 60° is the angle between two planes, which is a different situation from part (b)	$\cos 60^{\circ} = \frac{\begin{pmatrix} a \\ b \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}}{\sqrt{a^2 + b^2 + 1}}$ $\frac{1}{2} = \frac{1}{\sqrt{a^2 + b^2 + 1}}$ $\sqrt{a^2 + b^2 + 1} = 2$	
 Idea: Sketching a diagram to represent the information and hence visualise the relationship between the respective lines and planes would have greatly facilitated the solution of this problem in three-dimensional geometry. A simple sketch of the slanted 	The wall is parallel to l_B implies that its normal vector is perpendicular to the direction vector of l_B . $\begin{pmatrix} a \\ b \\ -3 \\ -3 \\ = 0 \Rightarrow a-3b+4=0$ The wall inclines at 60° with the horizontal ground implies that	(a)
asked for the cartesian equation of the plane II, whereas $\begin{pmatrix} -2 \\ 14 \\ = 69 \text{ is the scalar} \end{pmatrix}$ $\begin{cases} (11) \\ (12) \\ (13) \\ (14) \\ (13) \\ (14) \\ (15) \\ (15) \\ (16) \\ (16) \\ (17) \\ (17) \\ (18) \\ (18) \\ (18) \\ (19) \\$		
either 4 or 3 rather 3 rather 3 rather 4 or 3 rather 3 rather 3 rather 4 or 3 rather 5 rather 6 rather 6 rather 7 rather 7 rather 8 rather 8 rather 9 rather	$\pi: \chi \to 14 = 69$ 11 A cartesian equation of π is $-2x + 14y + 11z = 69$	

	$r = \frac{2\sqrt{2}}{3}R \text{ since } r > 0$	
	$r^2 = \frac{8}{9}R^2 \text{since } r \neq 0$	
	$r^2\left(9r^2-8R^2\right)=0$	
constant.	$9r^4 - 8r^2R^2 = 0$	
the variable and R the	$4K \left(K - r\right) = 9r - 12r K + 4K$	
product rule	squaring point sides, $-2 \cdot n^2 \cdot n^2 \cdot n^4 \cdot n^4 \cdot n^2 \cdot n^4 \cdot n$	
 Improper use of 	$2R\sqrt{R^{*}-r^{*}}=3r^{*}-2R^{*}$	
Common issues:		
remove the sqrt sign	$2R\sqrt{R^2-r^2}+2(R^2-r^2)-r^2=0$	
 squaring both sides to 	$\sqrt{R^2-r^2}$	
of R.	$2R + 2\sqrt{R^2 - r^2} - \frac{r^2}{r^2} = 0$	
expressing r in terms		
attempts in	Putting $\frac{dV}{dx} = 0$,	
• solving $\frac{dV}{dr} = 0$ with	$\frac{3}{1V}$ $\sqrt{R^2-r^2}$	
product rule.	$=\frac{1}{2}\pi r \left 2R + 2\sqrt{R^2 - r^2} - \frac{r^2}{\sqrt{r^2 - r^2}} \right $	
find dr using	2VRr-	
of r and attempt to	$\left \frac{dV}{dz} = \frac{2}{3} \pi r \left(R + \sqrt{R^2 - r^2} \right) + \frac{1}{2} \pi r^2 \left \frac{-2r}{r^2 - r^2} \right \right $	
 expressing V in terms 	17/ 7	
Key points:	$V = \frac{1}{3}\pi r^2 h = \frac{1}{3}\pi r^2 \left(R + \sqrt{R^2 - r^2}\right)$	3
reiationsnip	$h = R + \sqrt{R^2 - r^2}$	
to show required	$h-R=\sqrt{R^2-r^2}$ since $h-R>0$	
Pythagoras' theorem		
 Clear use of 	$(h-R)^2 = R^2 - r^2$	<u>a</u>
Key points:	Using Pythagoras' theorem,	=
$\cos 60^\circ = \frac{(1)(1)}{\sqrt{a^2 + b^2 + 1}}$		
· · ·		
(nerr normal vectors, such that $\binom{a}{\binom{0}{\binom{0}{1}}}$		
1		

$h = 0 \text{ or } h = \frac{4}{3}R$	$\pi h \left(\frac{4}{3} R - h \right) = 0$	$\frac{dh}{dt} = 0,$ Putting $\frac{dV}{dt} = 0$,	$= \frac{2}{3}\pi Rh^2 - \frac{1}{3}\pi h^3$ $dV = \frac{4}{3}\pi Rh - \pi h^2$	$= \frac{1}{3}\pi hR^2 - \frac{1}{3}\pi h(h-R)^2$ $= \frac{1}{2}\pi hR^2 - \frac{1}{2}\pi h(h^2 - 2Rh + R^2)$	$V = \frac{1}{3}\pi h \left(R^2 - (h - R)^2\right)$	Alternative solution (involving use of h): $(h-R)^2 = R^2 - r^2$	$=\frac{32}{81}\pi R^3$ $k = \frac{32}{81}$	$= \frac{8}{27} \pi R^2 \left(R + \frac{1}{3} R \right)$ $= \frac{8}{27} \pi R^2 \left(\frac{4}{3} R \right)$	$= \frac{1}{3}\pi \left(\frac{8}{9}R^2\right) \left[R + \sqrt{R^2 - \frac{8}{9}R^2}\right]$	$V = \frac{1}{3}\pi r^2 \left(R + \sqrt{R^2 - r^2} \right)$

2024 YIJC H2MA Preliminary Examination

completed by the constraints of	<u> </u>	$z_1 = \frac{1 - i}{\cos \frac{1}{8}\pi - i \sin \frac{1}{8}\pi} = \frac{\sqrt{2}e^{-\frac{i\pi}{4}}}{e^{-\frac{i\pi}{8}}} = \sqrt{2}e^{\frac{i(6(\frac{\pi - \pi}{8}))}{8\pi - 4}} = \sqrt{2}e^{-\frac{i(\frac{\pi}{8})}{8\pi}}$	Key points: • Conversion to polar form OR product of
od: $\frac{1}{\frac{\pi}{3}} = \frac{\sqrt{2}e^{-\frac{\pi}{4}}}{e^{-\frac{\pi}{8}}} = \sqrt{2}e^{\frac{i\theta\left(\frac{\pi-\pi}{8}\right)}{8-\frac{\pi}{4}}} = \sqrt{2}e^{-\frac{\left(\frac{\pi}{8}\right)}{8}}$ $\frac{1}{\frac{2\pi}{3}}$ $\frac{1}{\frac{2\pi}{3}} = \sqrt{2}$ $\frac{2\sqrt{2}}{2} = \sqrt{2}$ $= \pi + \left(-\frac{\pi}{8}\right) + \arg(z_2)$ $= \pi - \frac{\pi+2\pi}{8+\frac{2\pi}{3}}$ $= \frac{37}{24}\pi$ $= \frac{37}{24}\pi$		$e^{*} = -1 - \sqrt{3}i = 2e^{-i\frac{2\pi}{3}}$ 2 = $2e^{i\pi}$	complex numbers and using properties of
od: $\frac{1}{1} = \frac{\sqrt{2}e^{-\frac{1}{3}}}{e^{-\frac{1}{8}}}$ $-\arg(z_{2}^{*}) = \pi$ $= \pi$ $= \pi$ $= \frac{3}{2}$		$\frac{2z_r}{z_2} = \frac{\left(2e^{i\pi}\right)\sqrt{2}e^{-\left(\frac{\pi}{8}\right)}}{2e^{-\frac{i2\pi}{3}}}$ $= \frac{\left(e^{-\frac{\pi}{4}+2\pi}\right)}{\left(e^{-\frac{\pi}{4}+2\pi}\right)}$	modulus and argument.
od: $\frac{1}{8\pi} = \frac{\sqrt{2}e^{-\frac{1}{2}}}{e^{-\frac{1}{8}\pi}}$ $= \frac{2\sqrt{2}}{2} = \sqrt{2}$ $= \pi$ $= \pi$ $= \frac{3}{2}$ $= \frac{3}{2}\pi$		$=\sqrt{2}e^{\left(\frac{37\pi}{8}+3\right)}$ $=\sqrt{2}e^{\left(\frac{37\pi}{24}-2\pi\right)}$ $=\sqrt{2}e^{\left(\frac{11\pi}{24}\right)}$	
$\frac{1}{8} \frac{1}{8} \pi = \frac{\sqrt{2e}}{e^{-\frac{1\pi}{8}}}$ $-\frac{1}{8} \frac{2\sqrt{2}}{2} = \sqrt{2}$ $\frac{2\sqrt{2}}{2} = \sqrt{2}$ $= \pi$ $= \pi$ $= \frac{3}{2} \frac{3}{\pi}$ $= \frac{3}{2} \pi$		7) † <u>.</u>	
$ z_{2} = -1 + \sqrt{3}i = 2e^{\frac{1}{3}i}$ $ \frac{-2z_{i}}{z_{2}^{*}} = \frac{ -2 z_{i} }{ z_{2}^{*} } = \frac{2\sqrt{2}}{2} = \sqrt{2}$ $ arg(-2) + arg(z_{i}) - arg(z_{i}^{*}) = \pi + \left(-\frac{\pi}{8}\right) + arg(z_{i})$ $= \pi - \frac{\pi}{8} + \frac{2\pi}{3}$ $= \pi - \frac{\pi}{8} + \frac{2\pi}{3}$ $= \frac{37}{24}\pi$ $ arg(\frac{-2z_{i}}{z_{2}^{*}}) = \frac{37}{24}\pi - 2\pi$ $= -\frac{11}{24}\pi$ $= -\frac{11}{24}\pi$ $= \frac{-2z_{i}}{z_{2}^{*}} = \sqrt{2}e^{-\frac{11\pi}{24}}$		e 42 6 42 14 6	
$\arg(-2) + \arg(z_1) - \arg(z_2^*) = \pi + \left(-\frac{\pi}{8}\right) + \arg(z_2)$ $= \pi - \frac{\pi}{8} + \frac{2\pi}{3}$ $= \frac{37}{24}\pi$ $\arg\left(\frac{-2z_1}{z_2^*}\right) = \frac{37}{24}\pi - 2\pi$ $= \frac{11}{24}\pi$ $\frac{-2z_1}{z_2^*} = \sqrt{2}e^{-\left(\frac{11\pi}{24}\right)}$		$\begin{vmatrix} z - 1 + \sqrt{3}i = 2e^{-3} \\ 2z_1 \\ z_2^* \end{vmatrix} = \frac{ -2 z_1 }{ z_2^* } = \frac{2\sqrt{2}}{2} = \sqrt{2}$	
- 2π 1 π		$g(-2) + \arg(z_1) - \arg(z_2^*) = \pi + \left(-\frac{\pi}{8}\right) + \arg(z_2)$	
1 - 2 n		$=\pi - \frac{\pi}{8} + \frac{2\pi}{3}$ $= \frac{37}{24}\pi$	
$\frac{\pm -\frac{11}{24}\pi}{\frac{-2z_1}{z_2}} = \sqrt{2}e^{-\left(\frac{11\pi}{24}\right)}$	*	$=\frac{37}{24}\pi-2\pi$	
$\frac{-2z_1}{z_2^*} = \sqrt{2}e^{-i\left(\frac{1}{2a}\right)}$		$=-\frac{11}{24}\pi$	
		$\frac{\Delta_{I}}{2} = \sqrt{2}e^{-\left(\frac{11\pi}{2A}\right)}$	

5 .	22	-
u·v is the length of projection of v onto u	Since $\sqrt{3} \mathbf{u} \times \mathbf{v} > 0$, $\mathbf{u} \cdot \mathbf{v} > 0$ which means $\cos \theta > 0$ and hence θ is acute. $\sqrt{3} \mathbf{u} \times \mathbf{v} = \mathbf{u} \cdot \mathbf{v}$ $\sqrt{3} \mathbf{u} \mathbf{v} \sin \theta = \mathbf{u} \mathbf{v} \cos \theta$ $ \mathbf{u} \mathbf{v} \sin \theta = \mathbf{u} \mathbf{v} \cos \theta$ $ \mathbf{u} \mathbf{v} \cos \theta = \frac{1}{\sqrt{3}}$ $\tan \theta = \frac{1}{\sqrt{3}}$ $\theta = 30^{\circ}$	
Key points: Taking note that u is a unit vector and hence uvv = v•u = v•û	Key points: • Explaining how θ is acute starting from √3 u×v . Showing value of θ is not sufficient explanation.	 Key points: Identifying arg (-2z/z₁) = (2k+1)π from negative real number requirement. Finding expression involving n and k. Ensuring final answers are positive integers.

	<u></u>		
	32		
$u = \sqrt{x}$ $u = \sqrt{x}$ $\frac{du}{dx} = \frac{1}{2\sqrt{x}} = \frac{1}{2u}$ When $x = 4, u = \sqrt{4} = 2$. When $x = 1, u = \sqrt{1} = 1$. $\pi \int_{1}^{4} \left(\frac{1}{1+\sqrt{x}}\right)^{2} du$ $= \pi \int_{1}^{2} \frac{2u}{(1+u)^{2}} du$ $= \pi \int_{1}^{2} \frac{2(u+1)-2}{(1+u)^{2}} du$ $= 2\pi \int_{1}^{2} \frac{1}{1+u} - \frac{1}{(1+u)^{2}} du$ $= 2\pi \left[\ln(1+u) + \frac{1}{1+u} \right]_{1}^{2}$ $= 2\pi \left[\ln(1+u) + \frac{1}{1+u} \right]_{1}^{2}$ $= 2\pi \left[\ln(3+\frac{1}{2} - \ln 2 - \frac{1}{2} \right]$ $= \left(2 \ln \frac{3}{2} - \frac{1}{2} \right) \pi$	# 4 ***	$= -\left(\mathbf{n} \left \mathbf{v} \right \sin \theta\right)^{2}$ $= -\left((1)(3) \sin 30^{\circ}\right)^{2}$ $= -\frac{9}{2}$	$ = (\mathbf{u} \times \mathbf{v}) \cdot (\mathbf{v} \times \mathbf{u}) + [\mathbf{u} \cdot (\mathbf{v} \times \mathbf{u})] $ $ = (\mathbf{u} \times \mathbf{v}) \cdot (-\mathbf{u} \times \mathbf{v}) + 0 \text{ (since } \mathbf{u} \perp \mathbf{u} \times \mathbf{v}) $ $ = -[\mathbf{u} \times \mathbf{v}]^2 $
You should not be squaring the $2u$. i.e. It is wrong to do this: $\pi \int_{1}^{2} \left(\frac{1}{1+u}(2u)\right)^{2} du$. This is because the formula for volume is $\pi \int_{1}^{4} y^{2} dx$ so you need to substitute accordingly. You need to know what to substitute into dx . $dx = \frac{dx}{du} \times du$ There are a few ways to approach the integration here: - Juggling Partial fraction (In this question, by parts also work but remember that it should always be the last resort)		Using $(\mathbf{u} \times \mathbf{v})(-\mathbf{u} \times \mathbf{v})$ $= \mathbf{u} \times \mathbf{v} ^2$ $= \mathbf{u} \times \mathbf{v} ^2$ and $\mathbf{u}(\mathbf{v} \times \mathbf{u}) = 0$	• Attaining $(\mathbf{u} \times \mathbf{v} + \mathbf{u})(\mathbf{v} \times \mathbf{u})$ $= (\mathbf{u} \times \mathbf{v})(\mathbf{v} \times \mathbf{u}) +$ $[\mathbf{u} \{ \mathbf{v} \times \mathbf{u} \}]$

																	•						481		•		5
$\frac{1}{2}a = -6d$ $\frac{1}{2}a = -12d$	$a(\frac{1}{2}) = a + 6d$	r = 1 2	3	a(r-1) = ar(r-1)	ar(r-1)=3d	3rd Term – 2nd Term:	a(r-1)=6d	2nd Term – Ist Term:	$3rd Term: ar^2 = a + 9d$	2nd Term: $ar = a + 6d$	1st Term: a	Alternative:	Rejected as $d < 0$ $a = -12d$	d = 0 or $12d + a = 0$	3d(12d+a)=0	$36d^2 + 3ad = 0$	$a^2 + 12ad + 36d^2 = a^2 + 9ad$	$\left (a+6d)^2 = a^2 + 9ad \right $	a a+6d	$\frac{a+6d}{a+9d} = \frac{a+9d}{a+9d}$	$3rd Term: ar^2 = a + 9d$	2nd Term: $ar = a + 6d$	1st Term: a	a = -2	replaced by $x-2$.	In order to suit have the same region, the graph with need to be translated by 2 units in the positive x-direction. Therefore, x is	Observe that both the upper and lower limits increased by 2 and
			_							-	6.	equation by equating the factors to	we see common term d, we can	should have a and a in our	expressing a in terms of d, we	certain terms. Since we are	To solve this equation, we would	£ 7 C4	- 17	a+6d $a+9d$	knowledge of common ratio to	We first climinate r by utilising the	There are 3 variables a , r and d .		by x == 2.	positive x-direction, x is replaced	translated by 2 units in the

ao Li	a.	y,
		Sai h
Equation of tangent is $y \approx 2x$	$= \left(2x - \frac{4x^3}{3}\right) - \frac{1}{2}\left(4x^2 - \frac{16x^4}{3} + \dots\right) + \dots$ $+ \frac{1}{3}(8x^3 - \dots) - \frac{1}{4}(16x^4 - \dots) + \dots$ $+ \frac{1}{3}(8x^3 - \dots) - \frac{1}{4}(16x^4 - \dots) + \dots$ $= 2x - 2x^2 + \frac{4}{3}x^3 - \frac{4}{3}x^4 \text{ (Up to the term in } x^4\text{)}$ Alternative for first part of expansion: $\ln(1 + \sin 2x)$ $= \sin 2x - \frac{1}{2}(\sin 2x)^2 + \frac{1}{3}(\sin 2x)^3 - \frac{1}{4}(\sin 2x)^4 + \dots$ $= \left(2x - \frac{(2x)^3}{3!} + \dots\right) - \frac{1}{2}\left(2x - \frac{(2x)^3}{3!} + \dots\right)^2 + \dots$ $+ \frac{1}{3}\left(2x - \frac{(2x)^3}{3!} + \dots\right)^3 - \frac{1}{4}\left(2x - \frac{(2x)^3}{3!} + \dots\right)^4 + \dots$ $+ \frac{1}{3}\left(8x^3 - \dots\right) - \frac{1}{4}\left(16x^4 - \dots\right) + \dots$ $\approx 2x - 2x^2 + \frac{4}{3}x^3 - \frac{4}{3}x^4 \text{ (Up to the term in } x^4\text{)}$ For extract in x^4	$\ln(1+\sin 2x)$ $= \ln\left[1 + \left(2x - \frac{(2x)^3}{3!} + \dots\right)\right]$ $\approx \ln\left[1 + \left(2x - \frac{4x^3}{3!}\right)\right]$ $= \left(2x - \frac{4x^3}{3}\right) - \frac{1}{2}\left(2x - \frac{4x^3}{3}\right)^2 + \frac{1}{3}\left(2x - \frac{4x^3}{3}\right)^3 - \frac{1}{4}\left(2x - \frac{4x^3}{3}\right)^4 + \frac{1}{3}\left(2x - \frac{4x^3}{3}\right)^3 + \frac{1}{3}\left(2x - \frac{4x^3}{3}\right)^4 + \frac{1}{3}\left(2x $
Some students did not understand the idea of reading from the Series for the equation of tangent and revaluate the equation from $\ln(1 + \sin 2x)$		Very few Students fail to read the question and attempted to find the Series using repeated differentiation. Many students did not manage to evaluate to the correct number of terms thus did not manage to act number of terms.

5 ii		D .
$\frac{AC}{=\frac{1}{\cos\theta - \sqrt{3}\sin\theta}}$ $\approx \frac{1}{1 - \frac{\theta^2}{2} - \sqrt{3}\theta} \text{(since } \theta \text{ is sufficiently small)}$ $= \left(1 - \sqrt{3}\theta - \frac{\theta^2}{2}\right)^{-1}$ $= 1 - \left(-\sqrt{3}\theta - \frac{\theta^2}{2}\right) + \frac{-1(-2)}{2!} \left(-\sqrt{3}\theta - \frac{\theta^2}{2}\right)^2 + \dots$ $= 1 + \sqrt{3}\theta + \frac{\theta^2}{2} + 3\theta^2 + \dots$ $= 1 + \sqrt{3}\theta + \frac{7}{2}\theta^2 + \dots$	C $\frac{AC}{\sin \frac{5\pi}{6}} = \frac{1}{\sin \left(\frac{\pi}{6} - \theta\right)}$ $\frac{AC}{\frac{1}{2}} = \frac{1}{2 \cos \theta - \sqrt{3} \sin \theta}$ $AC = \frac{1}{\cos \theta - \sqrt{3} \sin \theta}$	B
Among students who manage to attempt this question, there are a few who use x in the evaluation instead of θ .	assume sum of interior angles of a triangle as 2π . Some students forget to write sin despite showing understanding of sin rule.	Students mistakenly

œ

06		7a	e
Let X be the number of white tumblers in a box of 20. $X \sim B(20, \frac{1}{6})$ $P(4 \le X \le 9) = P(X \le 9) - P(X \le 3)$ ≈ 0.433 Alternative: $P(X = 4) + P(X = 5) + + P(X = 9) \approx 0.433$	${}^{9}C_{3} \times {}^{6}C_{3} \times {}^{3}C_{3} = 1680$ Note: Each group is uniquely identified by the man in the group, hence there is no need to account for double counting. Alternative: $\frac{({}^{3}C_{1} \times {}^{9}C_{3}) \times ({}^{3}C_{1} \times {}^{6}C_{3}) \times ({}^{3}C_{1} \times {}^{3}C_{1})}{3!} = 1680$ $(9-1) \times {}^{9}C_{1} \times {}^{3}I = 20321280$	The director is interested in the opinions of the female employes only. Since all female employees are chosen, these 9 women form a population.	P (Carl plays the game for an even number of rounds) $= 0.3(0.6) + 0.3(0.4)(0.4)(0.6) + 0.3(0.4)^{4}(0.6) +$ $= \frac{0.3(0.6)}{1 - (0.4)^{2}}$ $= \frac{3}{14}$
for this question. • Read the question carefully: The number is "between 4 and 9 inclusive". This means that both 4 and 9 are included in the calculation of the required probability. • We can find P(4 ≤ X ≤ 9) as a difference of two cumulative probabilities. In particular, since X = 4 is included for the required	This question was not very well attempted. Commonly, students apply addition principle instead. This is the most well done part	There are students who did not give explanations. Many students gave unnecessary explanation such as all women have equal opportunity, responses being independent of each other, or even quoting Central Limit Theorem.	• Interpret the context of the question: o Since he is to play the game until he loses I round, this means that he will be winning consecutively until he loses. Since this lose is still a round that he played, it must be counted in the number of rounds he played. o Hence, consider: P(plays even number of rounds) = P(plays 2 rounds) + P(plays 4 rounds) + P(plays 6 rounds) + = P(win until loses 4th round) + P(win until loses 2nd round) + P(win until loses 6th round) + P(win until loses with round) + = P(W.L.) + P(W.W.W.L.) + o This will be the sum to infinity of a geometric series. • As with any question involving a progression or series, write down the first three terms at least, so as to ascertain the common ratio in this case, and hence apply the correct formula for the sum to infinity of a convergent geometric series.

you are inding a probability.			
final answer if it exceeds 1, since			
not calculator commands". o Check the reasonableness of your			
using mathematical notations and			
paper, you are required to present the mathematical steps			
from the front cover of your exam	-		
mathematical notation. Quoting			
o Do not write GC commands as			
• Reminders:			
distribution			
write 0.166 in your			
is exactly $\frac{1}{2}$; you should not			
randomly chosen unabter is white			
probability of "success" i.e. that a			
For parts (a) and (b), the			
parameters of the distribution.	• •		
o State and use exact values of			
since this denotes the standard			
represent your random variable			
o Do not use the letter Z to			
will not make sense.			_
distribution and parameters stated			
random variable without its			
calculation involving the use of a			
essential working: any probability			
random variable you use in the			
o State the distribution for the			
"success" i.e. meeting the criteria			
sample and the probability of			
include the size of the random			
case your definition should			
objects from a random sample			
will be a count i.e. the number of	·· <u>-</u>		
a binomial, the random variable			
find the required manbability. For			
o Define any random variables you			
◆ Use of random variables:	-		
more tedious.			
this approach is considerably		-	
9). However, the calculation by			
P($Y = A$) + P($Y = S$) + P(Y			_
propagilines in this case, by			
$X \le 9$) as a sum of discrete			
o Alternatively, we can find P(4 ≤		-	
we then use GC to calculate.			
$9) = P(X \le 9) - P(X \le 3), \text{ which}$			
and including $Y=3$ (a. $PV4 < Y <$			
Indian archability for Vine			_

5	Let W be the number of white tumblers from 18 tumblers. $W \sim B(18, \frac{1}{6})$	Interpret the context of the question: The question involves up to the 19th tumbler only i.e. the
	Required probability = $P(W = 3) \times \frac{1}{6}$	sampling does not involve all 20 tumblers in the box. In this case, the random variable and hence
	≈0.0409	the distribution will not be the same as for part (a). Consider the number of white the black from the 10 turblers.
		chosen, denoted by Y, such that Y $-B(19, \frac{1}{-})$. In this case, $P(Y=4)$
		6 is the probability that 4 white tumblers are chosen, but this does
		not mean that the 19th tumbler
		required (For instance, the 4
		white tumblers could be the 1st,
		2nd, 3rd and 4th tumblers chosen.)
		o Hence, P(19th tumbler chosen is
		4th white one) = P(3 white himblers chosen from
		first 18 tumblers) × P(19th
		numbler is white), where P(19th
		tumbler is white) = $\frac{1}{6}$.
		In this case, for P(3 white
		tumblers chosen from first 18 tumblers), we define another
		random variable, represented by
		another letter, since the sample
		which must be stated, is different
•	Let D be the number of defective numblers in a hox of 20	Since p% of tumblers are defective.
,	$D \sim B(20, 0.01p)$	this means the probability that a
	D(7) < 1) = 0.05	defective is p%, which should be
	P(D=0)+P(D=1)=0.95	a
	200 (0.01 \0.11 \0.01 \0.020 (0.01 \0.11 \0.12 \0.020 \0.021 \0.0	or in reaction form as in
	$C_0(0.01p) \left(1 - 0.01p\right) + C_1(0.01p) \left(1 - 0.01p\right) = 0.75$ $\left(1 - 0.01p\right)^{20} + 0.2p\left(1 - 0.01p\right)^{19} = 0.95$	particular, p% is not the same as p, the distribution, which must be
	(discoup) (discoup) - 0.70	stated, should be B(20, 0.01p) or
	Using G.C.,	$B(20, \frac{p}{100})$, not $B(20, p)$.
	<i>p</i> ≈ 1.81	 After defining the random variable
		and stating the distribution, the required probability will be $P(D \le D)$
		1) = 0.95. This does not answer the
-		question as it is not an equation in p: nowhere is the variable p
		explicitly seen in this equation. In
		mis case, refer to MF 20, where

	$P(X = 27) = P(3,3,3)$ $= \frac{k}{k+2} \left(\frac{k-1}{k+1}\right) \left(\frac{k-2}{k}\right)$ $= \frac{(k-1)(k-2)}{(k+1)(k+2)}$	$P(X=12) = P(2,2,3 \text{ in any order})$ $= \frac{2}{k+2} \left(\frac{1}{k+1}\right) \left(\frac{k}{k}\right) \times 3$ $= \frac{6}{(k+1)(k+2)}$ $P(X=18) = P(2,3,3 \text{ in any order})$ $= \frac{2}{k+2} \left(\frac{k}{k+1}\right) \left(\frac{k-1}{k}\right) \times 3$ $= \frac{6(k-1)}{(k+1)(k+2)}$	9a Method 1:	
Students are reminded that for all "SHOW" type questions such as Q9(a), they are required to show full workings and should not skip any steps and write fully all the steps as shown in the solutions for calculating $E(X)$. They should consult their tutors to clarify the demands of such questions if they are still unsure.	there is a need to multiply by $3 = \frac{3}{2!}$ for the case when $X = 18$.	Students forgot to multiply by 3, which is equivalent to multiplying $\frac{3!}{2!}$ as the case when $X = 12$ means drawing 2, 2,3 in ANY order. This means that the balls that are drawn is such that there are 3 balls, of which 2 are identical, and so there is a need to multiply by $\frac{3!}{2!} = 3$. Similarly for the case of drawing three balls of 2,3,3, there are 3 balls, of which 2 are identical, and so		formulae for standard discrete distributions are included. Note that the formula is for the discrete probability $P(X = x)$, not the cumulative probability $P(X \le x)$. Hence, express $P(D \le 1)$ as a sum of discrete probabilities i.e. $P(D \le 1)$ in other words $P(at most defective) = P(none defective) + P(1 defective), then apply the formula respectively. • Note that p is not an integer, as such you should not be using the table function of your GC to find the value of p in non-exact, it should be found to 3 significant figures at least.$

From GC, $Var(X) = 5.116001^2$	x 12 18 2 $P(X=x)$ $\frac{3}{28}$ $\frac{15}{28}$ $\frac{1}{2}$	b Since $E(X) = \frac{144}{7}$ $\frac{9(3k^2 + 3k + 2)}{(k+1)(k+2)} = \frac{144}{7}$ By GC, $k = 6$	Method 2: P&C (tedious) For example, $P(X = 27) = \frac{kC_3}{k+2C_3}$ $= \frac{(k-3) 3 }{(k+2)!}$ $= \frac{k!}{(k+2)!} \times \frac{(k-1) 3 }{(k-3) 3 }$ $= \frac{k!}{(k+2)!} \times \frac{(k-1) 3 }{(k-3) 3 }$ $= \frac{(k+1)(k+2)}{(k+1)(k+2)} \times (k-1)(k-2)$ $= \frac{(k-1)(k-2)}{(k+1)(k+2)}$	$E(X) = \frac{12(6)+108(k-1)+27(k-1)(k-2)}{(k+1)(k+2)}$ $= \frac{72+108k-108+27(k^2-3k+2)}{(k+1)(k+2)}$ $= \frac{27k^2+27k+18}{(k+1)(k+2)}$ $= \frac{9(3k^2+3k+2)}{(k+1)(k+2)}$ (shown)
	Since the question did not state that calculators should not be used, students can and should use their GC to calculate the variance.	Most students got this part correct. Students are allowed to use the answer from Q9(a) even though they did not get the question correct and use their GC to obtain the value of k		2)

<u> </u>						10a			
The estimate is reliable since (i) The product moment cor 0.9965 is very close to -1 (ii) h = 4800 is within the dat is an interpolation)	Since $55.1 < 57.2$, the performance could not be attempted safely.	F = 5 = 55.0549 = 55.1	$\ln p = -0.000132854(4800) + 4.64603$ $= 4.0083308$ $= 4.0083308$	In $p = ch + d$ is the better mod correlation coefficient value – (-0.9750. The equation of $\ln p$ on h is $\ln p = -0.000133h + 4.65$ (3 s.f.)	$\ln p = ch + d$ $r = -0.9965 (4 \text{ d.p.})$	p = ah + b r = -0.9750 (4 d.p.)		$P(\bar{X} > 21) = 0.323 (3 s.f.)$	Since $n = 30$ is large, by Central Limit I neorem. $\overline{X} \sim N\left(\frac{144}{7}, \frac{(5.116001)^2}{30}\right)$ approx.
te is reliable since The product moment correlation coefficient/r value - 0.9965 is very close to -1 h = 4800 is within the data range of h (or the estimate is an interpolation)	e attempted safely.	Y1 (7500) 5, 952217463 entries 384, 6852421) + 4.64603 чавы, тэм эле эле мест э	is the better model since its product moment efficient value - 0.9965 is closer to - 1 than f ln p on h is 133h+4.65 (3 s.f.)	Marco, 1154 1216 161 (Autor 197) Marco, 1154 1216 1617 Marco, 1154 1517 Marco, 11	V=2/4 (C)			approx.
Most students could get this part correct, except that some missed out the reason that the r value is very close to -1. Some students also gave only one	Some students forgot to answer the question on whether the performance could be attempted safely or not. Read the question carefully and always answer the question.			This question asks students to compare between two models and decide on the more appropriate model. This implies that students need to make a comparison, hence the word choice should be "closer to -1" instead of "close to -1", so that it brings out the idea of some comparison of two (or more) models.		Some students forgot that the question required them to round off to 4 decimal places. Students should read the question earcfully before answering the questions.	There are some students who wrote the correct distribution for \overline{X} but obtained the wrong probability. These students should check where their calculations went wrong and not make this mistake in the coming A Levels.	• Write the distribution $\overline{X} \sim N\left(\frac{144}{7}, \frac{(5.116001)^3}{30}\right)$ Take note that the distribution is \overline{X} and NOT X .	 students rece to write the following for this question: "Since n = 30 is large" "Central Limit Theorem" (spelt in FULL)

them to give TWO reasons. Students should always read the question carefully before answering them.

15

		<u> </u>	I				<u></u> .	
		- c				5		112
$H_0: \mu = \mu_0$ $H_1: \mu \neq \mu_0$	complete an online learning assignment. Unbiased estimate of population variance $\frac{40}{39}(1.3^2) = 1.73333 \text{ (6 s.f.)}$	The p-value in (b) indicates that there is a probability of 0.0482205 of drawing a random sample of 45 students whose sample mean time to complete an online learning assignment is more than 90.342 minutes, assuming the population mean time taken to complete an online learning assignment is 90 minutes.	Since p -value = 0.0482025 > 0.02, we do not reject H_0 . Hence there is insufficient evidence at the 2% significance level to indicate that the population mean time taken for a student to complete an online learning assignment is more than 90 minutes.	Using GC, p -value = 0.0482025 (6 s.f.).	$H_0: \mu=90$ $H_1: \mu>90$ Level of significance = 2% = 0.02 Since $n=45$ is sufficiently large, by Central Limit Theorem, $\bar{T}\sim N\left(90,\frac{1.90424}{45}\right)$ approximately.	Let μ be the population mean time taken for a student to complete an online learning assignment, in minutes. Let T be the time taken for a randomly chosen student to complete an online learning assignment.	$= \frac{1}{44} \left[89.05 - \frac{15.39^2}{45} \right]$ $= 1.90424 (6 s.f.)$ $= 1.90 (3 s.f.)$	Unbiased estimate of population mean $= \frac{\sum (t-90)}{45} + 90$ $= \frac{15.39}{45} + 90$ $= 90.342$ Unbiased estimate of population variance
		Prease learn rns deminion, Basically its explaining $p = P(\overline{X} < \overline{x})$, $p = P(\overline{X} > \overline{x})$, or both depending on your H.	1		Please adhere to the proper presentation of workings. Conclude in context.	If the question asks for definition of symbol used, just define μ . Note that it is population mean and in context.		You need to remember how to find the unbiased estimate of population mean as the formula is not given.

Inhiased estimate of nonulation mean	You need to remember how to
$= \frac{\sum (t-90)}{45} + 90$ $= \frac{15.39}{15.39} + 90$	find the unbiased estimate of population mean as the formula is not given.
#3 =90.342 Unbiased estimate of population variance	
$=\frac{1}{44}\left[89.05-\frac{15.39^2}{45}\right]$	
=1.90424(6 s.f.)	
=1.90 (3 s.f.)	
Let μ be the population mean time taken for a student to complete an online learning assignment, in minutes.	If the question asks for definition of symbol used, just define μ . Note that it is
Let T be the time taken for a randomly chosen student to complete an online learning assignment.	population mean and in context.
$H_0: \mu = 90$ $H_1: \mu > 90$	Please adhere to the proper presentation of workings.
Level of significance = $2\% = 0.02$ Since $n = 45$ is sufficiently large, by Central Limit Theorem, $\bar{T} \sim N\left(90, \frac{1.90424}{45}\right)$ approximately.	Conclude in context.
Using GC, p -value = 0.0482025 (6 s.f.).	
Since p -value = 0.0482025 > 0.02, we do not reject H_0 . Hence there is insufficient evidence at the 2% significance level to indicate that the population mean time taken for a student to complete an online learning assignment is more than 90 minutes.	
The p -value in (b) indicates that there is a probability of 0.0482205 of drawing a random sample of 45 students whose	Please learn this definition, Basically its explaining
sample mean time to complete an online learning assignment is more than 90.342 minutes, assuming the population mean time taken to complete an online learning assignment is 90 minutes.	$p = P(\overline{X} < \overline{x})$, $p = P(\overline{X} > \overline{x})$, or both depending on your H ₁ .
Let T be the time taken for a randomly chosen student to complete an online learning assignment.	Note that sample variance is given so need to change to the unbiased estimate of novulation
Unbiased estimate of population variance $\frac{40}{39}(1.3^2) = 1.73333 (6 \text{ s.f.})$	variance.
$H_0: \mu = \mu_0$ $H_1: \mu \neq \mu_0$	

	$90.2 < \mu_0 < 91.2 \text{ (3 s.f.)}$	$90.2157 < \mu_h < 91.1843 $ (6 s.f.)	$-0.484268 < 90.7 - \mu_0 < 0.484268$	(V 40 -	$-2.32635 < \frac{90.7 - \mu_0}{(1.73333)} < 2.32635$	$-2.32635 < z_{\text{test}} < 2.32635$	For H_0 to be not rejected, we must have	$\overline{T} \sim \mathbb{N}\left(\mu_0, \frac{1.73333^2}{40}\right)$ approximately.	Since $n = 40$ is sufficiently large, by Central Limit Theorem,
--	--	---------------------------------------	---------------------------------------	---------	---	--	--	---	---

$P(X < 175)$ $P(X < 175)$ $P(X < 175)$ $P(X < 175)$ $q = 25.$ c Expected number $= 90 \times P(X < 182)$ $= 90 \times 0.610261$ $= 54.9 (3s.f.)$ d $Y \sim N(125, 15^2)$ $P(Y > 130) = 0.36944 = 0.369 (3s.f.)$ e Let A be the number of tomatoes with grams, out of 50. $A \sim B(50, 0.36944)$ $P(A = 20) = 0.10374 = 0.104 (3s.f.)$ f Price of Potatoes: $\$0.32/100g \Rightarrow \$\frac{0}{10}$ $P(C) = (0.32/100g) \Rightarrow \$\frac{0}{100}$ $E(C) = (0.32/100g) \Rightarrow \$\frac{0}{100}$	12a
Expected number = $90 \times P(X < 182)$ = 90×0.610261 = 54.9 (3s.f.) $Y \sim N(125,15^2)$ P(Y > 130) = 0.36944 = 0.369 (3s.f.) Let A be the number of tomatoes with a rigrams, out of 50. $A \sim B(50, 0.36944)$ P(A = 20) = 0.10374 = 0.104 (3s.f.) Price of Potatoes: $\$0.32/100g \implies \$\frac{0.32}{100}$ Price of Tomatoes: $\$0.22/100g \implies \$\frac{0.32}{100}$ Price $C = \frac{0.32}{100}(X) - \frac{0.22}{100}(Y_1 + Y_2)$ Let $C = \frac{0.32}{100}(X) - \frac{0.22}{100}(Y_1 + Y_2)$ = 0.01 = 0.01	
Let A be the number of tomatoes with a mass more than 130 grams, out of 50. A ~ B(50,0.36944) P(A = 20) = 0.10374 = 0.104 (3s.f.) Price of Potatoes: \$0.32/100g \Rightarrow \$\frac{0.32}{100}/g Price of Tomatoes: \$0.22/100g \Rightarrow \$\frac{0.22}{100}/g Let C = \frac{0.32}{100}(X) - \frac{0.22}{100}(Y + Y_2) E(C) = \begin{pmatrix} 0.32 \\ 100 \end{pmatrix} \] (175) - \begin{pmatrix} 0.22 \\ 100 \\ 100 \end{pmatrix} \] (25^2) + \begin{pmatrix} 0.22 \\ 100 \\ 100 \end{pmatrix} \] (2)(15^2)	
$P(A = 20) = 0.10374 = 0.104 (3s.f.)$ f Price of Potatoes: \$0.32/100g \Rightarrow \$\frac{1}{2}\$ Price of Tomatoes: \$0.22/100g \Rightarrow \$\frac{1}{2}\$ Let $C = \frac{0.32}{100}(X) - \frac{0.22}{100}(Y + Y_2)$ $E(C) = \left(\frac{0.32}{100}\right)(175) - \left(\frac{0.22}{100}\right)(2)(175) = 0.01$ $= 0.01$ $Var(Y) = \left(\frac{0.32}{100}\right)^2(25^2) + \left(\frac{0.22}{100}\right)^2(2)$	n
Frice of Potatoes: \$0.32/100g \Rightarrow \$1 Price of Tomatoes: \$0.22/100g \Rightarrow \$1 Let $C = \frac{0.32}{100}(X) - \frac{0.22}{100}(Y_1 + Y_2)$ $E(C) = \left(\frac{0.32}{100}\right)(175) - \left(\frac{0.22}{100}\right)(2)(175) - \left(\frac{0.22}{100}\right)(2)(1$	i
Var(Y) = $\left(\frac{0.32}{100}(X) - \frac{0.22}{100}(Y + Y_2)\right)^2$	-
$B(C) = \left(\frac{0.32}{100}\right)(75) - \left(\frac{0.22}{100}\right)(2)$ $= 0.01$ $= 0.02$ $Var(Y) = \left(\frac{0.32}{100}\right)^{2} (25^{2}) + \left(\frac{0.22}{100}\right)^{2} (25^{2})$	
$Var(Y) = \left(\frac{0.32}{100}\right)^2 (25^2) + \left(\frac{0.22}{100}\right)^2 $	