Name:	Class:
* 1 *** *** *** *** *** *** *** *** ***	 WWW.2000

JURONG PIONEER JUNIOR COLLEGE JC2 Preliminary Examination 2020

CHEMISTRY Higher 1

8873/01 24 September 2020

Paper 1

1 hour

Additional materials: Multiple Choice Answer Sheet Data Booklet

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

Do not use staples, paper clips, glue or correction fluid.

Write your name, class and exam index number on the Answer Sheet in the spaces provided unless this has been done for you.

There are 30 questions in this section. Answer all questions. For each question there are four possible answers A, B, C and D.

Choose the one you consider correct and record your choice in soft pencil on the separate Answer Sheet.

Read the instructions on the Answer Sheet very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer.

Any rough working should be done in this booklet.

The use of an approved scientific calculator is expected, where appropriate.

1 Bromine gas is toxic. The maximum safe toleration level of bromine gas in air is $4.00 \times 10^{-6} \, g \, dm^{-3}$.

How many bromine atoms are present in 1 dm3 of air at this toleration level?

A 1.50×10^{16}

B 3.00 × 10¹⁶

 \mathbf{C} 6.00 × 10¹⁶

- D 3.00 × 10¹⁹
- 2 A 25 cm³ of a 0.1 mol dm⁻³ X(NO₃)₂ solution requires 10 cm³ of 0.1 mol dm⁻³ of acidified potassium manganate(VII) solution for complete reaction.

What is the final oxidation state of element X after the reaction?

- A +3
- B +4
- C +5
- D +6
- 3 10 cm³ of a pure hydrocarbon X was completely burnt in 80 cm³ of excess oxygen. After cooling to room temperature, the volume of the gaseous mixture decreased to 55 cm³. A further reduction of 40 cm³ was observed when the residual gas was passed through sodium hydroxide.

All gas volumes were measured at the same temperature and pressure.

What is the hydrocarbon X?

- A C₄H₈
- B C₄H₁₀
- C C5H10
- D C₅H₁₂
- To identify an oxide of nitrogen, 0.10 mol of the oxide is mixed with an excess of hydrogen and passed over a catalyst at a suitable temperature.

$$N_xO_y \xrightarrow{H_2(g)} xNH_3 + yH_2O$$

The water produced weighs 7.20 g and the ammonia produced is completely neutralised by 200 cm^3 of 1.0 mol dm⁻³ HC*i*.

What is the formula of the oxide of nitrogen?

A N₂O₄

B NO₂

C N₂O

D NO

5 Disproportionation reaction occurs when an element undergoes oxidation and reduction simultaneously.

Which of the following equations describes a disproportionation reaction?

- A $3ClO^- \rightarrow ClO_3^- + 2Cl^-$
- B $2H_2C_2O_4 \rightarrow 2H_2O + 2C + 2CO + 2O_2$
- C $2FeSO_4 \rightarrow Fe_2O_3 + SO_2 + SO_3$
- D $2KMnO_4 \rightarrow MnO_2 + MnO + K_2O + 2O_2$
- 6 The relative atomic mass of boron, which consists of the isotopes ¹⁰B and ¹¹B is 10.8.

What is the percentage of ¹¹B atoms in the isotopic mixture?

A 80 %

B 20 %

C 0.8 %

- D 0.2 %
- 7 The electronic configurations of four elements are given.

Which of these elements has the highest first ionisation energy?

A 1s² 2s² 2p⁶ 3s² 3p³

B 1s² 2s² 2p⁶ 3s² 3p⁴

C 1s² 2s² 2p⁶ 3s²

- D 1s² 2s² 2p⁶ 3s² 3p⁶ 4s¹
- 8 Use of Data Booklet is relevant to this question.

Which of the following particles have more neutrons than protons and more electrons than neutrons?

A 14NO₂+

B 13CO₃2-

C 32S2-

D 14N2+

9 Z has the following electronic configuration.

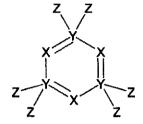
<u> </u>	1
----------	---

What could Z be?

- **1** C*l*+ ion
- 2 S atom
- 3 P³⁻ ion
- A 1, 2 and 3
- B 1 and 2 only
- C 2 and 3 only
- D 3 only
- 10 Which of the following statements about potassium fluoride and hydrogen fluoride is true?
 - A They both have comparable boiling points.
 - B They are hard but brittle.
 - C They contain the same type of bonding.
 - D They are soluble in water.
- 11 Which statements are correct for the sequence of compounds below considered from left to right?

NaF MgO AIN SIC

- 1 The electronegativity difference between the elements in each compound increases.
- 2 The compounds are isoelectronic.
- 3 The bonding becomes increasingly covalent.
- A 1, 2 and 3
- B 1 and 2 only
- C 2 and 3 only
- D 3 only


© Jurong Pioneer Junior College

12 Silicon carbide (carborundum) is a shiny, hard and chemically inert material with a very high melting point. It can be used to sharpen knives and make crucibles.

Which type of structure explains these properties?

- A a giant structure with covalent bonds between silicon and carbon atoms
- B a giant structure containing metallic bonding
- c a giant layer structure with covalent bonds between atoms and weak intermolecular forces between the layers
- D a simple molecular structure with covalent bonds between the atoms of silicon and carbon
- 13 A stable molecule containing atoms of the elements X, Y and Z has the structure shown on the right.

Which of the following is a possible combination of the elements?

	X	Y	Z
A	В	N	F
В	A <i>l</i>	N	Н
С	N	P	Н
D	0	P	F

14 Element Q is from Period 3 of the Periodic Table.

Element **Q** reacts with oxygen to form a high melting point solid which is insoluble in water. When **Q** reacts with chlorine, a low melting point liquid is formed which is soluble in water, giving a solution with a pH of 1.

What is Q?

A magnesium B aluminium C silicon D phosphorus

- 15 Which series is correctly arranged in order of increasing values?
 - A atomic radius of P, S, Cl
 - B ionic radius of Cl⁻, S²⁻, P³⁻
 - C ionic radius of Na⁺, Mg²⁺, Al³⁺
 - D melting point of Al, Si, P

In an experiment, 5.00 g of solid Na₂CO₃ was added to a polystyrene cup containing 25.0 cm³ of 1.0 mol dm⁻³ aqueous HC*I*. It was found that the temperature of the solution rose by 4.1 °C.

The equation for the reaction is as follows.

$$Na_2CO_3(s) + 2HCl(aq) \rightarrow 2NaCl(aq) + CO_2(g) + H_2O(l)$$

What is the correct value for the enthalpy change of reaction above?

(Assume that the heat capacity of the solution is 4.2 J K⁻¹ cm⁻³)

- A -9.13 kJ mol⁻¹
- B -11.0 kJ mol⁻¹
- C -17.2 kJ mol⁻¹
- D -34.4 kJ mol⁻¹
- 17 Which of the following reactions does the value of ΔH^{θ} represent both a standard enthalpy change of combustion and a standard enthalpy change of formation?
 - 1 $C(s) + O_2(g) \rightarrow CO_2(g)$
 - 2 $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(g)$
 - 3 $N_2(g) + 2O_2(g) \rightarrow 2NO_2(g)$
 - **A** 1, 2 and 3 **B** 1 and 2 only **C** 2 and 3 only **D** 1 only
- 18 Gaseous phosphorus pentachloride, PCI₅, can be decomposed into gaseous phosphorus trichloride and chlorine by heating. The table below gives the bond energies.

Bond	Bond energy / kJ mol ⁻¹
P-CI (in both chlorides)	330
Ci-Ci	240
CI-CI	240

What is the enthalpy change of decomposition of PCI₅?

- A +90 kJ mol⁻¹
- B -90 kJ mol⁻¹
- C +420 kJ mol⁻¹
- D -420 kJ mol⁻¹

19 The rate of reaction of a strip of magnesium ribbon in 50 cm³ of 1.0 mol dm⁻³ H₂SO₄ is determined at 25 °C.

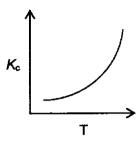
In which of the following cases would both the new conditions contribute to the increase in the rate of reaction?

- A 100 cm³ of 1.0 mol dm⁻³ H₂SO₄ at 30 °C
- B 25 cm³ of 2.0 mol dm⁻³ H₂SO₄ at 30 °C
- C Mg powder and 100 cm³ of 1.0 mol dm⁻³ H₂SO₄
- D Mg powder and 50 cm³ of 0.8 mol dm⁻³ H₂SO₄
- 20 The rate of decay of a radioactive isotope is a first-order reaction.

Given that the radioactivity decreased from 1200 counts per minute to 75 counts per minute in 48 hours, what is the time needed for 1200 counts to drop to 300 counts per minute?

A 8 hours

B 12 hours


C 16 hours

- D 24 hours
- 21 For which equilibrium does K₂ have no units?
 - $A N_2O_4(g) \rightleftharpoons 2NO_2(g)$
 - $B C(s) + H_2O(g) \rightleftharpoons CO(g) + H_2(g)$
 - C $Cu^{2+}(aq) + 4NH_3(aq) \rightleftharpoons [Cu(NH_3)_4]^{2+}(aq)$
 - $\mathbf{D} \qquad \mathrm{CH_3OH}(l) + \mathrm{CH_3CO_2H}(l) \Longrightarrow \mathrm{CH_3CO_2CH_3}(l) + \mathrm{H_2O}(l)$

22 The equilibrium constant, K_c, for the reaction

$$X(g) + Y(g) \rightleftharpoons Z(g)$$

varies with temperature as shown in the diagram below.

Which conclusion(s) can be drawn from these information?

- 1 The reaction is endothermic in the forward reaction.
- 2 The equilibrium mixture contains a greater proportion of Z at higher temperature.
- 3 The equilibrium mixture contains a greater proportion of Z at higher pressure.
- A 1, 2 and 3
- B 1 and 2 only
- C 2 and 3 only
- D 3 only
- 23 An enzyme, found in the stomach, operates at maximum efficiency when in an aqueous solution buffered at pH 5.

Which combination of substances, when dissolved in 1 dm³ of water, would give the necessary buffer solution?

- A 2 mol of CH₃CO₂H and 1 mol of NaOH
- B 1 mol of CH₃CO₂H and 2 mol of NaOH
- C 1 mol of HCl and 1 mol of CH₃CO₂Na
- D 2 mol of NH₃ and 1 mol of CH₃CO₂NH₄
- 20 cm³ of 0.10 moldm⁻³ of aqueous barium hydroxide, Ba(OH)₂ was mixed with 20 cm³ of 0.10 moldm⁻³ of aqueous hydrochloric acid. The following reaction occurs:

$$Ba(OH)_2(aq) + 2HCI(aq) \rightarrow BaCI_2(aq) + 2H_2O(I)$$

What is the pH of the resulting solution?

- A 1.30
- **B** 2.60
- C 11.4
- D 12.7

25 The diagram shows a reaction scheme.

$$C_2H_5CI \xrightarrow{I} C_2H_6O \xrightarrow{II} C_2H_4$$

What types of reaction are reactions I and II?

	I	П
A	oxidation	reduction
В	substitution	reduction
С	oxidation	elimination
D	substitution	elimination

When 2-methylbutane was treated with limited Cl₂ under UV light, four possible constitutional isomers were formed.

Structural formulae for three of the isomers are shown.

$$C\mathit{I}\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}(\mathsf{CH}_3)_2 \quad \mathsf{CH}_3\mathsf{CH}(\mathsf{C}\mathit{I})\mathsf{CH}(\mathsf{CH}_3)_2 \quad \mathsf{CH}_3\mathsf{CH}_2\mathsf{CH}(\mathsf{CH}_3)\mathsf{CH}_2\mathsf{C}\mathit{I}$$

What is the name of the fourth isomer?

- A 2-chloro-2-methylpropane
- B 2-chloro-2-methylbutane
- C 2-chloro-3-methylbutane
- D 1-chloropentane
- 27 Which statements about a propene molecule are correct?
 - 1 It has eight σ bonds and one π bond.
 - 2 It has an empirical formula of CH₂.
 - 3 It has all its atoms in the same plane.
 - A 1, 2 and 3
 - B 1 and 2 only
 - C 2 and 3 only
 - D 1 only

28 An ester, X, of molecular formula, C₆H₁₂O₂ undergoes acid hydrolysis to produce a carboxylic acid and an alcohol. The alcohol reacts with an acidified solution of sodium dichromate(VI) to produce a ketone.

What could be the structural formula of ester X?

- A CH₃CH₂CH₂CO₂CH₂CH₃
- B (CH₃)₂CHCO₂CH₂CH₃
- C CH₃CH₂CO₂CH(CH₃)₂
- D CH₃CO₂C(CH₃)₃
- 29 The major component of 'superabsorbent' polymer (SAP) is acrylic acid which polymerises when blended with sodium hydroxide in the presence of an initiator.

Which of the following statements is/are true?

- 1 SAP is biodegradable.
- 2 SAP is able to form hydrogen bonds with water.
- 3 There will be no loss of molecule during the polymerisation of SAP.
- A 1, 2 and 3
- B 1 and 2 only
- C 2 and 3 only
- D 3 only
- 30 Part of the structure of a polyamide is shown below:

Which of the following statements is not true?

- A It is a thermoplastic.
- B The polymer chains are held together by hydrogen bonds.
- C The polymer can be used to make containers to contain acids.
- D The N-C-O angle in the polymer is 120°.

Name:	Class:
-------	--------

JURONG PIONEER JUNIOR COLLEGE JC2 Preliminary Examination 2020

CHEMISTRY Higher 1 8873/02

17 September 2020

Paper 2

2 hours

Additional materials:

Data Booklet

READ THESE INSTRUCTIONS FIRST

Write your name, class and exam index number on all the work you hand in.

Write in dark blue or black pen on both sides of the paper.

You may use a HB pencil for any diagrams, graphs.

Do not use staples, paper clips, glue or correction fluid.

Section A (60 marks)

Answer all the questions in the spaces provided on the Question paper.

Section B (20 marks)

Answer one question in the spaces provided on the Question paper.

The use of an approved scientific calculator is expected, where appropriate. A Data Booklet is provided.

The number of marks is given in brackets [] at the end of each question or part question.

For E	xaminer's	s Use		
	1	6		
	2	11		
Section A	3	10		
	4	15		
	5	18		
Section	6	20		
В	7	20		
Penalty (delete accordingly)				
Missing/wror final an	-1 / NA			
Tot	80			

This document consists of 18 printed pages.

For Examiner's Use

Section A

Answer all the questions in this section, in the spaces provided.

1			ween the 13 th and 19 th centuries used a green pigment called verdigris. ent was made by hanging copper foil over boiling vinegar.	
	(a)	Durir ions.	ng the preparation of verdigris, copper atoms are oxidised to copper(Π)	
		.0	Cu → Cu ²⁺ + 2e ⁻	
		(i)	In the reaction, oxygen is reduced to water in acidic medium.	
			Construct a half equation for the reaction.	
				[1]
		(ii)	Construct a balanced equation for the redox reaction between copper, oxygen and hydrogen ions.	
				[1]
		(iii)	Given that 5 g of copper foil was boiled in vinegar to produce verdigris, calculate the volume of oxygen used in the reaction at room temperature and pressure.	

[2]

- (b) A sample of verdigris has the formula [(CH₃COO)₂Cu]₂.Cu(OH)₂.xH₂O. Analysis of 100 g of the sample shows that it contains 16.3% water by mass.
 - (i) Calculate the number of moles of [(CH₃COO)₂Cu]₂.Cu(OH)₂ present in 100 g of the sample of verdigris.

[Given that M_r of [(CH₃COO)₂Cu]₂.Cu(OH)₂ = 460.5]

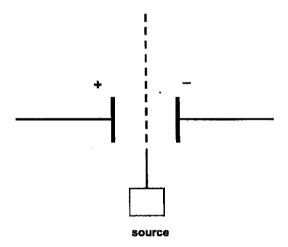
[1]

For Examiner's Use

	•				
		•			
					[То
Simp	ple molecules vary in s	shapes and polari	ty.		
	HF BF₃	N₂ CO₂	NH₃ H₂O		
	DI 3	ΟO2	1120		
(-)	01.1.12.1.70	ioloculos shown a	hove are polar		
(a)	State which of the m	IOIECUIES SHOWN A	bove are polar.	*	
(a)				*	
(a) (b)		les identified in ((a) in order of increa		
	Arrange the molecu	lles identified in (es. Explain your a	(a) in order of increa	asing polarity of	the
	Arrange the molecule	les identified in (es. Explain your a	a) in order of increanswer.	asing polarity of	the
	Arrange the molecule	les identified in (es. Explain your a	a) in order of increanswer.	asing polarity of	the
	Arrange the molecule	les identified in (es. Explain your a	a) in order of increanswer.	asing polarity of	the
	Arrange the molecule	les identified in (es. Explain your a	a) in order of increanswer.	asing polarity of	the
(b)	Arrange the molecule bond in the molecule. Draw dot-and-cross Name the shapes of	diagrams to show	a) in order of increanswer. v the bonding in CIF3	asing polarity of	the
(b)	Arrange the molecule bond in the molecule	des identified in (es. Explain your a	(a) in order of increanswer. In the triangle of triangle of the triangle of t	asing polarity of	the
(b)	Arrange the molecule bond in the molecule. Draw dot-and-cross Name the shapes of	diagrams to show	a) in order of increanswer. v the bonding in CIF3	asing polarity of	the
(b)	Arrange the molecule bond in the molecule Draw dot-and-cross Name the shapes of Formulae Dot-and-cross	diagrams to show	a) in order of increanswer. v the bonding in CIF3	asing polarity of	the
(b)	Arrange the molecule bond in the molecule Draw dot-and-cross Name the shapes of Formulae Dot-and-cross	diagrams to show	a) in order of increanswer. v the bonding in CIF3	asing polarity of	the

	(d)		gest, with reference to structure and bonding, why BF_3 is a gas at room perature.	For Examiner Use
			[2]	
			[Total: 11]	
3			was discovered in 1772 by Daniel Rutherford. It is the fifth most abundant bund on earth.	
	(a)	(i)	Define, with the aid of an equation, the first ionisation energy of nitrogen.	
			[2]	
		(ii)	Explain why nitrogen has a higher first ionisation energy than oxygen.	
			[2]	
		(iii)	On the axes below, complete the sketch of the ionisation energies for all the electrons present in a nitrogen atom. The ionisation energies of the first three electrons are shown below.	
			Ionisation Energy / kJ mol ⁻¹	
			No. of electrons removed 1 2 3 4 5 6 7 8 9	
			[2]	

(b) Magnesium burns in nitrogen to give magnesium nitride, Mg₃N₂.


For Examiner's Use

(i) Draw a dot-and-cross diagram to illustrate the bonding in Mg₃N₂.

[1]

(ii) When separate beams of ²⁴Mg²⁺ and ¹⁴N³⁻ are passed through an electric field in the apparatus below, they behave differently.

Sketch on the diagram below to show the paths of the beams of ²⁴Mg²⁺ and ¹⁴N³⁻ as they enter the electric field.

[2]

(iii) Given that the angle of deflection of the ²⁴Mg²⁺ beam is 4.0°, calculate the angle of deflection of the ¹⁴N³⁻ beam. Give your answer to the nearest whole number.

[1]

[Total:10]

For Examiner's Use

(a)	acidio	ents K and L are in Period 3. Chloride of K dissolves in water to form an c solution (pH = 3). Both oxide and chloride of element L are solids which oluble in water producing a strongly acidic solution (pH = 2).	
	Sugg	est the identities of elements K and L .	
	Write L.	balanced equations for the above observations about elements K and	

	•••••		

	******		[5]
(b)	Acryl	ic acid, CH₂=CHCOOH, is a monobasic weak acid.	
	(i)	Explain the meaning of weak acid.	
			[1]
	(ii)	Write an equation for the dissociation of acrylic acid in water.	
			[1]
	(iii)	Given that a 0.0800 mol dm ⁻³ of acrylic acid is 2.6% dissociated. Calculate • pH of the solution,	
		 K_a of the acid. 	

[4]

For Exeminer's Use

(iv)	During titration, it was found that 25.0 cm ³ of the acid required 20.00 cm ³ of 0.10 mol dm ⁻³ NaOH(aq) for complete reaction. Write a balanced equation for the reaction.	
		[1]
(v)	Suggest a suitable indicator for the titration of acrylic acid with sodium hydroxide in (iv).	
		[1]
(vi)	Before the end-point was reached in (iv), there was a mixture of acrylic acid (CH ₂ =CHCO ₂ H) and its salt (CH ₂ =CHCO ₂ Na) in the solution.	
	By means of ionic equations, show how this mixture of acrylic acid and its salt removes the small amounts sodium hydroxide and hydrochloric acid when added separately.	
		[2]
	[Tota	ıl: 15]

5 (a) Hot melt adhesive also known as hot glue, is a form of adhesive that is commonly sold as solid cylindrical sticks of various diameters designed to be applied using a hot glue gun.

Examiner's Use

[2]

[2]

The polymer, EVA, is a copolymer which is commonly used in the hot glue.

$$\begin{array}{c} -\left(-CH_2-CH_2\right) & \left(-CH_2-CH_2\right) \\ 0 & CH_3 \end{array}$$

EVA

Commonly, in an EVA polymer, there are more m units than n units. This is done to increase the viscosity of the glue.

EVA is an elastomeric polymer that produces materials which are "rubber-like" in softness and flexibility. It has good clarity and gloss, low-temperature toughness, stress-crack resistance and resistance to UV radiation. EVA has many attractive properties including low cost, excellent adhesion to many polar and nonporous substrates. It also can be recycled.

Another polymer, poly(vinyl chloride) (PVC) is used to produce PVC glue which is used to glue water pipes.

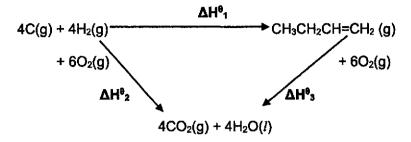
(i) Draw the structural formulae of the two monomers used to make EVA.

(ii)	State the type of reaction used to make EVA.	-
		[1]
(iii)	State and explain whether EVA is biodegradable.	

For Examiner's Use

(iv)	Based on the structure of EVA, predict what will be the predominant bonds that hold these polymer chains together?	•
		[1]
(v)	Predict whether EVA is a thermosetting or a thermoplastic polymer.	
	Explain your answer using the information in the question and your knowledge of the structure and bonding in polymers.	•
		[2]
(vi)	Explain why EVA is classified as elastomer.	
		[2]
(vii)	Suggest why EVA has good adhesion to polar and non-polar substrates.	(J
		[2]
(viii)	State one environmental advantage of recycling EVA.	
		[1]

	(ix)	Explain why poly(vinyl chloride), PVC, is used to make water pipes used in the toilets. Include a diagram of a repeat unit of PVC in your answer.	For Examiner's Use
(b)	mainly	oic acid is a colourless organic liquid with a formula of CH ₃ COOH. It is produced as a precursor to polyvinyl acetate, PVA. The following is a conscheme using ethanoic acid. CH ₃ CONHCH ₃ II CH ₃ COOH CH ₃ CONHCH ₃ CH ₃ COOH	[2]
	(i)	State the reagents and conditions for reactions I and II.	
	(li)	II:	[2]
			[1]
		Пota	1: 181


8873/02/**J2 PRELIMINARY EXAMINATION** /2020 PartnerInLearning

Section B

Answer one question from this section, in the spaces provided.

6 (a) The diagram below shows an energy cycle involving but-1-ene.

For Examiner's Use

Given that,

 ΔH^{θ_2} represents the standard enthalpy change of combustion for C(g) and $H_2(g).$

 ΔH^{θ_3} represents the standard enthalpy change of combustion for $\text{CH}_3\text{CH}_2\text{CH=CH}_2(g).$

(1)	Define the term bond energy.

Using the bond energy values in the Data Booklet, calculate a value for ΔH⁶₁.

[2]

[1]

(iii) Use the energy cycle, the following data as well as the value calculated in (a)(ii), to calculate ΔH^0_3 .

For Examiner's Use

Standard enthalpies	ΔH ^B / kJ mot ¹
Standard enthalpy change of combustion of C(g)	-1110
Standard enthalpy change of combustion of H ₂ (g)	-286

		[4]
(iv)	The equation written in the question to represent ΔH^{θ_1} is not correct. Explain why.	
		[1]

(v) The following experiment was done in the laboratory to find ΔH^{θ}_{3} .

For Examiner's Use

1.00 g of but-1-ene was burned to heat up 120 g of water. The water was heated from 30°C to 89°C. The process was known to be only 70 % efficient.

Hence, calculate the standard enthalpy change of combustion of but-1-ene, ΔH^{θ}_{3} .

Assume the specific heat capacity of water to be 4.3 J g⁻¹ K⁻¹.

[3]

(b) Ethyl propanoate is found naturally in apple juice, grapefruit peel and strawberries. Ethyl propanoate can be hydrolysed by aqueous NaOH.

For Examiner's Use

The initial rate of the hydrolysis reaction between the ester and NaOH(aq) was measured in a series of experiments at a constant temperature.

The results are obtained below:

Experiment	Initial concentration of NaOH / mol dm ⁻³	Initial concentration of ester / mol dm ⁻³	Initial rate / mol dm ⁻³ s ⁻¹
1	0.040	0.030	4.0 x 10 ⁻⁴
2	0.040	0.045	6.0 x 10 ⁻⁴
3	0.060	0.045	9.0 x 10 ⁻⁴
4	0.120	0.060	X

(I)	Using the data above, determine the order of reaction with respect to each reactant and hence deduce the rate equation for the reaction.	

		[3]
(ii)	Hence, otherwise, calculate the value of x in experiment 4.	
	•••••••••••••••••••••••••••••••••••••••	
		[1]
(iii)	Use the data from experiment 1 to calculate the rate constant, stating its units.	
		[2]

For Examiner Use	Describe the thermal decomposition of the hydrogen halides HC <i>I</i> , HBr and HI and explain any variation in their thermal stabilities.	(c)
	,	
	[3]	
	Cotal: 201	

For Examiner's Use

7	(a)	proc	uric acid is manufactured by the Contact process. One stage in this ess is the conversion of sulfur dioxide into sulfur trioxide in the presence heterogeneous catalyst of vanadium(V) oxide, V_2O_5 .	
		(i)	State the meaning of the term heterogeneous as applied to catalysts.	
				[1]
		(ii)	Heterogeneous metal catalysts, such as rhodium and platinum are used in catalytic converters in cars. Write two equations to illustrate how NO and CO gases produced in car engines, are removed by catalytic converters.	THE PARTY OF THE P
				[2]
	(b)	The	equation for this stage of the Contact Process is shown.	
			$2SO_2(g) + O_2(g) \ll 2SO_3(g)$ $\Delta H = -196 \text{ kJmol}^{-1}$	
		(i)	With the help of a suitable diagram, explain why a decrease in temperature decreases the rate of production of SO ₃ .	

			••••••	
			***************************************	[3]
		(ii)	State and explain the effect of increasing pressure on the yield of SO ₃ .	
			,	
			***************************************	[2]

(c)	with	ner element in the third period is silicon. Similar to sulfur, silicon reacts oxygen to form silicon dioxide which reacts with hot, concentrated im hydroxide.		For Examiner's Use
	(i)	State the silicon containing product formed during the reaction between silicon dioxide and concentrated sodium hydroxide.		
			[1]	
	(ii)	Describe the behaviour of the silicon dioxide during this reaction.		
			[1]	
(d)	Sodi	um burns in oxygen to form Na₂O.		
	(i)	Which one of the two oppositely charged ions present in Na₂O would have a smaller ionic radius? Explain your answer.		
			[2]	
	(ii)	State and explain the difference in the melting points of Na ₂ O and MgO.		
		······································		
		•		
			[3]	
(e)	(i)	Explain why Group 1 elements are generally good reducing agents.		
		· · · · · · · · · · · · · · · · · · ·		
			[1]	

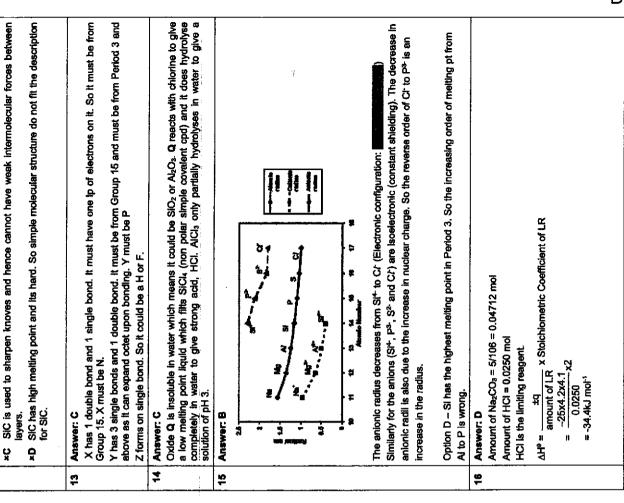
	(ii)	Explain why the reducing power of sodium is higher than that of lithium. Quote relevant values from the <i>Data Booklet</i> to support your answer.		For Examiner's Use

			[2]	
(f)	Br₂(a	n aqueous chlorine was added to a bromide solution, an orange solution, aq) was formed. However, when aqueous bromine was added to a ride solution, no reaction occurred.		
		$Cl_2(aq) + 2Br^-(aq) \rightarrow Br_2(aq) + 2Ct^-(aq)(1)$		
		$Br_2(aq) + 2CF(aq) \rightarrow \text{no reaction}(2)$		
	(i)	State the role of Cl ₂ (aq) in equation (1).		
			[1]	
	(ii)	Explain why there is no reaction in equation (2) while reaction proceeds in equation (1).		
			[1]	
		[Total	20]	

Suggested Worked Solution for 2020 JPJC H1 Chem Prelim Paper 1

000000

22 22 23 25


888388

00000

4			w		N	
Answer: A Amount of H ₂ O = 0.400 mol	Hence, $x = 4$; $(4 + \frac{y}{4}) = 6.5$ and $\therefore y = 10$ Molecular formula of the hydrocarbon is C ₄ H ₁₀ .	C _x H _y (g) + (x+4/2)O ₂ (g) → xCO ₂ (g) + 2 P ₂ O ₂ (f) Initial volume/ cm ³ 10 80		2.50 x 10 ⁻³ : 5.0 x 10 ⁻³ 1 : 2 1 mol of X(NO ₃) ₂ gives away 2 mol of electrons, hence its X ⁴⁺	Answer: B Amount of $X(NO_3)_2 = 2.50 \times 10^{-3} \text{ mol}$ Amount of $MnO_4 = 1.0 \times 10^{-3} \text{ mol}$ Amount of electrons taken in by $MnO_4 = 1.0 \times 10^{-3} \times 5$ $= 5.0 \times 10^{-3} \text{ mol}$	Answer: B Amount of Br gas in 1 dm³ = 4.00 x 10 ⁻⁶ / 159.8 = 2.503 x 10 ⁻⁸ mol No of Br atoms in 1 dm³ = 2.503 x 10 ⁻⁸ x 2 x 6.02 x 10 ²⁰ = 3.00 x 10 ⁻⁶

More papers at www.testpapersfree.com

Ĺ					
w	Answer: A A disproportion atom or ion is sir	Answer: A A disproportionation reaction is a redox reaction atom or ion is simultaneously oxidised and reduced. 3CiO → CiO ₃ + 2Ci ⁻	redox reaction in ed and reduced.	Answer: A A disproportionation reaction is a redox reaction in which one particular element in a molecule, atom or ion is simultaneously oxidised and reduced. $3GlO^- \rightarrow GlO_2^- + 2Gf$	ant in a moiecule,
	O.N. +1 The Cl is oxidise	O.N. +1 +5 -1 The Cl is oxidised and reduced simultaneously.	itaneousty.		
၂ြတ	Answer: A				
	Let y be the % of B11 isotope.	f B ¹¹ isotope.			
	100 ×11+ (100 - 10	$(100 - \frac{Y}{100}) \times 10 = 10.8$			
	y= 80 %				
~		gher nuclear charge onic repulsion in 3p' shell of electrons co on A.	than Option B w hence would he empared to option	Answer: A Option A has higher nuclear charge than Option B with the same no of quantum shells. Option B has inter-electronic repulsion in 3p² hence would have lower IE than Option A. Option D has an extra quantum shell of electrons compared to options A,B and C, hence it would have the lower first IE than Option A.	n shells. Option B Option D has an Id have the lower
Мфъ	Answer: B				
pap	Particles	Neutrons	Protons	Electrons	
ers	NO ₂ +	23	23	24	
at w	5 3.				
/ww	3282	16	16	18	
.test	**N**	14	14	13	
рар	Answer: B				
ers	Cf* ion	1s²2s²2p⁵3s²3p⁴	These аге сопест answers	d answers	
free	S atom	1s22s2p83s23p4			
.cor	P ³ -fon	1s²2s²2p³3s²3p° ×			
n =	Answer: D				1
	** KF	KF is an ionic compour simple covatent compou higher boiling pt than HF	ind with strong ic und with hydroger	KF is an ionic compound with strong louic bonds between the lons while HF is a simple covalent compound with hydrogen bonds between the molecules. So KF has higher boiling of than HF	us while hit is a cules. So KF has
	第	HF is a gas while KF is hard and brittle.	hard and brittle.		
	×C KF!	KF is an ionic compound with giant ionic la compound with simple molecular structure.	d with glant ionic inclessions	KF is an ionic compound with giant ionic lattice structure while HF is a simple covalent compound with simple molecular structure.	a simple covalent
	4D Both	n are soluble as HF e KF forms ion dipol	forms favourable forms favourable	Both are soluble as HF forms favourable hydrogen bonds with the water molecules while KF forms ion dipole interactions with the water molecules.	water molecules
£		Answer: C **1. The electronagativity difference from left to grint	between the ele	Answer: C *1. The electronagativity difference between the elements decreases as the compounds are from	mpounds are fron
	 Isoelectron electron electrons in each 	 Louis & Covaring the control of the co	ns or motecules co	oning to coverent noting the state of the st	<u>lectrons.</u> The no o
	✓3. The electr more covalent	onegativity differenc from left to right.	e between the ek	4.3. The electronegativity difference between the elements <u>decreases</u> so the compounds became more covalent from left to right.	ompounds became

✓A This description fits silicon carbide (SiC) as it hard and can be used to sharpen knives and

Slicon and C are not metals and hence its not metallic structure in SIC.

ä

make crucible. SiC is a giant covalent compound.

Answer: A

72

PartnerInLeaming

டுப்பாறை Pioneer Junior College

PartnerinLeaming 2020 JPJC H1 Chem Preilm Paper 1 Worked Solutions 345

17 7 20 8 Standard enthalpy change of combustion is the heat energy evolved when one mole of a substance is completely burnt in oxygen under standard conditions of 298 K and 1 ba Standard enthalpy change of formation is the heat energy change when one mole of a compound is formed from its constituent elements in their standard states under standard conditions of 298 K Answer: D for 1200 counts to drop to 300 counts need 2 $t_{\rm fit}$. Hence, 2 x 12 = 24hrs $4 (t_{1/2}) = 48 hrs$ È *2 $H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O(g)$ (H_2O must be in liquid state at 298K) \checkmark 1 C(s) + O₂(g) → CO₂(g) Only D has no units $1200 \rightarrow 600 \rightarrow 300 \rightarrow 150 \rightarrow 75$ Answer: B Answer: C *3 $N_2(g) + 2O_2(g) \rightarrow 2NO_2(g)$ (Not 1 mole of cpd formed) $t_{1/2} = 12 hrs$ First order reactions means the half life is constant. Answer: D and 1 bar. Answer: D \$ ð å × = 2mBE(band broken) - 2nBE(band formed) = 2mBE(reactants) - 2nBE(products) = (5x330) - [(3x330) + 240] = +420 kJ/mol $Cu^{2*}(aq) + 4NH_3(aq) \Rightarrow [Cu(NH_3)_4]^{2*}(aq)$ Mg powder will increase the rate (due to larger surface area for reaction) but the conc of HCl is the same. So both conditions will not increase the rate of HCl is lower than 1 moldm³. So both conditions will not increase the rate Mg powder will increase the rate (due to larger surface area for reaction) but the conc The conc increased and also the temp. Thus, both conditions will increase the rate. 100cm3 of 1.0 moldm3 will not increase the rate as the conc is the same. $C(s)+H_2O(g) \Rightarrow CO(g)+H_2(g)$ N_O_(g) Equations 2NO₂(g) PCI₅ → PCI₃ + CI₂ $K_6 = \frac{[Cu(NH_3)_4]^{2+}}{\sum_{2}}$ **Equilibrium Constant** K₌ [CO][H₂] $K_{e} = \frac{\left[NO_{2}\right]^{2}}{\left[N_{2}O_{4}\right]}$ Expression [Cu²⁺][NH₃]⁴ mol⁴dm¹² mot dm-3 moi dm⁻³

23		23				26		
) \ \}	Therefore, there is a greater proportion of Z. Therefore, there is a greater proportion of Z. At higher pressure, the eqm shifts to the side that has lesser amount of gases in the systemics, the eqm shifts to the right and hence there will be there is a greater proportion of Z in eqm mbture.	. +	The buffer at pH 5 is an acidic buffer which is made up of a <u>weak acid and its salt</u> . ✓A Mixture of a weak acid and its salt, CH ₅ COONa ⁺	×B Mixture of NaOH (strong base) and CH₃COO·Na*	Step 1 involves the substitution of Cl by OH. Step 2 is the elimination of water from C ₂ H ₆ O (alcohol) to C ₂ H ₄ (alkene).	Answer: B	Fourth Isomer: Chy C Chy Chy	CN3
		The buffer at pH 5 is an acidic buffer which is made up of a weak acid and its salt. A Mixture of a weak acid and its salt, CH ₂ COO*Na* *B Mixture of NaOH (strong base) and CH ₂ COO*Na*			xD This is an alkaline buffer. Weak base and its salt. 24 Answer: D Ba(OH)₂(aq) + 2HCℓ(aq) → BaCℓ₂(aq) + 2H₂Oℓℓ) Amount of Ba(OH)₂ = 2.00 × 10-3 mol Amount of Ba(OH)₂ in excess = 1.00 × 10-3 mol Amount of OH = 2 × 1.00 × 10-3 mol Amount of OH = 2 × 1.00 × 10-3 mol [OH] = $\frac{0.00200}{400}$ = 0.05 pOH = 1.30 pH = 141.3 = 12.7 25 Answer: D I C₂H₅Cl — I C₂H₅Cl — I C₂H₀Cl — I C₂Cl — I	Answer: D Ba(OH) ₂ (aq) + 2HC/(aq) Amount of Ba(OH) ₂ = 2.00×10^3 mol Amount of Ba(OH) ₂ in excess = 1.00×10^3 mol Amount of OH' = $2 \times 1.00 \times 10^3$ mol Amount of OH' = $2 \times 1.00 \times 10^3$ = 2.00×10^3 mol Amount of OH = $2 \times 1.00 \times 10^3$ = 2.00×10^3 mol [OH'] = $\frac{0.00200}{40}$ = 0.05 pOH = 1.30 pOH = 141.3 = 12.7 Answer: D I C ₂ H ₆ Cl — C ₂ H ₆ O — II Step 1 involves the substitution of Ci by OH. Step 2 is the elimination of water from C ₂ H ₆ O (alco	Answer: D Answer: D Be(OH) ₂ (aq) + 2HC/(aq) Amount of Be(OH) ₂ = 2.00×10^3 mol Amount of Be(OH) ₂ in excess = 1.00×10^3 mol Amount of OH' = $2 \times 1.00 \times 10^3$ = 2.00×10^3 mol Amount of OH' = $2 \times 1.00 \times 10^3$ = 2.00×10^3 mol [OH'] = $\frac{0.00200}{40}$ = 0.05 pOH = 1.30 pH = 141.3 = 12.7 Answer: D I C ₂ H ₆ Cl I C ₂ H ₆ Cl I C ₂ H ₆ O Answer: B	Answer: D Answer: D Ba(OH) ₂ (aq) + 2HC/(aq) Amount of Ba(OH) ₂ = 2.00×10^3 mol Amount of Ba(OH) ₂ in excess = 1.00×10^3 mol Amount of OH' = $2 \times 1.00 \times 10^3$ mol Amount of OH' = $2 \times 1.00 \times 10^3$ = 2.00×10^3 mol Amount of OH' = $2 \times 1.00 \times 10^3$ = 2.00×10^3 mol [OH'] = $\frac{0.00200}{40}$ = 0.05 [OH = 1.30 pOH = 1.30 pH = 141.3 = 12.7 Answer: D I C ₂ H ₆ Cl I C ₂ H ₆ Cl Step 1 involves the substitution of Cl by OH. Step 2 is the elimination of water from C ₂ H ₆ O (alco Answer: B Fourth Isomer: 300
		The buffer at pH 5 is an acidic buffer which is made up of a week acid and its salt. A Mixture of a week acid and its salt, CH ₃ COO·Na ⁺ *B Mixture of NaOH (strong base) and CH ₃ COO·Na ⁺ *C Mixture of a strong acid and some salt.			Answer: D Be(OH) ₂ (aq) + 2HCl(aq) Amount of Be(OH) ₂ = 2.00 x 10 ³ mol Amount of HCl = 2.00 x 40 ³ mol Amount of Ba(OH) ₂ in excess = 1.00 x 10 ³ mol Amount of OH' = 2 x 1.00 x 10 ³ = 2.00 x 10 ³ mol [OH'] = = $\frac{0.00200}{40}$ = 0.05 pOH = 1.30 pH = 14-1.3 = 12.7 Answer: D I C ₂ H ₅ Cl — I C ₂ H ₆ O — II	Answer: D Ba(OH) ₂ (aq) + 2HC/(aq) Amount of Ba(OH) ₂ = 2.00×10^3 mol Amount of HGI = 2.00×40^3 mol Amount of Ba(OH) ₂ in excess = 1.00×10^3 mol Amount of OH' = $2 \times 1.00 \times 10^3$ = 2.00×10^3 mol [OH'] = $\frac{0.00200}{40}$ = 0.05 pOH = 1.30 pH = $141.3 = 12.7$ Answer: D I C ₂ H ₆ Cl ————————————————————————————————————	Answer: D Ba(OH) ₂ (aq) + 2HC/(aq) Amount of Ba(OH) ₂ = 2.00×10^3 mol Amount of HGI = 2.00×40^3 mol Amount of Ba(OH) ₂ in excess = 1.00×10^3 mol Amount of OH' = $2 \times 1.00 \times 10^3$ = 2.00×10^3 mol [OH'] = $\frac{0.00200}{40}$ = 0.05 pOH = 1.30 pH = $141.3 = 12.7$ Answer: D I C ₂ H ₅ Cl — C ₂ H ₆ O — C ₂ + Step 1 involves the substitution of Cl by OH. Step 2 is the elimination of water from C ₂ H ₆ O (alco	Answer: D Be(CH) ₂ (aq) + 2HC/(aq) Amount of Be(OH) ₂ = 2.00 × 10 ³ mol Amount of HGI = 2.00 × 10 ³ mol Amount of Ba(OH) ₂ in excess = 1.00 × 10 ³ mol Amount of OH' = 2 × 1.00 × 10 ³ = 2.00 × 10 ³ mol Amount of OH' = 2 × 1.00 × 10 ³ = 2.00 × 10 ³ mol [OH'] = $\frac{40}{40}$ = 0.05 pOH = 1.30 pH = 141.3 = 12.7 Answer: D C ₂ H ₆ Cl
	- · · - · · · · · · · · · · · · · · · ·	The buffer at pH 5 is an acidic buffer which is made up of a <u>weak acid and its salt</u> . ✓A Mixture of a weak acid and its salt, CH ₃ COO*Na ⁺ ×B Mixture of NaOH (strong base) and CH ₃ COO*Na ⁺ ×C Mixture of a strong acid and some salt. ×D This is an akkaline buffer. Weak base and its salt.			Ba(OH) ₂ (aq) + 2HC/(aq) Amount of Ba(OH) ₂ = 2.00×10^3 mol Amount of HGI = 2.00×10^3 mol Amount of Ba(OH) ₂ in excess = 1.00×10^3 mol Amount of OH' = $2 \times 1.00 \times 10^3$ = 2.00×10^3 mol [OH'] = $\frac{0.00200}{40}$ = 0.05 [OH = 1.30 pOH = 1.30 pH = $14 \cdot 1.3 = 12.7$ Answer: D I C ₂ H ₅ Cl — I C ₂ H ₆ O — II	Ba(OH) ₂ (aq) + 2HC/(aq) Amount of Ba(OH) ₂ = 2.00×10^3 mol Amount of HCi = 2.00×40^3 mol Amount of Ba(OH) ₂ in excess = 1.00×10^3 mol Amount of OH' = $2 \times 1.00 \times 10^3$ = 2.00×10^3 mol [OH'] = $\frac{0.00200}{40}$ = 0.05 [OH = 1.30 pH = 141.3 = 12.7 Answer: D I C ₂ H ₆ Cl — C ₂ H ₈ O — C ₂ H Step 1 involves the substitution of Cl by OH. Step 2 is the elimination of water from C ₂ H ₆ O (alco	Ba(OH) ₂ (aq) + 2HC/(aq) Amount of Ba(OH) ₂ = 2.00×10^3 mol Amount of HCl = 2.00×40^3 mol Amount of Ba(OH) ₂ in excess = 1.00×10^3 mol Amount of OH' = $2 \times 1.00 \times 10^3$ = 2.00×10^3 mol [OH'] = $\frac{0.00200}{40}$ = 0.05 [OH = 1.30 pOH = 1.30 pH = $14 \cdot 1.3$ = 12.7 Answer: D I C ₂ H ₅ Cl — I Step 1 involves the substitution of Cl by OH. Step 2 is the elimination of water from C ₂ H ₆ O (alco	Ba(OH) ₂ (aq) + 2HC/(aq) Amount of Ba(OH) ₂ = 2.00×10^3 mol Amount of HGI = 2.00×10^3 mol Amount of Ba(OH) ₂ in excess = 1.00×10^3 mol Amount of OH' = $2 \times 1.00 \times 10^3$ = 2.00×10^3 mol [OH'] = $\frac{0.00200}{40}$ = 0.05 [OH] = 1.30 pOH = 1.30 pH = $14.4.3 = 12.7$ Answer: D C ₂ H ₆ CI
			×B ×C ×D	xD Answer: D	Amount of HGI = 2.00×10^{3} mol Amount of Ba(OH) ₂ in excess = 1.00×10^{3} mol Amount of OH = $2 \times 1.00 \times 10^{3}$ = 2.00×10^{3} mol [OH] = $\frac{0.00200}{40}$ = 0.05 pOH = 1.30 pH = $141.3 = 12.7$ Answer: D I C ₂ H ₅ CI — I C ₂ H ₆ O — II	<u> </u>	:	
			 ★B Mixture of NaOH (strong base) and CH ★C Mixture of a strong acid and some salt. ★D This is an alkaline buffer. Weak base a Answer: D Ba(OH)₂(aq) + 2HC/(aq) Amount of Ba(OH)₂ = 2.00 x 10-3 mol 	*C Mixture of a strong acid and some salt. *D This is an alkeline buffer. Weak base a Answer: D Ba(OH) ₂ (aq) + 2HC/(aq) Amount of Ba(OH) ₂ = 2.00 x 10 ⁻³ mol	Amount of Ba(OH) ₂ in excess = 1.00×10^3 mc Amount of OH = $2 \times 1.00 \times 10^3$ = 2.00×10^3 mc Amount of OH = $2 \times 1.00 \times 10^3$ = 2.00×10^3 mc [OH] = $\frac{0.00200}{40}$ = 0.05 pOH = 1.30 pH = $141.3 = 12.7$ Answer: D I C ₂ H ₅ Cl — I C ₂ H ₆ C — II			
	<u> </u>	<u> </u>	xB Mixture of NaOH (strong base) and CH xC Mixture of a strong acid and some salt. xD This is an alkaline buffer. Weak base a Answer: D Ba(OH)₂(aq) + 2HC/(aq) Amount of Ba(OH)₂ = 2.00 x 10³ mol Amount of HGI = 2.00 x 10³ mol	xC Mixture of a strong acid and some salt. xD This is an atkeline buffer. Weak base a Answer: D Ba(OH)₂(aq) + 2HC/(aq) Amount of Ba(OH)₂ = 2.00 x 10³ mol Amount of HGI = 2.00 x 10³ mol	$[OH'] = \frac{0.00200}{40} = 0.05$ $pOH = 1.30$ $pH = 141.3 = 12.7$ Answer: D $C_2H_6CI \longrightarrow C_2H_6O \longrightarrow I$			
			xB Mixture of NaOH (strong base) and CH xC Mixture of a strong acid and some salt. xD This is an alkaline buffer. Weak base a Answer: D Ba(OH)₂(aq) + 2HC/(aq) Amount of Ba(OH)₂ = 2.00 x 10³ mol Amount of HGl = 2.00 x 10³ mol Amount of OH' = 2 x 1.00 x 10³ = 2.00 x 10³ mol Amount of OH' = 2 x 1.00 x 10³ = 2.00 x 10³ mol	*C Mixture of a strong acid and some salt. *D This is an alkeline buffer. Weak base a Answer: D Ba(OH) ₂ (aq) + 2HC/(aq) Amount of Ba(OH) ₂ = 2.00 × 10 ⁻³ mol Amount of HCl = 2.00 × 10 ⁻³ mol Amount of OH' = 2 × 1.00 × 10 ⁻³ mol Amount of OH' = 2 × 1.00 × 10 ⁻³ mol	[OH] = = $\frac{40}{40}$ = 0.05 pOH = 1.30 pH = 14 -1.3 = 12.7 Answer: D I C_2H_6CI — C_2H_8O — II			
			xB Mixture of NaOH (strong base) and CH xC Mixture of a strong acid and some salt. xD This is an alkaline buffer. Weak base a Answer: D Ba(OH)₂(aq) + 2HC/(aq) Amount of Ba(OH)₂ = 2.00 × 10³ mol Amount of HGI = 2.00 × 10³ mol Amount of OH' = 2 × 1.00 × 10³ = 2.00 × 10³ mol Anount of OH' = 2 × 1.00 × 10³ = 2.00 × 10³ mol Anount of OH' = 2 × 1.00 × 10³ = 2.00 × 10³ mol	*C Mixture of a strong acid and some salt. *D This is an alkeline buffer. Weak base a Answer: D Ba(OH) ₂ (aq) + 2HC/(aq) Amount of Ba(OH) ₂ = 2.00 × 10 ³ mol Amount of HCl = 2.00 × 10 ³ mol Amount of Ba(OH) ₂ in excess = 1.00 × 10 ³ mol Amount of OH' = 2 × 1.00 × 10 ³ = 2.00 × 10 ³ mol	1000 pOH = 1.30 pH = 14-1.3 = 12.7 Answer: D C ₂ H ₅ Cl I C ₂ H ₆ O II			
			xB Mixture of NaOH (strong base) and CH xC Mixture of a strong acid and some salt. xD This is an atkaline buffer. Weak base a Answer: D Ba(OH)₂(aq) + 2HC/(aq) Amount of Ba(OH)₂ = 2.00 x 10³ mol Amount of HCl = 2.00 x 40³ mol Amount of OH' = 2 x 1.00 x 10³ = 2.00 x 10³ mol Amount of OH' = 2 x 1.00 x 10³ = 2.00 x 10³ mol CH] = 0.00200 [OH] = 0.00200	*C Mixture of a strong acid and some salt. *D This is an alkaline buffer. Weak base a Answer: D Ba(OH) ₂ (aq) + 2HC/(aq) Amount of Ba(OH) ₂ = 2.00 x 10 ³ mol Amount of Ba(OH) ₂ in excess = 1.00 x 10 ³ mol Amount of OH' = 2 x 1.00 x 10 ³ = 2.00 x 10 ³ mol [OH] = 0.00200 [OH] = 0.00200	pOH = 1.30 pH = 14-1.3 = 12.7 Answer: D C_2H_5CI I C_2H_6CI I			
			*B Mixture of NaOH (strong base) and CH *C Mixture of a strong acid and some salt. *D This is an alkaline buffer. Weak base a Answer: D Ba(OH) ₂ (aq) + 2HC/(aq) Amount of Ba(OH) ₂ = 2.00 × 10 ⁻³ mol Amount of HGI = 2.00 × 10 ⁻³ mol Amount of OH' = 2 × 1.00 × 10 ⁻³ = 2.00 × 10 ⁻³ mol Amount of OH' = 2 × 1.00 × 10 ⁻³ = 2.00 × 10 ⁻³ mol [OH'] = 0.00200 [OH'] = 0.00200	#C Mixture of a strong acid and some salt. #D This is an alkaline buffer. Weak base a Answer: D Ba(OH) ₂ (aq) + 2HC/(aq) Amount of Ba(OH) ₂ = 2.00 × 10 ⁻³ mol Amount of HGI = 2:00 × 10 ⁻³ mol Amount of Ba(OH) ₂ in excess = 1.00 × 10 ⁻³ mol Amount of OH' = 2 × 1.00 × 10 ⁻³ = 2.00 × 10 ⁻³ mol [OH'] = 0.00200 [OH'] = 0.00200 [OH'] = 0.00200	Answer: D C ₂ H ₅ Cl — C ₂ H ₆ O — II			
			xB Mixture of NaOH (strong base) and CH xC Mixture of a strong acid and some salt. xD This is an atkaline buffer. Weak base a Answer: D Ba(OH)₂ = 2.00 x 10³ mol Amount of Ba(OH)₂ = 2.00 x 10³ mol Amount of OH⁻ = 2 x 1.00 x 10³ mol Amount of OH⁻ = 2 x 1.00 x 10³ = 2.00 x 10³ mol Amount of OH⁻ = 0.00200 [OH¹] = 0.00200 [OH¹] = 0.00200 pOH = 1.30	#C Mixture of a strong acid and some salt. #D This is an alkaline buffer. Weak base a Answer: D Ba(OH) ₂ (aq) + 2HC/(aq) Amount of Ba(OH) ₂ = 2.00 × 10 ⁻³ mol Amount of HGI = 2:00 × 40 ⁻³ mol Amount of OH' = 2 × 1.00 × 10 ⁻³ = 2.00 × 10 ⁻³ mol Amount of OH' = 2 × 1.00 × 10 ⁻³ = 2.00 × 10 ⁻³ mol POH = 1.30 POH = 1.30	C ₂ H ₈ O	C_2H_5CI \longrightarrow C_2H_6O \longrightarrow C_2H_4 Step 1 involves the substitution of Cl by OH. Step 2 is the elimination of water from C_2H_6O (alcohol) to C_2H_4 (alkene).		
			xB Mixture of NaOH (strong base) and CH xC Mixture of a strong acid and some salt. xD This is an alkaline buffer. Weak base a Answer: D Ba(OH)₂(aq) + 2HC/(aq) Amount of Ba(OH)₂ = 2.00 × 10³ mol Amount of Ba(OH)₂ in excess = 1.00 × 10³ mol Amount of OH' = 2 × 1.00 × 10³ = 2.00 × 10³ mol Amount of OH' = 2 × 1.00 × 10³ = 2.00 × 10³ mol OH'] = 0.00200 [OH] = 1.30 pOH = 1.30 pH = 14 -1.3 = 12.7	*C Mixture of a strong acid and some salt. *D This is an alkeline buffer. Weak base a Answer: D Ba(OH) ₂ (aq) + 2HC/(aq) Amount of Ba(OH) ₂ = 2.00 × 10 ⁻³ mol Amount of HCi = 2.00 × 10 ⁻³ mol Amount of Ba(OH) ₂ in excess = 1.00 × 10 ⁻³ mol Amount of OH' = 2 × 1.00 × 10 ⁻³ = 2.00 × 10 ⁻³ mol [OH'] = 0.00200 [OH] = 0.00200 [OH = 1.30 pOH = 1.30 pH = 14 -1.3 = 12.7		Step 1 involves the substitution of CI by OH. Step 2 is the elimination of water from C ₂ H ₆ O (alcohol) to C ₂ H ₄ (alkene).		
			*B Mixture of NaOH (strong base) and CH *C Mixture of a strong acid and some salt. *D This is an alkaline buffer. Weak base a Answer: D Ba(OH) ₂ = 2.00 × 10 ⁻³ mol Amount of Ba(OH) ₂ = 2.00 × 10 ⁻³ mol Amount of OH' = 2 × 1.00 × 10 ⁻³ = 2.00 × 10 ⁻³ mol Amount of OH' = 2 × 1.00 × 10 ⁻³ = 2.00 × 10 ⁻³ mol [OH'] = $\frac{0.00200}{40}$ = 0.05 pOH = 1.30 pH = 141.3 = 12.7 Answer: D C ₂ H ₆ Cl — C ₂ H ₆ O — I C ₂ H ₆ Cl — C ₂ H ₆ O — C ₂ + Step 1 involves the substitution of Cl by OH. Step 2 is the elimination of water from C ₂ H ₆ O (alco Answer: B Fourth Isomer: 1073 — C ₂ -methylbutane.	*C Mixture of a strong acid and some salt. *D This is an aikaline buffer. Weak base a Answer: D Ba(OH) ₂ (aq) + 2HC/(aq) Amount of Ba(OH) ₂ = 2.00×10^3 mol Amount of Ba(OH) ₂ in excess = 1.00×10^3 mol Amount of OH' = $2 \times 1.00 \times 10^3$ mol Amount of OH' = $2 \times 1.00 \times 10^3$ = 2.00×10^3 mol Amount of OH' = $2 \times 1.00 \times 10^3$ = 2.00×10^3 mol Amount of OH' = $2 \times 1.00 \times 10^3$ = 2.00×10^3 mol Amount of OH' = $2 \times 1.00 \times 10^3$ = 2.00×10^3 mol Answer: D C ₂ H ₆ Cl	Answer: B Fourth Isomer: Chy The name is 2-chloro-2-methyl	2 methy	CN3 The name is 2-chloro-2-methylbutane.	
			*B Mixture of NaOH (strong base) and CH *C Mixture of a strong acid and some salt. *D This is an alkaline buffer. Weak base a Answer: D Be(CH) ₂ = 2.00 × 10 ³ mol Amount of Ba(CH) ₂ = 2.00 × 10 ³ mol Amount of OH' = 2 × 1.00 × 10 ³ = 2.00 × 10 ³ mol Amount of OH' = 2 × 1.00 × 10 ³ = 2.00 × 10 ³ mol [OH'] = 0.00200 [OH] = 1.30 pH = 141.3 = 12.7 Answer: D Step 1 involves the substitution of Cl by OH. Step 2 is the elimination of water from C ₂ H ₆ O (alco Answer: B Fourth Isomer: SChoro-2-methylbutiane.	*C Mixture of a strong acid and some salt. *D This is an alkaline buffer. Weak base a Answer: D Ba(OH) ₂ (aq) + 2HC/(aq) Amount of Ba(OH) ₂ = 2.00 × 10 ³ mol Amount of Ba(OH) ₂ in excess = 1.00 × 10 ³ mol Amount of OH' = 2 × 1.00 × 10 ³ = 2.00 × 10 ³ mol Amount of OH' = 2 × 1.00 × 10 ³ = 2.00 × 10 ³ mol POH = 1.30 pH = 14 -1.3 = 12.7 Answer: D C ₂ H ₆ Cl	Answer: B Fourth Isomer: Chy The name is 2-chloro-2-methyl Answer: B	The name is 2-chloro-2-methyl	_	_+
			*B Mixture of NaOH (strong base) and CH *C Mixture of a strong acid and some salt. *D This is an alkaline buffer. Weak base a Answer: D Be(CH) ₂ (aq) + 2HC/(aq) Amount of Ba(CH) ₂ in excess = 1.00 × 10 ⁻³ mol Amount of OH' = 2 × 1.00 × 10 ⁻³ mol Amount of OH' = 2 × 1.00 × 10 ⁻³ = 2.00 × 10 ⁻³ mol Amount of OH' = 2 × 1.00 × 10 ⁻³ = 2.00 × 10 ⁻³ mol OH'] = 0.00200 [OH'] = 0.05 1000 pOH = 1.30 pH = 14 -1.3 = 12.7 Answer: D C ₂ H ₆ CI — C ₂ H ₆ O — C ₂ H Step 1 involves the substitution of Cl by OH. Step 2 is the elimination of water from C ₂ H ₆ O (alco Answer: B Fourth Isomer: \$Chioro-2-methylbutane. Answer: B The name is 2-chloro-2-methylbutane π bor	xC Mixture of a strong acid and some salt. xD This is an alkaline buffer. Weak base a Answer: D Be(OH) ₂ (aq) + 2HC/(aq) Amount of Be(OH) ₂ = 2.00 × 10 ³ mol Amount of Be(OH) ₂ in excess = 1.00 × 10 ³ mol Amount of OH = 2 × 1.00 × 10 ³ = 2.00 × 10 ³ mol Amount of OH = 2 × 1.00 × 10 ³ = 2.00 × 10 ³ mol [OH'] = 0.00200 [OH'] = 0.00200 pOH = 1.30 pOH = 1.30 pH = 14 -1.3 = 12.7 Answer: D C ₂ H ₆ Cl	Ansı Four The	The The	The Ansı	Ang a
	Ans	The %B %C Ams	Ame	Ans Step Step Step Step Step Step Step Step	Ans Four The Ans	The Four	Ans	2 2 Ang
	Ans Step Step Step Step Step Step Step Step	The xB xAns xB xB Ans xB Ans xB Step Step Step Step Step Step Step Step	Ans Step Step Step Step Step Step Step Step	Ans Step Step Step Step Step Step Step Step	Ans Four	Ang Fou	ž ½ Ž Ang	ž j i Ang
	Ans	The XB	Ans Step Step Step Ans Step Ans Step Ans Step Step Ans Step Step Ans Step A	Ama	Ans Foun The Ans x3 on the control of the control o	The Four	The Ans	Ans 72
	Ans Step Step Step Step Step Step Step Step	Ans Step Step Step Step Step Step Step Step	Ama Ans Step Step Step Step Step Step Step Step	Ans Step Step Step Step Step Step Step Step	Ans Four Ans Ans Ans Ans	The Ans	Ans Ans	Ans
	Ans Step Step Step Step Step Step Step Step	The Ans Ans Step Step Step Step Step Step Step Step	Ans Step Step Step Step Step Step Step Step	Ans Step Step Step Step Ans 4	Ans Fou The Ans 71 Ans 72 Ans The	The Ans	Ans Ans The	Ans 72 Ans Ans The
	Ans Step Step Step Step Step Step Step Step	The XB Ans Step Step Step Step Step Step Step Step	Ans Step Step Step Step Step Step Step Step	Ans Step Step Step Step Step Step Step Step	Ans Found The Ans Ans Ans Ans Ans	Ans Ans The	Ans 72 72 Ans Ans Ans	Ans Ans
Hen eqm Ans Ans Ans Step PH Hen Anno Anno Anno Anno Anno Anno Anno An	Ans Step Step Step Step Step Step Step Step	The xB Ans Ans Step Step Step Step Step Step Step Step	Ans Step Step Step Step Show and Ans	Ans Step Step Step Step Step Step Step Step	Ans Four Four Four Ans	The Ans XA	Ans Ans XA	Ans Ans XA

The products after hydrolysts are CH₃COOH + (CH₃)₃C(OH) (3° alcohol which cannot be oxidised) ŏ

*1 SAP is not biodegradable it has no ester or amide linkages to be hydrolysed by acids or bases Since this polymer is made from addition polymerisation, there is no loss of any portion of the <2 SAP has -COOH group in the polymer which can form hydrogen bonds with water.</p> and the C-C bonds in the polymer is non-polar and thus inert Answer: C monomer. 5 2

8

The C has 3 bond pairs and 0 lone pairs around it in N-C-O. Hence, it's a trigonal planar geometry around the C atom so its 120° . The polyamide is a linear polymers with no cross linkages so it is classified as a The amide linkages in the polymer is capable of forming hydrogen bonds with another The polymer has amide linkages and hence the containers cannot contain acid as it will amide linkages in the polymer. hydrolyse the amide bonds. mermoplastic. Answer: C ۲× Š 8 ä

JURONG PIONEER JUNIOR COLLEGE JC2 Preliminary Examination 2020

Class:

CHEMISTRY Higher 1

Paper 2

17 September 2020

8873/02

2 hours

Additional materials:

Data Booklet

READ THESE INSTRUCTIONS FIRST

Write your name, class and exam index number on all the work you hand in. Write in dark blue or black pen on both sides of the paper.

Do not use staples, paper clips, glue or correction fluid. You may use a HB pencil for any diagrams, graphs.

Section A (60 marks)

Answer all the questions in the spaces provided on the Question paper.

Section B (20 marks)

Answer one question in the spaces provided on the Question paper.

A Data Booklet is provided.

The use of an approved scientific calculator is expected, where appropriate.

The number of marks is given in brackets [] at the end of each question or part question

AN F Penalty (delete accordingly) For Examiner's Use Masing/wong units in final answer Section B Section

This document consists of 18 printed pages and 0 blank pages.

Jurong Ploneer Junior College

PartnerIni_eaming

Turn over

Total

@Jurong Ploneer Junior College

Partnerint earning 1920 JPJC H1 Chem Prelim Paper 1 Worked Solutions

More papers at www.testpapersfree.com

8873/02/J2 PRELIMINARY EXAMINATION /2020 PartnerinLearning

Answer all the questions in this section, in the spaces provided Section A

Artists between the $13^{\rm m}$ and $19^{\rm th}$ centuries used a green pigment called verdigris. This pigment was made by hanging copper foil over boiling vinegar.

For Examiner's Use

<u>e</u> During the preparation of verdigris, copper atoms are oxidised to copper(II)

In the reaction, oxygen is reduced to water in acidic medium.

3

Construct a half equation for the reaction

 $O_2(g) + 4H^*(aq) + 4e^- \rightarrow 2H_2O(l)$ [1m], state symbols not required

Ξ

3 Construct a balanced equation for the redox reaction between copper oxygen and hydrogen lons.

$$2Cu + O_2 + 4H^* \rightarrow 2Cu^{2*} + 2H_2O$$
 [1m], state symbols not required

Ξ

3 Given that 5 g of copper foil was boiled in vinegar to produce verdigris, calculate the volume of oxygen used in the reaction at room

Amount of copper foil used =
$$\frac{5}{63.5}$$
 = 0.07874 mol

temperature and pressure.

Since 2Cu = O₂

Amount of O_2 used in the reaction = $\frac{1}{2} \times 0.0787$ [1m] working, awarded only if amt of O_2 used in the reaction = $\frac{1}{2} \times 0.0787$ [1m] working, awarded only if amt

= 0.03937 mo

Volume of O2 used in the reaction at room temperature and pressure $0.0394 \times 24 = 0.945 \text{ dm}^3 \text{ or } 945 \text{ cm}^3$ [1m] 3sf, ecf from amount of O_2 used and units

A sample of verdigris has the formula [(CH₃COO)₂Cu]₂.Cu(OH)_{2.x}H₂O Analysis of 100 g of the sample shows that it contains 16.3% water by mass.

3

3 Calculate the number of moles of [(CHsCOO)₂Cu]₂.Cu(OH)₂ present in 100 g of the sample of verdignts.

[Given that M_r of [(CH₃COO)₂Cu]₂.Cu(OH)₂ = 460.5]

 M_1 of $[(CH_3COO)_2Cu]_2$. $Cu(OH)_2 = 460.5$

Amount of $\frac{100-163}{100}$ Amount of $\frac{100-163}{100}$

= 0.1818 mot [fm] working

Ξ

3 Hence or otherwise, calculate the value of x in the formula.

Amount of water present = $\frac{16.3}{18.0}$ = 0.9055 mol

4.98 ≈ 5	1	Ratio
0.9055	0.182	Amount/mol
Н2О	[(CH3COO);Cu]z.Cu(OH)z	

The value of x is 5.

[1m] comparing mole ratio between [(CH₃COO)₂Cu]₂.Cu(OH)₂ and H₂O.

ecf ans from (b)(i)

Simple molecules vary in shapes and polarity

[1] [otal:6]

For Examinar's Use

State which of the molecules shown above are polar

E

굙픆

ပ္လို္င္ခ

HF, NH₃, H₂O [1m]

₤ Arrange the molecules identified in (a) in order of increasing polarity of the bond in the molecules. Explain your answer.

Bond polarity: NH 3< H2O < HF [1m]

E/Fluorine is the most electronegative atom, followed by <u>O/oxygen,</u> then Nnitrogen. OR electronegativity: F > O > N [1m]

Draw dot-and-cross diagrams to show the bonding in CiFs, SO2 and PHs

0

Name the shapes of these molecules

Name of shape	Dot-and-cross diagram	Formulae
T-shaped [1m]	WAS TO THE	C/F ₃
V-shaped/bent [1m]	SA SA SA SA SA SA SA SA SA SA SA SA SA S	SO ₂
trigonal pyramidal [1m]	た。 た。 た。 で、 で、 で、 で、 で、 で、 で、 で、 で、 で、 で、 で、 で、	말3

3 Suggest, with reference to structure and bonding, why BF3 is a gas at room temperature.

BF₃ has a <u>simple molecular structure</u>. [1m] It has <u>weak intermolecular forces/</u> instantaneous dipole-induced dipole forces between the molecules. [1m] Hence, It's a gas at room temperature.

[Total: 11]

N

Tum over

 \overline{z}

Ξ

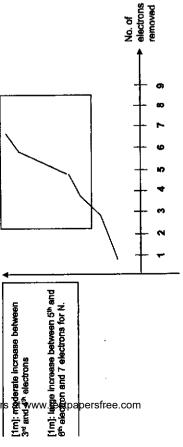
Nitrogen was discovered in 1772 by Daniel Rutherford. It is the fifth most abundant element found on earth. 63

For Examinar's Use

Define, with the aid of an equation, the first ionisation energy € Ē

The first ionisation energy of nitrogen is the <u>energy required to remove</u> one mole of <u>electrons from one mole of gaseous</u> nitrogen atoms to form one mole of gaseous singly positively charged ions. [1m]

 $N(g) \rightarrow N^*(g) + e^- (1m)$


2

Explain why nitrogen has a higher first ionisation energy than oxygen. € mutual repulsion between the paired 2p electrons in <u>oxygen [1] makes it easier to remove (or lesser energy is</u> required to remoye) [1] one of the 2p paired <u>electrons</u> than to remove the unpaired 2p electron from nitrogen. Interelectronic reoulsion

On the axes below, complete the sketch of the ionisation energies for all the electrons present in a nitrogen atom. The ionisation energies of the first three electrons are show below. €

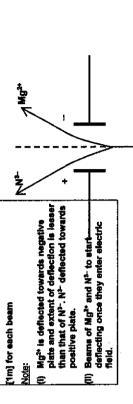
More papers

Ionisation Energy / kJ mol*1 [1m]: mgderate increase between 3rd and ≰th electrons

- Magnesium burns in nitrogen to give magnesium nitride, Mg₃N₂. <u>e</u>
- Draw a dot-and-cross diagram to litustrate the bonding in MgsNs. ε

[1m] Mg with correct charge on Mg2+

[1m] correct no. of dots and crosses around N with correct charge on N^{\pm}


Ξ

8873/02/J2 PRELIMINARY EXAMINATION /2020 Partnerint earning

Jurong Pioneer Junior College

When separate beams of 24Mg2+ and 14N3- are passed through an electric field in the apparatus below, they behave differently. €

Sketch on the diagram below to show the paths of the beams of $^{24Mg^{2*}}$ and $^{14N^2}$ as they enter the electric field.

Given that the angle of deflection of the 24Mg2+ beam is 4.0°, calculate the angle of deflection of the ¹⁴N³- beam. Give your answer to the nearest whole number. Ξ

<u>2</u>

Angle of deflection a charge ratio charge for $Mg^{2*} = \frac{2}{24} = 0.0833$ mass

mass 24 charge for N² =
$$\frac{3}{14}$$
 = 0.214 mass

Angle of deflection for N³- =
$$\frac{4.0}{0.0833}$$
×0.214 = $\underline{10}^{\circ}$ (to nearest whole number) [1m]

Ξ

[Total:10] Elements K and L are in Perlod 3. Chloride of K dissolves in water to form an acidic solution (pH = 3). Both oxide and chloride of element L are solids which are soluble in water producing a strongly acidic solution (pH = 2).

Ð

2

Suggest the identities of elements K and L.

Write balanced equations for the above observations about elements K and

Element K is A/....[1]

Dissolving: $AVC_\delta(s) + 6 \; H_2O(t) \rightarrow [A(H_2O)_\delta]^{3*}(aq) + 3 \; Cf(aq)$

$$\label{eq:hydrolysis} \begin{split} \text{Hydrolysis:} \\ [A/(H_2O)_g(OH)]^{2*}(aq) + H^*(aq)......[1] \end{split}$$

<u>ত</u>

8873/02/J2 PRELIMINARY EXAMINATION /2020 Partnerint earning

Turn over

C Jurong Ploneer Junior College

8873/02/J2 PRELIMINARY EXAMINATION /2020 PartiverinLearning

Element L is P....[1] $P_4O_{10}(s) + 6 H_2O(f) \rightarrow 4 H_3PO_4(aq)...[1]$ $PCJ_5(s) + 4 H_2O(f) \rightarrow H_3PO_4(aq) + 5 HCI(aq)[1]$

Acrylic acid, CH₂=CHCOOH, is a monobasic weak acid

9

3

A weak acid is a proton donor that dissociates partially. [1] Explain the meaning of weak acid.

Ξ

Write an equation for the dissociation of acrylic acid in water

3

Ξ

O

Given that a 0.0800 mol dm⁻³ of acrylic acld is 2.6% dissociated

3

pH of the solution. K_s of the acid.

[H*] = $2.6/100 \times 0.080 = 2.08 \times 10^{3} \text{ mol dm}^{3}$ pH = $- \lg [H'] = - \lg (2.08 \times 10^{-3}) = 2.68 [1]$ Ξ

[1] for table

Equation HA(aq	aq)	H*(aq) +	A'(aq)
Initial [] / mo! dm ⁻⁹ (0.0800	0	0
	-2.08 x 10 ⁻³	+2.08 x 10 ⁻³	+2.08 × 10-3
Eartilibeium (1/mg) 0 0800			

Since HA is a weak acid only a small concentration is dissociated, {HA] $_{\text{eqn}} \approx \text{[HA]}_{\text{origin}} = 0.0800 \text{ mol dm}^3$

$$\mathbf{K_a} = \frac{\mathbf{[H^+][A^-]}}{\mathbf{[HA]}}$$

$$= = \frac{(2.08 \times 10^{3})^{2}}{0.0800} = 5.41 \times 10^{5} \text{ mol dm}^{3}[1]$$

Ξ

Z D

3

3 During thration, it was found that 25.0 cm3 of the acid required 20.00 cm3 of 0.10 mol dm3 NaOH(aq) for complete reaction. Write a balanced equation for the reaction

CH2=CHCO2H + NaOH --+ CH2=CHCO2Na* + H2C

3 Suggest a suitable indicator for the titration of acrylic acid with sodium hydroxide in (Iv).

Phenolphthalein [1]

Ξ

Ξ

3 Before the end-point was reached in (Iv), there was a mixture of acrylic acid (CH₂=CHCO₂H) and its salt (CH₂=CHCO₂Na) in the

and its salt removes the small amounts sodium hydroxide hydrochloric acid when added separately. By means of ionic equations, show how this mixture of acrylic acid and its salt removes the small amounts sodium hydroxide and

N

 CH_2 = $CHCO_2$ + + OH \rightarrow CH_2 = $CHCO_2$ + + H₂O [1]

9 Hot melt adhesive also known as hot glue, is a form of adhesive that is commonly sold as solid cylindrical sticks of various diameters designed to be applied using a hot glue gun.

[Total: 15]

The polymer, EVA, is a copolymer which is commonly used in the hot glue.

done to increase the viscosity of the give. Commonly, in an EVA polymer, there are more m units than n units. This is

radiation. EVA has many attractive properties including low cost, excellent adhesion to many polar and nonporous substrates. It also can be recycled. EVA is an elastomeric polymer that produces materials which low-temperature toughness, stress-crack resistance and resistance "rubber-like" in softness and flexibility. It has good clarity and gloss,

Another polymer, poly(vinyl chloride) (PVC) is used to produce PVC glue which is used to glue water pipes.

Draw the structural formulae of the two monomers used to make EVA.

 Σ

3 State the type of reaction used to make EVA

Addition polymerisation.

Î

EVA is non-biodegradable. [1] EVA has no ester or amide linkages

8873/02/J2 PRELIMINARY EXAMINATION /2020 PartnerInLearning

@ Jurong Pioneer Junior College

[I um over

 $\overline{\Sigma}$

Ξ

Turn over

8873/02/12 PRELIMINARY EXAMINATION /2020 Partnerin Learning

Section B

and the C-C bonds in the polymer is non-polar and thus inert.[1]

Based on the structure of EVA, predict what will be the predominant bonds that hold these polymer chains together? 3

Instantaneous dipole induced dipole forces of attractions between the polymer chains since there are more m units which are non polar.

Ξ

Predict whether EVA is a thermosetting or a thermoplastic polymer. Σ Explain your answer using the information in the question and your knowledge of the structure and bonding in polymers

the polymer chains in place becoming permanently rigid. Heating would not be able to melt it and thus cannot be recycled [1] Thermoplastic polymer [1]. The side chains of PHBV are inert and may not react to form cross-links. In addition, cross-linking would hold

Explain why EVA is classified as elastomer.

stretched on applying small stress and they regain their original shape when the stress is removed.[1] EVA chains are held together by weak instantaneous dipole - induced dipole forces. Due to weak forces [1] the polymers can be easily

This is due to the presence of no 'cross-links' between the chains, which help the polymer to retract to its original position after the force s removed

 $\overline{\mathbf{z}}$

and non-polar Suggest why EVA has good adhesion to polar substrates. 3

So it is able to form bonds with polar substrates. It also have non-polar ethene monomer which can form instantaneous clipole induced dipole [1] forces of attraction with the non-polar substrates. EVA has polar monomer which has an ester linkage which is polar.[1]

2

State one environmental advantage of recycling EVA. Sii) Less environmental impact by reducing the amount of waste Conserves valuable oil-based resources, due to supply and cost peonpoid

Ξ

Explain why poly(vlnyl chloride), PVC, is used to make water pipes used in the tollets. Include a diagram of a repeat unit of PVC in your ≆

any one of the answers is accepted.]

Ξ

8873/02/J2 PRELIMINARY EXAMINATION /2020 Partnerin Learning

O Jurong Pioneer Junior College

Jurong Pioneer Junior College

 $\overline{\mathbf{Z}}$

PVC is hard and insoluble in water and resistant to chemicals. Since, PVC cannot form hydrogen bonds with water, it can be used to make the water pipes. [1]

Either one of the underlined points will be credited as 1 mk)

Ethanoic acid is a colourless organic liquid with a formula of CH₂COOH, it is mainly produced as a precursor to polyvinyl acetate, PVA. The following is a reaction scheme using ethanoic acid. 3

CH, CH, OH CH,COOH Ħ CH,CONHCH, ▲

State the reagents and conditions for reactions I and II.

€

I: LIA/H, in dry ether II: CH₃NH₂, DCC

 $\overline{\mathbf{z}}$

State the type of reaction in reaction I.

€

Reduction

Total: 18]

Ξ

区

The diagram below shows an energy cycle involving but-1-ene.

Ē

4C(g) + 4H₂(g + 60₂(g) ΔH⁹2 4CO₂(g) + 4H₂O(I) AH" CH3CH2CH=CH2 (g) + 602(9)

ΔH⁶2 represents the standard enthalpy change of combustion for C(g) and Given that

CH3CH2CH=CH2(g). ΔH⁸₃ represents ; standard enthalpy change 잌 combustion ਕ੍ਰੋ

3 Define the term bond energy

Bond energy is the <u>heat energy absorbed</u> to break one mole of covalent bonds between atoms in gaseous molecules to give gaseous atoms or gaseous molecules. Ξ

> = 30444 J = 30.444 kJ [1] $= 120 \times 4.3 \times (89 - 30)$

Heat gained by 100 g of water

ΔH_C = n(substance burnt)

= -2440 kJ mot

= $[30.444/70 \times 100] / (1/56) [1]$ = $-2440 \text{ kJ mol}^{-1}$ [1]

Hence, calculate the standard enthalpy change of combustion but-1-ene, ΔH^0 ,.

잌

Assume the specific heat capacity of water to be 4.3 ± g⁻¹ K⁻¹...

was heated from 30°C to 89°C.

70 % efficient.

 \exists Using the bond energy values in the Data Booklet, calculate a value for

 $\Delta H^{\theta_1} = \sum BE(\text{reactants}) - \sum BE(\text{products})$ = 4(436) - [2BE(C-C) + 8BE(C-H) + BE(C=C)] = [1744) - [2(350) + 8(410) + 610]2850 kJ mot*1 (2 marks) (wrong sign = no marks) (wrong units minus 1 mark)

3 Use the energy cycle, the following data as well as the value calculated in (a)(ii), to calculate ΔH^4 s.

 $\overline{\mathbf{z}}$

Ø	ģ	Ø
Standard enthalpy change of combustion of H ₂ (g)	Standard	anda
rd en	nd en	권 명의
thalp	d enthalpy change of combustion of C(g)	甚
(cha) chia	8
nge	nge c	
of co	3	
mbus	mbus	
tton o	tion	
of H ₂ (S d C	
9	2	
		£
-286	-1110	W W
5,	0	đ
ш	Щ.	11000

 $\Delta H_3^e = \Delta H_c(but-1-ene)$

$$\Delta H_{o}^{e} = [4(\Delta H_{o}^{e}(C(g)) + 4 \Delta H_{o}^{e}(H_{o})]$$

= 4(-1110) + 4(-286).....[1]
= -5584 kJ mol⁻¹ [1]

 $\Delta H_1^4 + \Delta H_2^8 = \Delta H_2^8$

 $\Delta H_3^6 = \Delta H_c^6 \text{(but-1-ene)}$ $= \Delta H_c^6 - \Delta H_c^6$

· 5584 -- (- 2846) ...[1]

8873/02/J2 PRELIMINARY EXAMINATION /2020 PartnerinLearning

Jurong Ploneer Junior College

4

C Jurong Pioneer Junior College

For Examiner's Use

3

The equation written in the question to represent AHe, is not correct.

[Allow ecf if ΔH^0_2 is wrongly calculated]

= -2738 = - 2740 kJ mot¹

Ξ

3

Explain why.

Graphite/diamond exists as <u>solid</u> under standard conditions of 298 K and 1 bar but the graphite/diamond shown in the question is in the

3

The following experiment was done in the laboratory to find ΔH_a^a

Ξ

gaseous state. (1 mark)

1.00 g of but-1-ene was burned to heat up 120 g of water. The water

The process was known to be

strawberries. Ethyl propanoate can be hydrolysed by aqueous NaOH. The initial rate of the hydrolysis reaction between the ester and NaOH(aq) was measured in a series of experiments at a constant temperature. The C₂H₅OCOCH₂CH₃ + NaOH → C₂H₅OH + CH₃CH₂COO·Na

results are obtained below:

ਭ

Ethyl propanoate is found naturally in apple julce, grapefruit peel

콥

4	3	2	1	Experiment
				Initial concentration of NaOH / mol dm ⁻³
0.060	0.045	0.045	0.030	Initial concentration of ester / mol dm ⁻³
×	9.0 x 10-4	6.0 x 10 ⁻⁴	4.0 × 10-4	Initial rate / mol dm³ s¹

each reactant and hence deduce the rate equation for the reaction. Using the data above, determine the order of reaction with respect to

3

and [ester] increases by 1.5 times, Initial rate increases by 1.5 times
Hence, order with respect to ester is 1. [1] By inspection, using experiments 1 and 2, when [NaOH] is constant

and [NaOH] increases by 1.5 times, initial rate increases by 1.5 times. By inspection, using experiments 2 and 3, when [ester] is constant 8873/02/J2 PRELIMINARY EXAMINATION /2020 PartnerInLearning

Turn over

ω

 $\overline{\omega}$

Turn over

[2]

Ξ

Hence, otherwise, calculate the value of x in experiment 4. € Using expts 1 and 4, $x = (3 \times 2 \times 4.0 \times 10^4)$ = 2.40 x 10³ mol dm³ s⁻¹ [1]

Use the data from experiment 1 to calculate the rate constant, stafing its units. Ê

Ξ

Using expt 1, 4.0 x 10⁴ = k (0.04)(0.03) k = 0.333 mol⁻¹dm³s⁻¹ [1 for value, 1 for units]

2

Describe the thermal decomposition of the hydrogen halldes HCI, HBr and HI and explain any variation in their thermal stabilities. ම

The thermal decomposition of the hydrogen halides involves the breaking of the covalent bond between the H atom and the halogen atom. [1]

H₂(g) + X₂(g).... or show the eqn

Down the group, the atomic radii of the halogen increases, which resulted in The thermal stability of Group 17 hydrides decreases. [1] down the group.

The H-X bond length increases thus the H-X bond strength weakens down the group, resulting in lesser energy required to break the weaker H-X bond the less effective overlap due to the bigger orbitals involved for decomposition and the thermal stability decreases.

Use of bond energy data to explain the thermal decomposition is also (3 marking points – 1mk)

[Total: 20]

<u>-</u>

Sulfuric acid is manufactured by the Contact process. One stage in this process is the conversion of sulfur dioxide into sulfur trioxide in the presence of a heterogeneous catalyst of vanadium(V) oxide, V2Os. æ

State the meaning of the term heterogeneous as applied to catalysts. ε

A heterogeneous catalyst is in different state / phase to the reactants. Ξ Heterogeneous metal catalysts, such as rhodium and platinum are used in catalytic converters in cars. Write two equations to illustrate how NO and CO gases produced in car engines, are removed by catalytic converters. Ê

2CO₂(g) [1m] 2CO₂(g) + N₂(g) [1m] 1 1 2CO(g) + O₂(g) 2CO(g) + 2NO(g)

 $\overline{\Sigma}$

The equation for this stage of the Contact Process is shown.

8873/02/J2 PRELIMINARY EXAMINATION /2020 Partnerinlearning

 $2SO₂(g) + O₂(g) \ll 2SO₃(g)$

 $\Delta H = -196 \text{ kJmol}^{-1}$

ç

<u>.</u>⊑ with the help of a suitable diagram, explain why a decrease temperature decrease the rate of production of SO₃.

€

Author of particles

 \bigcirc No. of particles with energy $\ge E_s$ of T_s \bigcirc No. of particles with energy $\ge E_s$ of T_s T A When the temperature decreases(T2 to T1), the number of molecules herefore, frequency of effective collisions between molecules with energy ≥ activation energy/ E_s decreases [1m] and hence, the rate of

Ξ

State and explain the effect of increasing pressure on the yield of SO₃. €

reaction decreases.

<u>ල</u>

By LCP, system will decrease the pressure by favouring the side of the equation that has lesser amount of gases. Equilibrium position shifts to the right. [2 points -1m] Yield of SO₃ increases. [1m]

 $\overline{\mathbf{x}}$

Another element in the third period is silicon. Similarly to sulfur, silicon reacts with oxygen to form silicon dioxide which reacts with hot, concentrated sodium hydroxide. Ü

State the silicon containing product formed during the reaction between silicon dioxide and concentrated sodium hydroxide. ε

sodium silicate / Na₂SiO₃ [1m]

Ξ

Describe the behaviour of the silicon dioxide during this reaction. Acid / acidic [1m] $\mathbf{\epsilon}$

Sodium burns in oxygen to form Na₂O.

€

Ξ

Ξ

Which one of the two oppositely charged ions present in Na2O would have a smaller ionic radius? Explain your answer ε

Na* and O2* are isoelectronic. Na* has a larger nuclear charge than Hence, Nat has a smaller radius than O2-. (1m) O²-.[1m]

© Jurong Ploneer Junior College

8873/02/J2 PRELIMINARY EXAMINATION /2020 PartnerIn Loaming

Jurong Pioneer Junior College

9

햐

Jurong Ploneer Junior College

8873/02/J2 PRELIMINARY EXAMINATION /2020 Partner in Learning

[Turn over

3 MgO. State and explain the difference in the melting points of Na₂O and | lattice energy | $\propto |\frac{q_+ \times q_-}{q_-}|$

r + r

electrostatic attraction between Mg²⁺ and O²⁻ than that between Na⁴ and O2-. [1m] MgO has a higher melting point than Na₂O. [1m] Mg² has higher ionic charge and smaller radius than Na*[1]

3 Explain why Group 1 elements are generally good reducing agents

 $\overline{\omega}$

Group 1 elements are easily oxidised as they have low first ionisation energies and easily lose an electron to form cations. [1m] Thus, they act as good reducing agents.

3

Explain why the reducing power of sodium is higher than that of lithium. Quote relevant values from the Data Booklet to support your answer.

3

The first ionisation energy of Li is greater than Na.

Or atomic radius of Na is greater than Li. Na: 0.186 nm <u>Li: 0.152 nm</u>

Ξ

Ī

Na; 494 kJ mol-1

LI: 519 kJ mot-1

(The valence electrons are further away from the nucleus and hence more easily removed due to the weaker attraction to the nucleus) Li, thus ease of oxidation increases. [1m] It becomes easier to remove an electron from the atom from Na than

Hence, reducing power of Na is higher than Li.

 \overline{Z}

When aqueous chlorine was added to a bromide solution, an orange solution, chloride solution, no reaction occurred. Br₂(aq) was formed. However, when aqueous bromine was added to a

3

$$Cl_2(aq) + 2Br'(aq) \rightarrow Br_2(aq) + 2Cl'(aq).....(1)$$

State the role of $Cl_2(aq)$ in equation (1). Br₂(aq) + 2Cl⁻(aq) → no reaction......(2)

Oxidising agent.

3

3

Br to Br $_2$ and the reaction proceeds while in (2) Br $_2$ being a weaker oxidising agent, it was not able to oxidise Cl to Cl_2 Cl₂, is a stronger oxidising agent than Br₂, so it oxidises

Explain why there is no reaction in (2) while reaction proceeds in (1).

Ξ

[Total: 20]

Ξ